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1. Introduction

In this paper, we consider the following discrete boundary value problems

(P)

{

∆2y(k − 1) + f(k, y(k), ∆y(k)) = 0, k ∈ [1, T ]

y(0) = y(T + 1) = 0,
(1.1)

where T ∈ {1, 2, . . .}, [1, T ] is the discrete interval {1, 2, . . . , T}, ∆y(k) = y(k + 1) − y(k) is the

forward difference operator, ∆2y(k) = ∆(∆y(k)), and the function f : [1, T ] × R × R → R is

locally Lipschitz continuous.

Recently, some authors have studied discrete boundary value problems by using variational

methods. In 2003, Guo and Yu[4] investigated the following second order difference equation

∆2y(k − 1) + f(k, y(k)) = 0, (1.2)

where f : Z ×R −→ R is a continuous function in the second variable and f(k + m, z) = f(k, z)

for all positive integer m and (k, z) ∈ Z × R. They obtained some multiplicity results for the

problem (1.2). In 2004, Agarwal, Perera and O’ Regan[1] discussed the singular and nonsingular

second order difference equations
{

∆2y(k − 1) + f(k, y(k)) = 0, k ∈ [1, T ]

y(0) = y(T + 1) = 0,
(1.3)
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where f ∈ C([1, T ]×[0,∞), R) satisfies f(k, 0) > 0, for all k ∈ [1, T ]. Using the minimax principle

and Mountain Pass Lemma in critical point theory, they established the existence of multiple

positive solutions for the problem (1.3). In 2004, using Mountain Pass Lemma, Zhang and Yang[6]

proved the existence of 2n nontrivial solutions for discrete two-point boundary value problems

which come from the steady-state temperature distribution of heat diffusion on multi-body. In

2005, Agarwal, Perera and O’ Regan[2] considered the following singular boundary value problem










∆(φp(∆y(k − 1)) + f(k, y(k)) = 0, k ∈ [1, T ],

y(T + 1) = 0, k ∈ [1, T ],

y(0) = y(T + 1) = 0,

(1.4)

where φp(s) = |s|p−2s, 1 < p < ∞ and f ∈ C([1, T ] × [0,∞), R) satisfies

b0(k) 6 f(k, t) 6 b1(k)t−θ, (k, t) ∈ [1, T ]× (0, t0), (1.5)

for some nontrivial functions b0, b1 > 0 and θ, t0 > 0. It follows that f may be singular at

t = 0 and may change sign. They obtained the existence of multiple positive solutions for the

problem (1.4) by using variational methods. In 2006, Zhang and Liu[7] discussed the second

order superlinear difference systems










∆2x(k − 1)) + g(k, y(k)) = 0, k ∈ [1, T ]

∆2y(k − 1)) + f(k, x(k)) = 0, k ∈ [1, T ]

x(0) = x(T + 1) = y(0) = y(T + 1) = 0.

(1.6)

Using minimax principle and Linking Theorem, they proved the existence of two positive solutions

for the problem (1.6). In 2007, Zhang, Zhang and Liu[8] investigated a class of second order

difference equations with discontinuous nonlinearities, and obtained a new multiplicity result by

using a three critical points theorem. However, there are a few approaches to study discrete

boundary value problems with dependence on the first order difference. The obvious reason is

that, contrary to the problems (1.2), (1.3) and (1.4), Problem (P) does not have variational

structure, due to the presence of the first order difference in the nonlinear term. So the critical

point theory cannot be directly used to attack Problem (P).

In this paper, we use variational type methods to handle problem (P) under suitable assump-

tions on the date. Firstly, we “freeze” the first order difference for the function to consider a class

of second order difference equations which are independent of the first order difference associated

with Problem (P), and thus obtain the existence of a nontrivial solution by using Mountain Pass

Lemma. Secondly, using some estimates and an iterative scheme, we obtain the existence of a

positive solution and a negative solution for Problem (P).

The paper is arranged as follows. In Section 2, we recall some basic lemmas and state our

main theorem; In Section 3, we prove our main theorem.

