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1. Introduction

In this paper, we discuss a new mixed finite element method for the following integro-

differential equation of parabolic problem

(a) u — V- (a(X)Vu + [5 b(t,7)Vu(r)dr) = f(X,t), X €Q,te (0,7,
(b) u(X,t) =0, X € 00,te0,T), (1)
(c) u(X,0) = uo(X), X eq,

where V- and V denote the gradient and the divergence of functions, respectively, X = (z,y),us =
%. Assume that the coefficients a, b, ug and the forcing function f are sufficiently smooth with
|b] < a1,0 < ap < a < ay, for some positive constants ag and a;.

In recent years, integro-differential equations of parabolic type have received a great deal
of attention. This type of equations often occur in applications such as heat conduction in
material with memory, compression of viscoelastic media, nuclear reactor dynamics, etc.. A lot
of investigations have been devoted to above problems, such as Chen et all, Xul?l, Thomeel®,
Mclean!¥), etc. When our primary concern is to obtain u and p = aVu, we first split (a) of (1)
into a system of two equations and then use classical mixed methods[®. However, this procedure

has to satisfy the LBB stability condition on the approximating spaces, which restricts the choice
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of finite element spaces. In order to avoid the condition, Panil®" introduced an alternate mixed
finite element procedure. The method is a non-symmetric version of least square method. It
takes advantage of the least-square method and yields a better rate of convergence for the stress
than the conventional method.

Recently, H'-Galerkin mixed finite element method has been developed deeply. For example,
Guol® studied the one dimensional regularized long wave equations and gave the error estimates
of semi-discrete and fully-discrete scheme. Wang!®! considered the integro-differential equations
of hyperbolic type and gave the semi-discrete error estimates. But all the results obtained
previously are just for conforming finite elements. Stynes and Tobisk!*?! have pointed out that
nonconforming finite element approximations are appropriate, with the striking advantage that
the unknowns are associated with the element faces, each degree of freedom belongs to at most
elements. This results in cheap local communication and can be parallelized in a highly efficient
manner on MIMD-machines.

In the present article, we will focus on the nonconforming mixed finite element approximation
to (1). We make the best use of characteristics of the elements, such as (V(u — I}u), Vv,) = 0,
Vu e HY(Q), vy € Vi, (V- (p—1I?p),V-9) =0, Vp € H(div;Q), ¢» € W}, and the novel techniques
of the boundary estimation (see Lemmas 1-3 for detail). It is proved that the same estimates
as in the traditional mixed finite element methods can be obtained under semi-discrete and full
discrete scheme without LBB stability condition.

A brief outline of this paper is as follows. In next section, we construct nonconforming rectan-
gular elements. In Section 3, the error analysis of the semi-discrete H!-Galerkin nonconforming
mixed finite method is given. At last, we give the convergence results of the fully-discrete scheme.

Throughout this paper, C' denotes a general positive constant which is independent of h,

where h = m}gx hx, hx is the diameter of the finite element K.

2. Construction of the element

Assume that K = [0,1] x [0,1] is # — ¢ plane. Let A; = (=1, -1), Ay = (1,-1), 43 = (1,1)
and A4 = (—1, 1) be the four vertices, [1 = AlAQ, iQ = AQA:;, ig = A3A4 and i4 = A4A1 be the
four edges.

We define the finite element (K, P%, %) (i = 1,2,3)

21 = {{)17{)27{)37’04765}7 Pl = Spa’n{17£7g7@(‘%)7 QD(?Q)},
32 = {G1, G2, 3, d4a}, P*=span{l,%,9,9%},
33 = {p1, P2, 3, pa}, P° =span{l,%,7,3°},

where
(3t2 -1 ) ’

N =

il
K| Ji

1 1 1
@Z—:T/odg, qi:T/qug, ﬁi:A—/ﬁdé, i=1,2,3,4.
|| Ji: || Ji |L:] Ji,
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Remark 1 When i = 1, we refer to [11,12].
The interpolations defined above are properly posed and the interpolation functions can be

expressed as follows:

[y

L R 1 . o R R . R . R R . .
' = o5 + 5(1}2 —04)& + = (03 — 01)G + = (D2 + Dg — 205)p(&) + = (D5 + 01 — 205) (),

[y

[\
[\
[\

[y

. . . . 1, . o . JUNUU: N . . A
(=1 — g3 + 3G2 + 3d4a) + 5((12 —40)% + = (43 — ) + = (G1 + 43 — G2 — Ga)7*

f12q
q D 1

and

—_
w

I1°p = 1(3191 + 3p3 — P2 — Pa) + 5(192 —Pa)@ + = (B3 — Pp1)J + = (—P1 — P3 + P2 + Pa)i?,

[\
>~

respectively.

