
Journal of Mathematical Research & Exposition

Sept., 2009, Vol. 29, No. 5, pp. 901–906

DOI:10.3770/j.issn:1000-341X.2009.05.017

Http://jmre.dlut.edu.cn

The Extension of Isometry between Unit Spheres of
Normed Space E and l

1

ZHAN Hua Ying

(College of Science, Tianjin University of Technology, Tianjin 300384, China)

(E-mail: zhanhuaying@gmail.com)

Abstract The main result of this paper is to prove Fang and Wang’s result by another method:

Let E be any normed linear space and V0 : S(E) → S(l1) be a surjective isometry. Then V0 can

be linearly isometrically extended to E.
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1. Introduction

We recall that a mapping T from a subset M of a normed space E to a subset of another

normed space F is called an isometry if ‖Tx − Ty‖ = ‖x − y‖ for all x, y ∈ M . In 1972,

Mankiewicz proved in [1] that an isometry mapping an open connected subset of a normed space

E onto an open subset of another normed space F can be extended to be an affine isometry from

E onto F . In 1987, Tingley raised in [2] the following problem:

Problem Let E and F be normed spaces with unit spheres S(E) and S(F ). Assume that

V0 : S(E) → S(F ) is an onto isometry. Does there exist a linear or affine isometry V : E → F

such that V |S(E) = V0?

Tingley just obtained the following result: If E and F are finite dimensional Banach spaces

and V0 : S(E) → S(F ) is an onto isometry, then V0(−x) = −V0(x) for any x ∈ S(E). That is, V0

preserves anti-polar points. In the past decade, Ding and his group kept on working on this topic

and had obtained a number of significant results[3,4]. Most of these works just concerned the

surjective isometries between spaces of the same type. Ding discussed first in [5] the extension

of isometries between unit spheres of different type spaces. In [6], Fang and Wang gave an

affirmative answer to Tingley’s problem for the case that F = l1. In this paper, we will give

another method to prove Fang and Wang’s result. Our notation and terminology are standard.
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In the complex spaces, it is evident that the answer to Tingley’s problem is negative. An

obvious counterexample is that E = F = C (complex plane) and V0(x) = x̄. Hence, we just need

to study the problem in the real spaces.

2. Main result

We note that for any x = (xi), y = (yi) ∈ S(l1), ‖x − y‖ = 2 if and only if xi and yi have

different signs for each i ∈ supp(x)
⋂

supp(y).

First, we prove Fang and Wang’s result for the case that both of the spaces are 2-dimensional.

l1(2) stands for R2 with l1-norm, that is, ‖(α1, α2)‖ = |α1| + |α2|. We need the following lemma.

Lemma 1 Let E = l1(2), d1 = (1
2 , 1

2 ), d2 = (− 1
2 , 1

2 ). Then for any x, y ∈ S(E), ‖x±d1‖ = ‖y±d1‖

and ‖x ± d2‖ = ‖y ± d2‖ imply that x = y.

Proof Let x = (α1, α2), y = (β1, β2) ∈ S(E). Suppose that 0 ≤ α1, α2 ≤ 1. Then ‖x + d1‖ =

2 = ‖y + d1‖, which implies that 0 ≤ β1, β2 ≤ 1. Since ‖x − d1‖ = ‖y − d1‖, if x 6= y, then

d1 = x+y
2 . Hence, from ‖x + d2‖ = ‖y + d2‖, we can get a contradiction. In fact, from d1 = x+y

2

we know that β1 = 1 − α1, β2 = 1 − α2. Hence,

‖x − d2‖ = ‖(α1 +
1

2
, α2 −

1

2
)‖ = |α1 +

1

2
| + |α2 −

1

2
|

= ‖y − d2‖ = ‖(1 − α1 +
1

2
, 1 − α2 −

1

2
)‖ = |

3

2
− α1| + |

1

2
− α2|.

Since 0 ≤ α1 ≤ 1, we know that 3
2 − α1 = α1 + 1

2 . It follows that α1 = 1
2 . Hence, α2 = β1 =

β2 = 1
2 . That is, x = y.

So, x = y if 0 ≤ α1, α2 ≤ 1. Similarly, we can get the same result for other cases.

Proposition 2 Let E be a 2-dimensional normed space. Then any isometry V0 : S(E) → S(l1(2))

can be linearly extended to an isometry on E.

Proof Since E and l1(2) are both 2-dimensional, following Tingley’s result, V0 preserves anti-

polar points. Let d1 = (1
2 , 1

2 ), d2 = (− 1
2 , 1

2 ) and e1 = V −1
0 d1, e2 = V −1

0 d2. Obviously, e1 and e2

are linearly independent. Moreover, ‖e1 + e2‖ = ‖d1 + d2‖ = ‖d1 − d2‖ = ‖e1 − e2‖ = 1. Put

A , {x ∈ S(E) : V0x(1), V0x(2) ≥ 0}. We will show that A is a convex subset.