2. Some basic lemmas and main theorem

In this section, we recall some lemmas and state our main theorem.
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Definition 2.1 Let X be a real Hilbert space, I ∈ C1(X, R) which means that I is a continuously

Frechet differentiable functional defined on X . I is said to satisfy (PS) condition, if any sequence

(un) ⊂ X with

I(un) ≤ c, (c ∈ R), and I ′(un) → 0 as n → ∞ (2.1)

possesses a convergent subsequence in X .

Lemma 2.2 (Mountain Pass Lemma)[5] Let X be a real Hilbert space with norm ‖ ‖X , the

functional I ∈ C1(X, R) satisfies (PS) condition I(0) = 0 and Assume

i) There exist ρ > 0, α > 0 and ‖u‖X = ρ, such that I(u) > α;

ii) There exists u1 ∈ X and ‖u1‖X > ρ, such that I(u1) 6 α.

Define

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1]; X)|γ(0) = 0, γ(1) = u1}. Then the functional I has a positive critical

value c > α > 0.

Now, we define the class H of the functions y : [0, T + 1] → R with y(0) = y(T + 1) = 0. H

is a T -dimensional Hilbert space with inner product

(y, w) =
T

∑

k=1

(y(k)w(k)), ∀y, w ∈ H. (2.2)

We denote the induced norm by

‖y‖ =
(

T
∑

k=1

y2(k)
)

1

2

, ∀y ∈ H. (2.3)

It is obvious that (H, ( , )) is linearly homeomorphic to RT .

Consider the following linear eigenvalue problem

∆2y(k − 1) + λy(k) = 0, y ∈ H. (2.4)

Define the functional Φ on H as follows,

Φ(y) =
1

2

T+1
∑

k=1

(∆y(k − 1))2 − λyTy =
1

2
yTAy − λyTy,

where y = (y(1), y(2), . . . , y(T ))T, and

A =

















2 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 2 −1

0 0 0 · · · −1 2

















T×T

. (2.5)

It is obvious that the functional Φ ∈ C1(H, R) and

(Φ′(y), z) =

T+1
∑

k=1

[∆y(k − 1)∆z(k − 1) − λy(k)z(k)] = −

T
∑

k=1

[∆2y(k − 1) + λy(k)]z(k), ∀z ∈ H.
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So the solutions of the problem (3.4) are precisely the critical points of Φ. The nontrivial solutions

of the problem (3.4) can only be found when λ is one of the eigenvalues[3]

λk = 4 sin2 kπ

2(T + 1)
, k = 1, 2, . . . , T, (2.6)

of the positive definite matrix A, and the corresponding eigenvector is

ξk =

√

2

(T + 1)

(

sin
kπ

(T + 1)
, sin

2kπ

(T + 1)
, . . . , sin

Tkπ

(T + 1)

)T

, k = 1, 2, . . . , T.

Let λmin = min{λ1, λ2, . . . , λT }, λmax = max{λ1, λ2, . . . , λT }, whereλ1, λ2, . . . , λT are defined

by (2.6).

Now, we state our main theorem. Assume

(H1) limt→0
f(k,t,ξ)

t
= 0, uniformly with respect to k ∈ [1, T ], ξ ∈ R;

(H2) There exist R > 0 and β > 2 such that

0 < βF (k, t, ξ) 6 tf(k, t, ξ), ∀|t| > R, ξ ∈ R,

where F (k, t, ξ) =
∫ t

0
f(k, v, ξ)dv;

(H3) There exist a1 > 0 and a2 > 0 such that

F (k, t, ξ) > a1|t|
β − a2;

(H4) There exist p > 1 and a3 > 0 such that

f(k, t, ξ) 6 a3(1 + |t|p);

(H5) The function f satisfies the following local Lipschitz conditions

|f(x, t′, ξ) − f(x, t′′, ξ)| 6 L1|t
′ − t′′|, ∀k ∈ [1, T ]t′, t′′ ∈ [0, ρ1], |ξ| 6 ρ2,

|f(x, t, ξ′) − f(x, t, ξ′′)| 6 L2|ξ
′ − ξ′′|, ∀k ∈ [1, T ], t ∈ [0, ρ1], |ξ

′| 6 ρ2, |ξ
′′| 6 ρ2,

where ρ1, ρ2 > 0.