Let  C R? be a polygon domain with boundaries 92 parallel to the coordinate axes. Jj, be
a family of decomposition of Q with Q = |Jy 7, K. Let (vk,yK) be the barycenter of element
K, and 2h,, 2h, are the two sides, respectively. Ai(xx — by, yx — hy), Ao(Tx + ha, yx — hy),
As(xx + hg, yx + hy) and Ag(xx — hy, Yi + hy) are the four vertices and Iy = A1 Ag, lo = Az As,
ls = A3A4 and 1y = A4 A, are the edges. Thus there exists an affine mapping Fi : K—K:

r =z + h.T,
Yy =yx + hyg.

(2)
The associated finite element spaces V}, and W}, are defined as

Vh:{v;v|K:@oFI;1,@eP1,/[U] =0,F C 9K},
F

Wi, = {w = (w1, ws); w | = (101 0 Fic!,tg 0 Fi'), 0 € P? x 133,/ [w] =0,F C 9K},
F
where [p] denotes the jump of ¢ across the boundary F, [¢] = ¢ if F C 09.
Then for all v € H*(Q),w = (w1, ws) € (H*(22))?, we define the interpolation operators I}

and I? as
I} - HX(Q) — Vi, I}k = I}, Iev = (I1'9) o Fi?,
Ip: (HY(Q))? = Wi, I} |k = If, Tew = (I o Fi ' TP 0 Fi ).

3. H'-Galerkin methods in the semi-discrete scheme

In this section, we mainly study the semi-discrete scheme for (1).
For H'-Galerkin mixed finite element procedure, we first split (a) of (1) into the following

system of two equations
t
Vu=ap, w-Vp- [ V(@)= 1, 3)
0

where ae = 1/a and 8 = ba.
Let L2(Q2) be the set of square integrable functions on Q and (L?(Q2))? the space of two

dimensional vectors which have all components in L?(Q) with its norm |[|-||. Let H(£;div) be the
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space of vectors in (L?(€2))* which has divergence in L*(Q) with norm ||+ |34y = I [IP+[V-[1%.
(-,+) denotes the L2(€) inner product. For our subsequent use, we also use the standard Sobolev
space W™P(Q) with a norm || - ||,.,. Especially for p = 2, we denote H™(Q2) = W™2(Q), and
- llm = {1 llm2-

The weak formulation is now defined to be a pair {u, p}: [0, T] — Hg(2) x H(div; Q) satisfying
(Vu, Vv) = (ap, Vv), Yo € H}(Q),
(apr,w) + (V-p, V- w) + [§(V - (Bp)(7), V - w)dr = —(£,V - w),Vw € H(div;),  (4)
u(X,0) = up(X), X € Q.

The semi-discrete H'—Galerkin finite element procedure for the system is determined as a

pair {up,pr}: [0,T] — Vi x W}, satisfying

(Vup, Vo) = (app, Vo), Yoy, € W,
(apheswr) + (V- pp, V- wy) + [ (V- (Bpr) (1), V - wp)dT = —(f,V -wy), Yy, € Wy,
up(X,0) = I}u(X,0), X e
(5)
For all w, € Wy, v, € V3, we define
3 3
leonlla = (3 lwnll® + 19 - wnl2), Jouln = (3 lenli)
K K
It is easy to see that || - || and | - |, are norms of W}, and V4.
Theorem 1 Problem (5) has a unique solution.
Proof Let {¢;};L, and {1} 2, be the bases of V};, and W},. Let
T1 T2
un =Y hi(t)di, prn =Y _ g ()05, vn = ¢, wn = i,
i=1 j=1
so that (5) can be rewritten as
(a) AH(t) = BG(1),
by DAG® ¢ _ (6)
(b) DA + EG(t) + [, FG(r)dT = N,

where
H(t) = (hl (t)v N (t))lv G(t) = (gl(t)v <5 Grg (t))lv

A= ((v¢i7v¢j))rl xri, B = ((a"/}iv V(bj))h xray D= ((awiij))rz X729

E= ((V i, V- wj))?“zxwv F = ((V : (ﬁwi)av'wj))rzxwv N = _((fvv : "/Jj))lxwv

((6)b) is an ordinary differential equation about the vector G(t). It has a unique solution with
initial value H(0) (see [13] for details). Applying the theory of differential equations, we can
obtain a unique solution of (6). Therefore, (5) has a unique solution.

