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Abstract In this paper, we propose a new biased estimator of the regression parameters, the
generalized ridge and principal correlation estimator. We present its some properties and prove
that it is superior to LSE (least squares estimator), principal correlation estimator, ridge and
principal correlation estimator under MSE (mean squares error) and PMC (Pitman closeness)
criterion, respectively.
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1. Introduction and preliminaries

In order to conquer the drawbacks of LSE, many biased estimators were proposed, among
which the principal component estimator is popular but it still has some drawbacks. The prin-
cipal correlation estimator was proposed and its superiorities to principal component estimator
were introduced in [1]. The ridge and principal correlation estimator was proposed in [2]. In
this paper, we propose the generalized ridge and principal correlation estimator and prove that
generalized ridge and principal correlation estimator is respectively superior to LSE, principal
correlation estimator and ridge and principal correlation estimator under some certain conditions
and ordinary criterion.

Consider the linear regression model
Y =XB+e, E(e)=0, Cov(e)=cI, (1)

where Y,,x1 is an observable random vector, X, x, is a matrix with rank(X) = p, Gpx1 is an
unknown parameter vector and e denotes random error.

As we know, the LSE of Bis 3 = (X'X)71X'Y. Let X'X = PAP’, where A = diag(A1, A2, ..., A\p),
Al > Ay > - > X\, >0, Pyyp is an orthogonal matrix. Let A; = diag(A1, Ae, ..., ). Consider

the correlation coefficient order. The principal correlation was given in [1]. p; is a correlation
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6. X'Y
ViV’
pi, and using p; to measure the effect degree of ¢ix to p;, where & is an estimate value of
o = /Var(y). It is easy to see that we only need to use the order |p;|. So we only need to

¢;\‘/X)\—;Y. Given |p,| > |piy| > --- > |ps, |, let Uy denote the matrix composed

coefficient about ¢,z and y. We consider using the p; = 1 =1,2,...,p, to estimate

consider the order of
of i1,42,...,4, columns of I, and Us denote the matrix composed of the rest (p — ) columns
of I,,. Then U = (Uy - -+ U,) is an orthogonal matrix, and A = (Uy ..., Us)A(Uy, ..., Us), where
A = diag(Mi;, Nigs- s Xiys Niyigs -5 Aiy ). Let P = PU = P(Uy,...,Us). So X'X = PAP".
Given A = diag(Ay, As) where Ay = diag(Ai,, Aiys--- Ai, ), P = (P ... P5), Py is an x r column
orthogonal matrix.

Zhang proposed the principal correlation estimator B = ]517\1_1?1’X 'Y in [1]. Some principal
components that have minor effect on the dependent variable are deleted. Accordingly, its
dimension degenerates to r. In [2], Yan defined the ridge and principal correlation estimator
B(t) = Py(Ay + tI )flﬁl’X 'Y that improved the principal correlation estimator in case that \; is
close to zero. In this paper, we present the generalized ridge and principal correlation estimator,

which is defined as follows:

Definition 1 The generalized ridge and principal correlation estimator is B(K) = Py(Ay +
K) 'P{X'Y, where K = diag(ki,, ki, -, ki, ) ki, > 0,5 =1,2,...,7.

Remark Some principal components which have minor effect on the dependent variable are
deleted in generalized ridge and principal correlation estimator, moreover, the generalized ridge
and principal correlation estimator improves the principal correlation estimator in case that \;
is close to zero. And it becomes the ridge and principal correlation estimator if k;; = ¢, so the
ridge and principal correlation estimator is the special case of the generalized ridge and principal
correlation estimator.

In this paper we use 3, 5, E(t), B(K) to denote LSE, principal correlation estimator, ridge
and principal correlation estimator, generalized ridge and principal correlation estimator of 3,

respectively.
2. Properties of generalized ridge and principal correlation estimator
Property 1 B (K) is a linear biased estimator of (3.

Proof Since 3(K) = Pi(Ay + K)"'P/X'Y = PLM(K)P|3, we have E(3(K)) = P,M(K)P,8,
where M(K) = diag( Aiz Air ). Therefore, while k;, > 0, B(K) is a linear

i1
Aigtkip 7 Nigtkiy 77T Xip ki
biased estimator of 3.

Property 2 There exists ||3(K)|| < ||3||, which shows that 3(K) is a shrunken estimator of 3,

where || - || denotes Euclidean norm.

Proof Since ||3(K)| = |P,M(K)P,3| = |M(K)P3|| < |P|3]| = |||, the property is true.
We will prove that 5 (K) has some dispersion optimum properties in the class of generalized

ridge and shrunken dimension estimators. In [3] the class of shrunken dimension estimators was
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given. We define the class of generalized ridge and shrunken dimension estimators as follows:
Q= {BU)FU) = UU'X'XU +QKQ)U'X'Y},

where U is a p X r matrix and rank(U) = r, where U = PIAQ, Qisarxr orthogonal matrix.
A = diag(pts, , ftiy, - - - » fti, ), obviously, B(K) € Q. For any B(U) € 2, we have

Cov(B(U)) = Py (A, + KA~2) 'Ry (Ay + KA~2)1Plo?