Theorem 2.3 Assume (H1)–(H5) hold. Then Problem (P) has a positive solution and a negative

solution, provided
L2

2
λmax + (L1 +

L2

2
) < λmin.

3. Proof of Theorem 2.3

For each w ∈ H , we consider the following problem
{

∆2y(k − 1) + f(k, y(k), ∆w(k)) = 0, k ∈ [1, T ]

y(0) = y(T + 1) = 0.
(3.1)

Now the problem (3.1) is variational, and we can treat it by using variational methods.

Define the functional

Iw(y) =
1

2

T+1
∑

k=1

(∆y(k − 1))2 −

T
∑

k=1

F (k, y, ∆w(k)), (3.2)
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for each w ∈ H . From (H1) and (H3), we obtain that the functional I ∈ C1(H, R), and by a

simple computation we have

∂Iw(y)

∂y(k)
= 2y(k) − y(k + 1) − y(k − 1) − f(k, y(k), ∆w(k))

= −(∆2y(k − 1) + f(k, y(k), ∆w(k))).

Therefore, a solution of the problem (3.1) is obtained as a critical point of the functional Iw(y).

Lemma 3.1 Assume (H1)–(H4) hold. Then the problem (3.1) has at least one solution yw for

any w ∈ H, and there exist c1 > 0 and c2 > 0 such that

c1 6 ‖yw‖ 6 c2.

Moreover, under the above hypotheses, the problem (3.1) has a positive solution and a negative

solution.

Proof Firstly, we prove the problem (3.1) has at least one nontrivial solution by using Lemma

2.2 (Mountain Pass Lemma).

Claim 1 The functional Iw(y) satisfies (PS) condition. Indeed, let the sequence {ym} ⊂ H

satisfy

Iw(ym) 6 c, I ′w(ym) → 0 as m → ∞. (3.3)

Since H is finite dimensional, it suffice to show that the sequence {ym} is bounded. By (3.3), we

have

βc + o(1)‖ym‖ ≥ βIw(ym) − (I ′w(ym), ym)

=
β − 2

2

T+1
∑

k=1

(∆ym(k − 1))2 +

T
∑

k=1

(f(k, ym(k), ∆w(k))ym(k) − βF (k, ym(k), ∆w(k)))

≥
β − 2

2
‖ym‖

2
+

∑

N1

(f(k, ym(k), ∆w(k))ym(k) − βF (k, ym(k), ∆w(k)))+

∑

N2

(f(k, ym(k), ∆w(k))ym(k) − βF (k, ym(k), ∆w(k))), (3.4)

where N1 = {k|k ∈ [1, T ], y(k) > R}, N2 = [1, T ]\N1. By (H2), we have
∑

N1

(f(k, ym(k), ∆w(k))ym(k) − βF (k, ym(k), ∆w(k))) > 0.

Therefore, we have

βc + o(1) ‖ym‖ >
β − 2

2
‖ym‖2 +

∑

N2

(f(k, ym(k), ∆w(k))ym(k) − βF (k, ym(k), ∆w(k))). (3.5)

By (H4), N2 = [1, T ]\N1 and the function f : [1, T ]× R × R is locally Lipschitz continuous. We

obtain that the last term of (3.5) is finite, and hence the sequence {ym} is bounded.

Claim 2 The functional Iw(y) has the geometry of Mountain Pass Lemma (i.e., i), ii) of Lemma
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2.2). Indeed by (H1) we have

lim
t→0

F (k, t, ξ)

t2
= 0.

Let ε = 1
4λmin > 0. There exists ρ > 0, such that for t with |t| = ρ,

F (k, t, ξ) 6
1

4
λmint2.