Now we give the following lemmas which will play an important role in our error analysis.

Lemma 1 Foru € H'(Q), there holds that (V(u — I}u), Vv) =0, Yv € V.
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Proof Since for all v € V,,v|x € span{l,z,y,2? 3y}, we have that Av|g and 22|k are con-

stants. By Green’s formula and the interpolation definition, we obtain

(Vu — VI}u, Vo) = Z/ V(u — I};u)Vodrdy

:_Z/ (u — Iju) Avdxdy—i—Z/ IKu ds
=0.
The proof is completed. O

Lemma 2 For p € H(div;(), there holds that (V - (p — I?p),V - ¢) = 0, for all ) € W),

Proof Since v € Wy, 1|k € span{l,z,y,y?} x span{l, z,y, 2%}, we have V(V - )|k = 0 and
V - 1|ak is a constant. Applying Green’s formula and the interpolation definition yields

(V-(p—1Iip),V-¢) = Z/ (p— I%p)V - dady

= Z/ (p— IZp)V(V - ¢)dady + Z/ (p—I%p) - n(V - )ds
K K = JOK
=0.
The proof is completed. O

Lemma 3 Suppose u; € H?(Q). There holds

};L)Kut(w-n)ds

Proof Let w = (wy,ws) € Wj. Then

< Chluglz||wll, Vw € W (7)

4

XK: /BK u(w - n)ds = ; /é?K(Utwlnl + wwanz)ds = Z(Z 1), (8)

K =1

where
11:/ —(ut utdx)< wgdx)dx,
I |11| h |ll| I
12:/ (ut—— utdy w1 ——/ wldy dy,
Is |12| I |l|
Ig:/ (ut utdx) (wg /wgdx dx
ls |l3| s A
and

I, = /14 —(ut m utdy)< m . wldy)dy.

On the one hand, we note that

1 rr+h
i+ hy) = wneyne =) = i [ (e + by) = oy — hy)do

1 Tr+he T Ouy 1 T +he aut
= —_— hy)dz )dt — — hy)dz |dt
2 Jo (/t e (2o Iy)d2) 2hx/m . ( 5, Bk - )dz)




876 SHI DY and WANG H H

1 TR +he YK +hy 82
— dydzdt,
%wllm 1 A = (9)

K K

and

1 rr+h
wa(x, yx £ hy) — ﬁ/ . wa(x, yx £ hy)de
Z K—hz

1 T +he
2he T —hg

(Zw%%Q%yKihwdgdt (10)

On the other hand, since w = (w1, ws) € span{l, z,y,y?} x span{1,z,y, 2%}, there holds

811)2

ow
O e — ) = D2y + ). )

Ox
Further, using Cauchy-Schwartz’s inequality, we get

1 Tr+he T +hy Yyr+hy 62
I+ 1 :‘ dt d
|11 + I3 e /W_hz / / / n 8y8 2,y) y}

1 TK+ha v (9’[1}2

4h2 8 Ut 8’(02
<= 12
< 3n66|mKn oz (12)
Similarly, we have
Bzut owq
2 + 4] < 3 || ||0KH ||0K
Note that
(9’[1)2 8w1 _
1= 15, y Hlwillo - (13)
dy
So
]Z/ ur(w - n)ds| < Chlugla||wl].
 Jox
The proof is completed. O

Lemma 4% Suppose that u € H*(Q), p € (H*(R2))? and p; € (H'(2))?. Then there hold

lu— Ihulp < Chlula, |lp—Iip| < Chlpls,

Ipe — Iipell < Chlpely, |V - (p— Lip)|| < Chlpla.