Obviously, e1 ∈ A. Fix any x1, x2 ∈ A. By the definition of A and that of the norm,

‖V0x1 + d1‖ = 2. Hence, ‖x1+e1

2 ‖ = 1. By the Hahn-Banach theorem, there is x∗
1 ∈ S(E∗) such

that x∗
1(

x1+e1

2 ) = ‖x1+e1

2 ‖ = 1. Consequently, x∗
1(x1) = x∗

1(e1) = 1, which implies that

2 = x∗
1(

x1 + e1

2
+ e1) ≤ ‖

x1 + e1

2
+ e1‖ ≤ 2.

Then,

‖V0(
x1 + e1

2
) + d1‖ = ‖

x1 + e1

2
+ e1‖ = 2.

That means V0(
x1+e1

2 )(i) ≥ 0 (i = 1, 2), which implies that

‖
x1 + e1

2
+ x2‖ = ‖V0(

x1 + e1

2
) + V0x2‖ = 2.



The extension of isometry between unit spheres of normed space E and l
1 903

Similarly, there is x∗
2 ∈ S(E∗) such that x∗

2(x2) = x∗
2(x1) = x∗

2(e1) = 1. Then

2 = x∗
2(

x1 + x2

2
+ e1) ≤ ‖

x1 + x2

2
+ e1‖ ≤ 2,

which means that

‖V0(
x1 + x2

2
) + d1‖ = ‖

x1 + x2

2
+ e1‖ = 2.

Hence, x1+x2

2 ∈ A. Since V0 is continuous and x1 and x2 are arbitrarily chosen, A is convex.

Similarly, B , {x ∈ S(E) : V0x(1) ≤ 0, V0x(2) ≥ 0} is also a convex set. Moreover,

x0 , V −1
0 (d1 + d2) ∈ A

⋂
B. It is straightforward to have that x0 = e1 + e2.

In fact, e1 and e2 are linearly independent, hence, {e1, e2} is a basis of E. Say, x0 =

α1e1 + α2e2. If x0 6= e1 + e2, following ‖x0‖ = ‖e1‖ = ‖e2‖ = ‖x0 − e1‖ = ‖x0 − e2‖ = 1 and

‖x0 + e1‖ = ‖x0 + e2‖ = 2, we may claim that

x0 /∈{λe1 : λ ∈ R}
⋃

{λe2 : λ ∈ R}
⋃

{αe1 + αe2 : α ∈ R, |α| 6= 1}
⋃

{e1 + λe2 : λ ∈ R, λ 6= 1}
⋃

{λe1 + e2 : λ ∈ R, λ 6= 1}.

If 0 < α1 < α2, then [x0, e1] , {λx0 +(1−λ)e1 : λ ∈ [0, 1]} intersects with the line that joints

θ and e1 + e2 at some point x1. Obviously, x1 = λ(e1 + e2) for some λ 6= 1. Hence, ‖x1‖ 6= 1.

On the other hand, following the convexity of A, [x0, e1] ⊂ A ⊂ S(E). It means that x1 ∈ S(E).

It is impossible.

If 0 < α2 < α1, it may also lead a contradiction similarly.

If α1 < α2 < 0, then

‖x0 − e1‖ = ‖(α1 − 1)e1 + α2e2‖ ≥ |1 − α1| − |α2| = 1 − α1 + α2 > 1

leads a contradiction.

Similarly, it is impossible for α2 < α1 < 0.

Hence, x0 = e1 + e2.

Since e1 + λe2 ∈ [e1, e1 + e2] for any 0 ≤ λ ≤ 1 and e1, e1 + e2 ∈ A, then ‖e1 + λe2‖ =

1 = ‖d1 + λd2‖. Similarly, ‖λe1 + e2‖ = 1 = ‖λd1 + d2‖ for any 0 ≤ λ ≤ 1. Then for any

λ > 1, ‖e1 + λe2‖ = λ‖ 1
λ
e1 + e2‖ = λ = λ‖ 1

λ
d1 + d2‖ = ‖d1 + λd2‖. Following Tingley’s result,

V0(−ei) = −di, i = 1, 2. Hence, ‖e1 + λe2‖ = ‖d1 + λd2‖ for any λ ∈ R.

Now, for any x ∈ S(E), say x = λ1e1 + λ2e2. It is immediate from the above that

‖V0x ± d1‖ = ‖x ± e1‖ = ‖(λ1 ± 1)e1 + λ2e2‖

= ‖(λ1 ± 1)d1 + λ2d2‖ = ‖(λ1d1 + λ2d2) ± d1‖.