Therefore, we obtain

Iw(y) =
1

2

T+1
∑

k=1

(∆y(k − 1))2 −

T
∑

k=1

F (k, y, ∆w(k))

≥
1

2
λmin ‖y‖

2
−

1

4
λmin ‖y‖

2
=

1

4
λmin ‖y‖

2
.

Let α = 1
4λminρ

2. Then we have

Iw(y) > α, ∀‖y‖ = ρ.

On the other hand, we fix y0 ∈ H with ‖y0‖ = 1, and by (H3), we have

Iw(sy0) =
1

2
s2

T+1
∑

k=1

(∆y0(k − 1))2 −

T
∑

k=1

F (k, sy0, ∆w(k))

≤
1

2
λmaxs

2 ‖y0‖
2 − a1 |s|

β
T

∑

k=1

|y0|
β − a2(T − 1)

≤
1

2
λmaxs

2 − a1 |s|
β ‖y0‖

β
β − a2(T − 1),

where the norm ‖ ‖β is defined by ‖y‖β = (
∑T

k=1 |y|
β)

1

β for all y ∈ H , β > 2. By Lemma 2.1

in [4], we obtain that the norm ‖ ‖β and the norm ‖ ‖ are equivalent. Hence, we choose the

constant S independent of y0 and w, such that

Iw(sy0) 6 0, for all s > S.

Combining Claims 1 and 2, we prove that all conditions of Lemma 2.2 are satisfied, and the

problem (3.1) has at least one solution yw which can be obtained as a critical point of Iw at an

inf max level. Namely,

I ′w(yw) = 0, Iw(yw) = inf
γ∈Γ

max
t∈[0,1]

Iw(γ(t)), (3.6)

where Γ = {γ ∈ C([0, 1]; H)|γ(0) = 0, γ(1) = Sy0}. From now on, we fix such a S and y0.

Secondly, we prove that the solution yw 6= 0 obtained above satisfies

c1 6 ‖yw‖ 6 c2,

where c1, c2 > 0 are independent of w. Indeed, since yw is a solution of the problem (3.1), we

have
T+1
∑

k=1

(∆yw(k − 1))2 =

T
∑

k=1

f(k, yw(k), ∆w(k))yw(k).
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By (2.6), we have
T+1
∑

k=1

(∆yw(k − 1))2 > λmin ‖yw‖
2
. (3.7)

By (H1) and (H4), we can deduce that there exists cε > 0 such that

T
∑

k=1

f(k, yw(k), ∆w(k))yw(k) 6 ε ‖yw‖
2

+ cε ‖yw‖
p+1
p+1 . (3.8)

Combining (3.7) and (3.8), we have

λmin ‖yw‖
2

6 ε ‖yw‖
2
+ cε ‖yw‖

p+1
p+1 .

Choosing ε < λmin, we have ‖yw‖ > c1 since p + 1 > 2.

On the other hand, by (3.6), we obtain

Iw(yw) 6 max
s>0

Iw(sy0).

For fixed y0 with ‖y0‖ = 1, we use (H3) to get the following estimates:

Iw(sy0) ≤
1

2
λmaxs

2 ‖y0‖
2 − a1 |s|

β
T

∑

k=1

|y0|
β − a2(T − 1)

≤
1

2
λmaxs

2 − a1 |s|
β ‖y0‖

β
β − a2(T − 1) =: h(s),

whose maximum is achieved at some s̄0 > 0, and the value h(s̄0) can be taken as c2 . So we have

‖yw‖ 6 c2.

Thirdly, we prove the existence of a positive solution of the problem (3.1) (of course the proof

of the existence of a negative solution is analogous). Define the function

f̂(k, t, ξ) =

{

f(k, t, ξ), t ≥ 0,

0, t < 0.