Theorem 2 Let u, uy € H2(Q), p € (H*(Q))? and p; € (H*(2))2. Then there hold

1

t
u= by < Oz + o+ ([ (o + u)ar) ] (14)
0
and

t 1
Ip = pulln < Chllph + pla+ ([ (pul + luB)ar) ] (15)
0
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Proof Letu—up = (u—Iju)+ (lju—up) =n+&p—pn=®—Iip)+ Iip —pn) = o +0.
It is easy to see that for any v, € Vj,, wp € W there hold

(a) (V& Vun) = (ab, Vop) + (ao, Vop),
(b) (aby, wp) + (V- 0,V - wp) + (6, wn) = (0, wn) — (aos, wn)— (16)
J3 (V- (89),V - wp)dT + X i [ wewy, - nds.

Setting vy, = £ in (16(a)) and using the Cauchy-Schwartz’s inequality gives
Vel < Clell + N6l (17)

Further, choosing wy, = 0, in (16(b)) leads to
2 d '
o0l + 5 51017 =0.00 = 0100 = 5 [ (V- (69).9 - 0)ar) +

t
/ (V- (8:0),V-0)dr + (V- (66),V - 0) + Z/ utfy - nds.  (18)
0 = JOK
Applying e-Young’s inequality and Lemma 3, we get

ot 6ulP + 5 101 <C(@) (lloul? + 1017 + %l + /H9 Jlidr)+

A0 = ([ 7 9.5 -0r). (19)

With sufficiently small €, we have

161+ 5 <1017 <C (ol + 1017 + % uf3 + / 10()13ar)~

%(/Ot(v - (8),V - 9)017). (20)

Integrating the both sides of (20) with respect to time from 0 to ¢, and noting #(0) = 0, we

obtain
t t t
/O 16:(0)|Pdr + 8113 < C / (62 + o (I + B2 e () 2)lr — / (V- (66),V -6)dr. (21)
Hence, using e-Young’s inequality gives
t t
/O 16:(r)|2dr + [16]2 < © / W62 + oe? + W2 () R)dr + |62 (22)

For sufficiently small €, by Gronwall’s lemma and Lemma 4, we have

/ 16,(r)]2dr + [|6]2 < Ch? / (oe(P)2 + Jue(r)B)dr. (23)
0 0

Combining Lemma 4, (17) and (23) yields
1

t
= aln < 9l + V€] < Chffula + o+ ([ (o) + fm)B)ar) ] (2
and

t 1
2
I = pulln < llolln + 10]1n < Chlpls + [plz + / (Ipif2 + e B)dr) ] (25)
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The proof is completed. O

4. Fully-discrete scheme and error estimates

In this section, we briefly describe a fully scheme for approximating a pair of solution {u, p}
of (4) and discuss a priori error bounds.

Let 0 = tg < t1 < -+ < tpy = T be a given partition of the time interval [0,7] with
step length At = T/M for some positive integer M. Let up(t,) € Vi, pn(tn) € Wy be the
approximations of u and p at time ¢ = t,, = nAt. The time discretization will be based on the
backward difference quotient dypp,(tn) = (pn(tn) — pn(ta_1))/At. The integral term then has to
be evaluated by numerical quadrature from the values of the py(t,). We shall approximate ¢ in

fo " B(tn, T)¢(7)dT by the piecewise constant function taking the value ¢(t;), and thus

/0 " Bt PO 2 3 ALt )6(15).

—0
We now determine a pair of {up(ty), pn(tn)} Je Vi x Wy, satisfying
(a) (Vun(tn), Vor) = (apn(tn), Vor), Yo, € Vi,
(b) (@depn(tn),wn) + (V- pr(tn), V - wn) + ngtﬁ(tmtj)(v pu(t;), V- wp) (26)
= —(f(tn), V- wn), Ywp € Wy,

Theorem 3 Problem (26) has a unique solution.
Proof Set wy = pp(tn) in (26(b)). It follows that

(adipn(tn), pr(tn)) + (V- pu(tn), V - pr(tn))

n—1

= =D AtBtast)(V-paty): V- paltn) = (f(ta), V - paltn))- (27)

7=0
Using e-Young inequality gives

28807 (0 pa(ta)lI* = a2 pa(ta-1)I?) + 1V - pa(ta) |

n—1

<D AUV o)+ 1 E)IP + €V - pa(ta)1> (28)

J=0

Summing from 1 to n with sufficiently small ¢ yields

208) " (a2 pa(ta) |1 = llapa(0)]?) +Z|\v pi(t3)]]?
n i1—1

<O ALY i) +Z||f ). (29)
i=1 j=0

Applying discrete Gronwall’s lemma, we get

DIV palti ||2<CZHf ) (30)
i=1
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Therefore, there holds

o (ta)ll < C(A8)%(|lpn (0) |+Z||f (31)

The problem (26(b)) has a unique solution according to the theory of differential equations™3.