Similarly, ‖V0x±d2‖ = ‖(λ1d1 +λ2d2)±d2‖. Following Lemma 1, V0(λ1e1+λ2e2) = λ1d1 +λ2d2.

That is, V0 is linear on S(E). Then it is easy to show that V0 has a linearly isometric extension

on the whole space E.

For infinite dimensional case, we have the following result.

Lemma 3 Suppose that V0 is an isometry from S(E) into S(l1), and that {±ei} ∈ V0(S(E)),

where {ei} is the unit basis of l1. Let xi = V −1
0 ei. Then V0(−xi) = −ei.
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Proof Fix i0 ∈ N. Let A+ = {x ∈ S(E) : V0x(i0) > 0}, where V0x(i0) is the i0th coordinate

of V0x. We classify A+ in the following way: x, y are in the same class A if and only if

V0x(j) · V0y(j) ≥ 0 for any j ∈ N. Let A′ = S(E)\A+. We may classify it by the same way.

We note that if V0x(j) 6= 0, then V0x(j) · V0(−x)(j) ≤ 0, since ‖V0x − V0(−x)‖ = 2. Hence,

for any j ∈ N,

V0x(j) · V0y(j) > 0 implies that V0(−x)(j) · V0(−y)(j) ≥ 0.

If x ∈ A+ and V0x(j) = 0 for some j ∈ N, then there are classes A and B such that

V0y(j) ≥ 0, V0z(j) ≤ 0, V0y(k) · V0z(k) ≥ 0,

for all y ∈ A, z ∈ B, k ∈ N (k 6= j), and that x ∈ A
⋂

B.

Consider such A and B. If y1, y2 ∈ A with V0y1(j) · V0y2(j) > 0, then

V0(−y1)(j)V0(−y2)(j) ≥ 0.

Thus, −y1 and −y2 are in the same class of A′, denote it by A′. Similarly, if z1, z2 ∈ B with

V0z1(j) ·V0z2(j) > 0, then −z1 and −z2 are in the same class of A′, denote it by B′. On the other

hand, since V0x(j) = 0, V0(−x)(j) may be 0 or ≥ 0 or ≤ 0. If V0(−x)(j) < 0 (V0(−x)(j) > 0,

respectively), then x is regarded as in A and −x is regarded as in A′ (x ∈ B and −x ∈ B′,

respectively).

Hence, we say that −A ⊂ A′, which means that −
⋂

A⊂A+ A ⊂
⋂

A′⊂A′ A′. Since
⋂

A⊂A+ A =

{xi} and
⋂

A′⊂A′ A′ = V −1
0 (−ei), we know that V0(−xi) = −ei.

Lemma 4 For any x = {αi}, y = {βi} ∈ S(l1) and any j ∈ N, if ‖x ± ej‖ = ‖y ± ej‖, then

αj = βj .

Proof In fact,

‖x ± ej‖ = ‖

∞∑

i=1

αiei ± ej‖ =
∑

i6=j

|αi| + |1 ± αj | = 1 − |αj | + |1 ± αj |

= ‖y ± ej‖ = ‖

∞∑

i=1

βiei ± ej‖ =
∑

i6=j

|βi| + |1 ± βj | = 1 − |βj | + |1 ± βj |.

Hence, |1 ± αj | − |αj | = |1 ± βj | − |βj |. Obviously, αj = 0 if and only if βj = 0. Then we just

need to show the case that αj · βj 6= 0. If αj · βj < 0, say αj < 0 < βj , then

1 + αj − |αj | = 1 + αj + αj < 1 = 1 + βj − βj = 1 + βj − |βj |

leads a contradiction. It is similar for βj < 0 < αj . If αj , βj > 0, then

1 − αj − |αj | = 1 − 2αj = 1 − βj − |βj | = 1 − 2βj

implies that αj = βj . Similarly, we can get the same result if αj , βj < 0.

Next, we show the main result.

Theorem 5 Let E be any normed linear space and V0 : S(E) → S(l1) be a surjective isometry.

Then V0 can be linearly isometrically extended to E.
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Proof Fix n ∈ N. For any subset ∆1 of {1, . . . , n}, let ∆2 = {1, . . . , n}\∆1. We denote B∆1
=

{x ∈ S(E) : V0x(i) ≤ 0, V0x(j) ≥ 0 for any i ∈ ∆1, j ∈ ∆2}, and d∆1
= 1

n
(
∑

i∈∆1
ei−

∑
j∈∆2

ej).