Of course f̂ satisfies (H3) and (H4) only for t > 0. Applying Lemma 2.2 (Mountain Pass Lemma),

we obtain a nontrivial solution yw 6= 0 of the following problem
{

∆2y(k − 1) + f̂(k, y(k), ∆w(k)) = 0, k ∈ [1, T ]

y(0) = y(T + 1) = 0.
(3.9)

Multiplying the problem (3.9) by y−

w , where y−

w = min{0, yw}, we have

0 =
T+1
∑

k=1

(∆2yw(k − 1)+
T

∑

k=1

f̂(k, yz(k), ∆w(k))y−

z (k)

=

T+1
∑

k=1

(∆yw(k − 1)∆y−

w (k − 1) + f(k, 0, ∆w(k))y−

w (k))

≥ −

T+1
∑

k=1

(∆yw(k − 1)∆y−

w (k − 1)) > λmin

∥

∥y−

w

∥

∥

2
.

Therefore, we have y−

w = 0. If yw(k) = 0, we have

yw(k + 1) + yw(k − 1) = ∆2yw(k − 1) = −f(k, 0, ∆w(k)) = 0.
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So yw(k ± 1) = 0. It follows that yw vanishes identically. Hence yw is positive.

Now, we prove our main theorem by using iterative technique.

Proof of Theorem 2.3 Construct a sequence {yn(k)} ⊂ H as solutions of
{

∆2yn(k − 1) + f(k, yn(k), ∆yn−1(k)) = 0, k ∈ [1, T ],

yn(0) = yn(T + 1) = 0.
(3.10)

Using (3.10)n and (3.10)n+1, we have

T+1
∑

k=1

[∆yn+1(k − 1)(∆yn+1(k − 1) − ∆yn(k − 1))]

=
T

∑

k=1

f(k, yn+1(k), ∆yn(k))(yn+1(k) − yn(k)), (3.11)

T+1
∑

k=1

[∆yn(k − 1)(∆yn+1(k − 1) − ∆yn(k − 1))]

=

T
∑

k=1

f(k, yn(k), ∆yn−1(k))(yn+1(k) − yn(k)). (3.12)

Subtracting (3.12) from (3.11) gives

T+1
∑

k=1

(∆yn+1(k − 1) − ∆yn(k − 1))2

=

T
∑

k=1

(f(k, yn+1(k), ∆yn(k)) − f(k, yn(k), ∆yn(k)))(yn+1(k) − yn(k))+

T
∑

k=1

(f(k, yn(k), ∆yn(k)) − f(k, yn(k), ∆yn−1(k)))(yn+1(k) − yn(k)).

Thus, by (H5), we have

T+1
∑

k=1

(∆yn+1(k − 1) − ∆yn(k − 1))2

6 L1

T
∑

k=1

(yn+1(k) − yn(k))2
T

∑

k=1

(∆yn(k) − ∆yn−1(k))(yn+1(k) − yn(k)).

By Cauchy-Schwarz inequality, we have

(∆yn(k) − ∆yn−1(k))(yn+1(k) − yn(k)) 6
1

2
(∆yn(k) − ∆yn−1(k))2 +

1

2
(yn+1(k) − yn(k))2.

Hence, we have

λmin ‖yn+1 − yn‖
2
≤

T+1
∑

k=1

(∆yn+1(k − 1) − ∆yn(k − 1))2

≤ L1 ‖yn+1 − yn‖
2

+
L2

2
λmax ‖yn − yn−1‖

2
+

L2

2
‖yn+1 − yn‖

2
.
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From which it follows that

λmin ‖yn+1 − yn‖
2

6 (L1 +
L2

2
) ‖yn+1 − yn‖

2 +
L2

2
λmax ‖yn − yn−1‖

2
.

Therefore, we have

‖yn+1 − yn‖ 6

( L2

2 λmax

λmin − (L1 + L2

2 )

)
1

2

‖yn − yn−1‖ =: ζ ‖yn − yn−1‖ .

Since the coefficient ζ is less than 1 and H is a finite dimensional space, it follows that the

sequence {yn} strongly converges to some function y ∈ H .

Since ‖yn‖ > c1 for all n, it follows that y 6= 0. In this way, we obtain that Problem (P) has

a nontrivial solution. Proceeding as in Lemma 3.1, we conclude that Problem (P) has a positive

solution and a negative solution.
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