Then (26) has a unique solution.

Theorem 4 For u, ug, uy € H*(Q), p, pr € (HY(Q))?, pue € (L*(Q))?, there hold

tn %
u(ta) = unltn)ln CH[Jula + ol + ([ @tlpe(r)} + Atfunff + us(r)Bpar) | +
0

tn

cn( [ paiPar)* +o@n( [ i + b)) 62

and
1

tn
Ip(tn) = pu(tn)lln <Chlplz + ol + ( / (Dtpe(r)E + Otfusel3 + ue(r))ar) " |+

cwn( [ IpatiPar) +o@nt( [ i + b)) 63

Proof Let u(t,) — un(tn) = ul(tn) — Lu(tn) + Lu(ts) — un(tn) = 0" + &% p(ta) — pu(tn) =
p(tn) = Iip(tn) + Iip(tn) — pa(ty) = o™ + 6™,
For all vy, € Vi, wp, € Wp,, we have by our definitions:

(a) (an, V’Uh) = (a(a” + 9") V’Uh)
(b) (a0, wp) + (V- 6",V -wp) + 317 o D(B(tn, )V 09,V - wy,) (34)
= (eh,vn) + (€0, V- wn) + D [op we(tn) - nwpds,

where

ey, =0uLip(tn) — pi(tn) = Op0™ + Oyp(tn) — pi(tn)
1 tn 1 trn
:E/ - oy(T)dT + E/n l(tn—T)ptt(T)dT,

ZAtﬁ by t)V - p(t / B(tn, 7)V - p(T)dT

n 1 J+1
/ [ Gl 9 506) + 1,919 il pisr
For e} and €2, we have the following estimates

tn tn
I < [ loumPar+ ot [ gl

tn—1 tn—1

noloptip
lez]I” < C(At)? Z/ (Ipe(r)[F + lp(r)})dr
j=0 "t

Setting v, = ™ in (34(a)) and using Cauchy-Schwartz inequality, with the boundary of «, yields
IVE < Cla™l + 16" 1)- (35)



880 SHI DY and WANG H H

Similarly, by choosing w;, = ;0" in (34(b)) and using Cauchy-Schwartz’s inequality and e-

Young’s inequality, we obtain

15 n n— n n—
[z 90" + 2At(||¢9 % = 16" % + [lo™ — 6"~ %)
= (¢L,0,0™) + (£2,0,V - 0™) ZAt (tn,t;)V - 67,0,V - 0™) +Z/ )n - wyds

< llenll? + llex Il + el 08" 1> + et |j0" — "7 + Z AtNO7]]7) + CR?[ur(ta) 3. (36)
7=0

With sufficiently small e, and the boundary of «, we get

n—1

™15 = 19" H% < C(AY) [Ilﬁ,ﬁll2 +lenll® + Y (atel]7) + hQIUt(tn)lg}- (37)
§=0

Summing from 1 to n with respect to time and noting 6(0) = 0, we obtain
10713 < Can | YU + 1212 + b2 et 3) + Z 03] (38)
i=1

Note that S7 " ug(t:)]3 < fot” lug|3dr + A fO” |u¢|3dr. Applying discrete Gronwall’s lemma

and Lemma 2 gives
tn tn
1071 <0 [ @t + Al + u(r)Bar] + C17 [ palr)lPars
0 0

t’Vl
c@t® [ )l + o) )ar (39)
Substituting these estimates into (35), we have

1
2

Iver) <on[( | " (At + Bt + (BN ]+ C(on)( / " lpu(olar)

tn 1
cet( [ (mnl + prRr)” (40)
0
With the help of triangle inequality, Lemma 2, (39) and (40), we complete the proof. O
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