= ﬁldlag( A“,Q ) AZiQ sy )\112 )ﬁllg'2 (2)
(/\il + iy kil )2 ()‘12 + i, ki2)2 ()‘M + ., kiT)Q
and
Cov(B(K)) = Py(Ay + K)"'Ay (A + K) 7' Plo?
= Pdi - = . & P{o?
1 1ag((Ai1 + kil)ga (Am ¥ ki2)2, ) ()\ir + kir)Q) 10 (3)

Property 3 Ifu;, > 1 (j=1,2,...,r), for any shrunken dimension estimator E(U) € A, then

Cov(B(K)) < Cov(B(U)), the equality holds if and only if p;; = 1.

, Ai Ai .
Proof If p;; > 1 (j =1,2,...,7), then (AijJruizkij)? > ()\ijJrj%j)z. When p;; = 1, the equality

holds. From (2) and (3), we obtain the conclusion.

Property 4 Generalized ridge and principal correlation estimator satisfies the following in-

equalities

Property 5 Generalized ridge and principal correlation estimator satisfies the following equality

Var(C}

ming maxc %(U)) = max¢ % = M Covf3(K), where M = max(\i,, Aigs-- -5 A, ).
1 1

3. Optimalities of generalized ridge and principal correlation estimator

Let
M =max(Ni,, Xig, .-+, A ), m=min(N;,, Ay, dots, A;)
N = max(kil, kiz, ey kiT), n = min(kil, kiz, ey kir)-

Theorem 1 If 3'C3 < 02, then MSE(B(K)) < MSE(S3), where

[ C O _ M?*(M+N)°N ~( B
O_< o) O)a Ol—(m+n)2(m2+2mn)j7“; 6_ ) 5(1)'T><1'

Proof Since

N r 02)\1-1 a kiﬁ? % 2
MSE(B(K)) = Z (Ni, + ki )2 +Z (N, + ki, )2 " Z g
— J ’ ’ J=r+l
)
MSE(S) =" -+ > 5
=17 j=r+41
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Therefore

MSE(3(K)) < MSE(B) <« Z o H% +Z o +k:1 ZA

k282 (27, ki, + K2 )or?
A A A 4
= Z otk P <3 iy + Koy )2 @

Jj=1

Note that if
N2 ", n?+2mn
(m+n)2 ;ﬁ] < (M+N)2M0 3

then
N2(M + N)*M

621) (m 4+ n)?(n% + 2mn)

ITﬂ(l) <0? = 5E1)Olﬂ(1) <o?
and (4) holds.
Let B(K) = A@, B(t) = B@, where

A(l) o e —1x B(l) O ~ 1
A= , Ay =AM +K)""Ay, B= , By = (A1 +tI)" Ay
< o O) = (A1 ) A o o 1 = (A ) A

Theorem 2 If 'C3 < 02, then MSEM(B(K)) < MSEM(B), where C = (I — A)Ay(I + A)~?
Proof Since MSEM(B(K)) = 62A2A; ! + (I — A)BB'(I — A)', MSEM(3) = 02A; ", we have
MSEM(B(K)) < MSEM(B) <= o2A2A7' + (I — A)BB (I — A < o?A]!
— (I—-A)BFU - A) <o*(I—A)AT. (5)
Note that if #/X’'NXf < 02, then N'/2X38' X'NV/? < 02I,,. As 3'C3 < 02, (5) holds.

Lemma 1 Let the function f(k) = "(;\1722’“2 Ifk = j, then f(k) has minimum value, where
k>0,A>0.

2 2
Proof Since f/'(k) = %, we can easily obtain the conclusion.

Theorem 3 If K = diag(ki,, ki, - .., ks, ), then MSE(3(K)) < MSE(B(t)) holds.

Proof When K > 0, let k;, = ‘7—2 ki, =---=ki. =t >0. Then
MSE(B(K)) — MSE(3(t)) = Y _ f;(ki,) ng — fi(t).
j=1

By Lemma 1, we have f1(k;,) < fi(t). Thus MSE(B(K)) < MSE(J(t)).

Let L(6,0) = (6,0)'D(6,6) 2 ||§ — 0||2,, where D > 0, and R(6, ) = E||6 — 0]|%.

Definition 2 A linear estimator 6 is said to be admissible for 6 if there does not exist 6* such
that the inequality R(6*,0) < R(6,6) holds for every pair (6,02) and is strict for at least one
such pair.

Note that D = X'X, L(6,6) = (6,0)'X'X(6,6) is a loss function under the Fisher’s loss

measure of closeness. So the Fisher’s loss is a special case of PMC loss.
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Theorem 4 The generalized ridge and principal correlation estimator B(K ) is an admissible

estimator of 3.

