The Extension of Isometry between Unit Spheres of Normed Space E and l^1

ZHAN Hua Ying

(College of Science, Tianjin University of Technology, Tianjin 300384, China) (E-mail: zhanhuaying@gmail.com)

Abstract The main result of this paper is to prove Fang and Wang's result by another method: Let E be any normed linear space and $V_0: S(E) \to S(l^1)$ be a surjective isometry. Then V_0 can be linearly isometrically extended to E.

Keywords isometry; surjective; linearly isometric extension.

Document code A MR(2000) Subject Classification 46B20 Chinese Library Classification O177.2

1. Introduction

We recall that a mapping T from a subset M of a normed space E to a subset of another normed space F is called an isometry if ||Tx - Ty|| = ||x - y|| for all $x, y \in M$. In 1972, Mankiewicz proved in [1] that an isometry mapping an open connected subset of a normed space E onto an open subset of another normed space F can be extended to be an affine isometry from E onto F. In 1987, Tingley raised in [2] the following problem:

Problem Let E and F be normed spaces with unit spheres S(E) and S(F). Assume that $V_0: S(E) \to S(F)$ is an onto isometry. Does there exist a linear or affine isometry $V: E \to F$ such that $V|_{S(E)} = V_0$?

Tingley just obtained the following result: If E and F are finite dimensional Banach spaces and $V_0: S(E) \to S(F)$ is an onto isometry, then $V_0(-x) = -V_0(x)$ for any $x \in S(E)$. That is, V_0 preserves anti-polar points. In the past decade, Ding and his group kept on working on this topic and had obtained a number of significant results^[3,4]. Most of these works just concerned the surjective isometries between spaces of the same type. Ding discussed first in [5] the extension of isometries between unit spheres of different type spaces. In [6], Fang and Wang gave an affirmative answer to Tingley's problem for the case that $F = l^1$. In this paper, we will give another method to prove Fang and Wang's result. Our notation and terminology are standard.

Received date: 2007-07-27; Accepted date: 2008-04-16

Foundation item: the National Natural Science Foundation of China (No. 10571090); the Research Fund for the Doctoral Program of Higher Education (No. 20060055010) and the Fund of Tianjin Educational Comittee (No. 20060402).

902 ZHAN H Y

In the complex spaces, it is evident that the answer to Tingley's problem is negative. An obvious counterexample is that $E = F = \mathbf{C}$ (complex plane) and $V_0(x) = \bar{x}$. Hence, we just need to study the problem in the real spaces.

2. Main result

We note that for any $x = (x_i)$, $y = (y_i) \in S(l^1)$, ||x - y|| = 2 if and only if x_i and y_i have different signs for each $i \in \text{supp}(x) \cap \text{supp}(y)$.

First, we prove Fang and Wang's result for the case that both of the spaces are 2-dimensional. $l_{(2)}^1$ stands for \mathbf{R}^2 with l^1 -norm, that is, $\|(\alpha_1, \alpha_2)\| = |\alpha_1| + |\alpha_2|$. We need the following lemma.

Lemma 1 Let $E = l_{(2)}^1$, $d_1 = (\frac{1}{2}, \frac{1}{2})$, $d_2 = (-\frac{1}{2}, \frac{1}{2})$. Then for any $x, y \in S(E)$, $||x \pm d_1|| = ||y \pm d_1||$ and $||x \pm d_2|| = ||y \pm d_2||$ imply that x = y.