Then d∆1
(i) ≥ 0, d∆1

(j) ≤ 0 for any i ∈ ∆1, j ∈ ∆2. Since V0 is surjective, there is z ∈ S(E)

such that V0z = d∆1
.

Following the same steps shown in the proof of Proposition 2, we know that B∆1
is convex.

Now, for any real scalar αi (1 ≤ i ≤ n) with α =
∑n

i=1 |αi| 6= 0. Let ∆1 = {1 ≤ i ≤ n :

αi ≥ 0}, ∆2 = {1, . . . , n}\∆1, and xi = V −1
0 ei. Following Lemma 3, V0(−xi) = −ei. Moreover,

xi ∈ B∆2
, −xj ∈ B∆2

for any i ∈ ∆1, j ∈ ∆2. Since B∆2
is convex,

∑

i∈∆1

αi

α
xi +

∑

j∈∆2

−αj

α
(−xj) ∈ B∆2

.

That is,
∑n

i=1 αixi ∈ α · B∆2
. It follows that

‖
n∑

i=1

αixi‖ = α =
n∑

i=1

|αi| = ‖
n∑

i=1

αiei‖.

Now, for any
∑n

i=1 αixi ∈ S(E), say V0(
∑n

i=1 αixi) =
∑∞

i=1 βiei, then for all 1 ≤ j ≤ n,

‖

∞∑

i=1

βiei ± ej‖ = ‖V0(

n∑

i=1

αixi) ± V0xj‖ = ‖

n∑

i=1

αixi ± xj‖ = ‖

n∑

i=1

αiei ± ej‖.

Following Lemma 4, βj = αj for any 1 ≤ j ≤ n, and βj = 0 for any j > n. That is,

V0(
∑n

i=1 αixi) =
∑n

i=1 αiei.

It is easy to check that V0 can be extended to S(E)
⋃

[xi : 1 ≤ i ≤ n]. Denote the extension

by Vn, where Vn is a linear isometry on [xi : 1 ≤ i ≤ n].

Now, for any x ∈ S(E), say V0x =
∑∞

i=1 αiei. Let βn =
∑n

i=1 |αi|. Then βn = ‖
∑n

i=1 αiei‖ =

‖
∑n

i=1 αixi‖, and βn → 1 (n → ∞). Since

‖x −

n∑

i=1

αixi‖ ≤ ‖x −

n∑

i=1

αi

βn

xi‖ + ‖

n∑

i=1

αi

βn

xi −

n∑

i=1

αixi‖

= ‖V0x − V0(

n∑

i=1

αi

βn

xi)‖ + ‖Vn(

n∑

i=1

αi

βn

xi) − Vn(

n∑

i=1

αixi)‖

= ‖

∞∑

i=1

αiei − Vn(

n∑

i=1

αi

βn

xi)‖ + ‖
1

βn

n∑

i=1

αiei −

n∑

i=1

αiei‖

= ‖

∞∑

i=1

αiei −
1

βn

n∑

i=1

αiei‖ +
1 − βn

βn

‖

n∑

i=1

αiei‖

≤
2(1 − βn)

βn

‖

n∑

i=1

αiei‖ + ‖

∞∑

i=n+1

αiei‖

= 2(1 − βn) + ‖

∞∑

i=n+1

αiei‖,

which is convergent to 0, we have x =
∑∞

i=1 αixi. That is, E = [xi : i ∈ N].

Now, we can define the desired isometry. For any x =
∑∞

i=1 αixi, let V x =
∑∞

i=1 αiei. V is



906 ZHAN H Y

well defined since, for any m > n,

Vm(
n∑

i=1

αixi) =
n∑

i=1

αiei,

and

‖

n∑

i=1

αiei −

m∑

i=1

αiei‖ = ‖Vm(

n∑

i=1

αixi) − Vm(

m∑

i=1

αixi)‖

= ‖Vm(
m∑

i=n+1

αixi)‖

= ‖

m∑

i=n+1

αixi‖ → 0 (m, n → 0).

Obviously, V is a linear isometry. Moreover, we show that V is an extension of V0. For any

x =
∑∞

i=1 αixi ∈ S(E), let βn = ‖
∑n

i=1 αixi‖. Then βn → 1 (n → ∞). Hence,

V x =
∞∑

i=1

αiei = lim
n→∞

n∑

i=1

αiei

= lim
n→∞

Vn(

n∑

i=1

αixi) = lim
n→∞

βn · Vn(

n∑

i=1

αi

βn

xi)

= lim
n→∞

βn · V0(

n∑

i=1

αi

βn

xi) = lim
n→∞

V0(

n∑

i=1

αi

βn

xi)

= V0(

∞∑

i=1

αixi) = V0x.

The proof is completed. 2
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