Proof ((K) is an admissible estimator of 3
= AX'X)'A < AX'X)TH
<« P(A +K) 2P X'X <P/(A, + K)" ' P}
— 161(7&1 + K)_2K1ﬁll < ﬁl(xl + K)_lﬁll

Aiy i o
DY T <
Ay + ki1)27 ’ (N, + kiT)Q)Pl = Pldlag(

1 1 ~
P!
Ny + ki) (N, + kir)) !

= 161 diag (

. A . . .
Since \i; + ki, > A, o +;wj)2 < /\ijikij (j=1,2,...,r), we obtain the conclusion.
Pitman(1937) gave a closeness criterion which can discriminate the optimality of two estima-
tors in [5]. Let 51, 05 be two different estimators of parameter 0, and L(a, ) be a loss function.

PMC criterion is defined as follows:
Definition 3 If 51, 52 satisfy
P(L(61,0) < L(62,0)) > 0.5 (6)

and there is at least one 6 which makes the strict inequality in the right of (6) hold, then 51 is
better than 52 under PMC.
Let £ = JE - (5(1))7“ , then ¢ ~ Np(g,/NX’l), 5(1) ~ Nr(@,?\fl), 5(2) ~ Nm—r(@,f\gl),

g 5(2) p—r (e
According to [6], let

Wk, 1) = |B(K) — B — 13(0) — 1P = 02 [l 4 - 21 —1Be - 2],
Wk = 1B(K) — BI” ~ 13— 811> = o146 - 217 — e - 21,

5@

89 n(2m+n)(m+ = 2
Theorem 5 IfH@H < ‘/ﬁ;\g(?\;ﬁ\?;? n), ||@|| < =05 then 3(K) is better than 3 under

PMC, where 8\ _ satisties P(||¢) || < 0'02) = V05 (i = 1,2).

Proof Since

Wk <0 e a2 < e -2y

By e, um B 2 Ba) 2 Be) 2
— A _ 0— 232 < _ 2w _ e 7
lAqx)é) . 1=+l 5 1* < 1€y . 1+ 11¢2) . I (7)
Note that if
Bay 2 Bay 2
A W2 < ) 8
lAq1)é) . = <11 . I (8)
and
=~ B Be) 2
0— 222 < _ @ 9
[ —I° < llge) — 9)

synchronously hold, then (7) holds.
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(8) holds

r )\zjg ﬁ r ﬁ
<~ Z(ﬁ ;])2 < ;(gj - ;J)Q

2y k”&ﬁj <y AR )5 (10)
=, + = (N k)
Note that if
2N §J BJ n(2m+n)
11
m+n Z (M + N)? Z & (11)
then (10) holds. According to Cauchy-Schwarz inequality, when [|£]| > &&Mni%”ﬁ’m Il,

(8) holds. Thus P((8) holds)> +/0.5. And (9) holds

— Z (%)QS Z (5;'—%)2

j=r+1 j*rJrl
§ 65
=2y == Z €2 holds. (12)
j=r+1 Jj=r+1

(2)

5
Similarly to the above proof, when H%H < 25 P((9) holds)> v/0.5. We have

P(W (k) <0) > P((8) holds) x P((9) holds) > 0.5.

8 (n—t)(m+t)(m+n)(2m+n+t)
Theorem 6 Ifn > t =2 < ﬁQ(N t)(MH)z(MJrN)

under PMC, where (5 - satisfies P(||A1§ nll < (5 1) =0.5.

, then B(K) is better than B(t)

Proof Since

By |12 Ba) 2
[AmEa) — =211 < IIBwyéay — =3l
W(k,t)§0<:{ G 2mpe < |5 Pape (13)
(13) holds
—~, A& Bivo _~~, & B
e D2 < NS Piy2
— Z()\i,- + k. 0) _Z()\i,. +t 0)
j=1 J J j=1 J
XT: 2(ki, — )\i, & 5; g " (ki — ) (Ray At 4220507 €7 14)
1 ()‘1] =+ t)(/\ij + kij)g - (/\Z] + kij)2()\ij + t)2

j=1

Note that if 200y | 2ubl o (ohiiidm) s 32 €2 then (14) holds.

According to Cauchy-Schwarz inequality, when
~ 2(N —t)(M +t)*>(M + N)?
A€l = —
(n—t)(m+t)(m+n)(n+t+2m)
P((13) holds)> 0.5. So P(W(k,t) <0) > P((13) holds)> 0.5.

Similarly to Theorems 5 and 6, we have Theorem 7.

ﬁ(l

(2m+t)6(1)

Theorem 7 IfH@H < W

then generalized ridge and principal correlation estimator is
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better than principal correlation estimator under PMC, where 55}&75 satisfies P([|&(1 ]l < 55/1(%5) =
0.5.
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