Proof Let $x = (\alpha_1, \alpha_2), y = (\beta_1, \beta_2) \in S(E)$. Suppose that $0 \le \alpha_1, \alpha_2 \le 1$. Then $||x + d_1|| = 2 = ||y + d_1||$, which implies that $0 \le \beta_1, \beta_2 \le 1$. Since $||x - d_1|| = ||y - d_1||$, if $x \ne y$, then $d_1 = \frac{x+y}{2}$. Hence, from $||x + d_2|| = ||y + d_2||$, we can get a contradiction. In fact, from $d_1 = \frac{x+y}{2}$ we know that $\beta_1 = 1 - \alpha_1, \beta_2 = 1 - \alpha_2$. Hence,

$$||x - d_2|| = ||(\alpha_1 + \frac{1}{2}, \alpha_2 - \frac{1}{2})|| = |\alpha_1 + \frac{1}{2}| + |\alpha_2 - \frac{1}{2}|$$

$$= ||y - d_2|| = ||(1 - \alpha_1 + \frac{1}{2}, 1 - \alpha_2 - \frac{1}{2})|| = |\frac{3}{2} - \alpha_1| + |\frac{1}{2} - \alpha_2|.$$

Since $0 \le \alpha_1 \le 1$, we know that $\frac{3}{2} - \alpha_1 = \alpha_1 + \frac{1}{2}$. It follows that $\alpha_1 = \frac{1}{2}$. Hence, $\alpha_2 = \beta_1 = \beta_2 = \frac{1}{2}$. That is, x = y.

So, x = y if $0 \le \alpha_1$, $\alpha_2 \le 1$. Similarly, we can get the same result for other cases.

Proposition 2 Let E be a 2-dimensional normed space. Then any isometry $V_0: S(E) \to S(l^1_{(2)})$ can be linearly extended to an isometry on E.

Proof Since E and $l_{(2)}^1$ are both 2-dimensional, following Tingley's result, V_0 preserves antipolar points. Let $d_1 = (\frac{1}{2}, \frac{1}{2})$, $d_2 = (-\frac{1}{2}, \frac{1}{2})$ and $e_1 = V_0^{-1}d_1$, $e_2 = V_0^{-1}d_2$. Obviously, e_1 and e_2 are linearly independent. Moreover, $||e_1 + e_2|| = ||d_1 + d_2|| = ||d_1 - d_2|| = ||e_1 - e_2|| = 1$. Put $A \triangleq \{x \in S(E) : V_0x(1), V_0x(2) \ge 0\}$. We will show that A is a convex subset.

Obviously, $e_1 \in A$. Fix any $x_1, x_2 \in A$. By the definition of A and that of the norm, $\|V_0x_1+d_1\|=2$. Hence, $\|\frac{x_1+e_1}{2}\|=1$. By the Hahn-Banach theorem, there is $x_1^* \in S(E^*)$ such that $x_1^*(\frac{x_1+e_1}{2})=\|\frac{x_1+e_1}{2}\|=1$. Consequently, $x_1^*(x_1)=x_1^*(e_1)=1$, which implies that

$$2 = x_1^* \left(\frac{x_1 + e_1}{2} + e_1 \right) \le \left\| \frac{x_1 + e_1}{2} + e_1 \right\| \le 2.$$

Then,

$$||V_0(\frac{x_1+e_1}{2})+d_1|| = ||\frac{x_1+e_1}{2}+e_1|| = 2.$$

That means $V_0(\frac{x_1+e_1}{2})(i) \geq 0$ (i=1,2), which implies that

$$\|\frac{x_1 + e_1}{2} + x_2\| = \|V_0(\frac{x_1 + e_1}{2}) + V_0x_2\| = 2.$$

Similarly, there is $x_2^* \in S(E^*)$ such that $x_2^*(x_2) = x_2^*(x_1) = x_2^*(e_1) = 1$. Then

$$2 = x_2^* \left(\frac{x_1 + x_2}{2} + e_1 \right) \le \left\| \frac{x_1 + x_2}{2} + e_1 \right\| \le 2,$$

which means that

$$||V_0(\frac{x_1+x_2}{2})+d_1|| = ||\frac{x_1+x_2}{2}+e_1|| = 2.$$

Hence, $\frac{x_1+x_2}{2} \in A$. Since V_0 is continuous and x_1 and x_2 are arbitrarily chosen, A is convex.

Similarly, $B \triangleq \{x \in S(E) : V_0x(1) \leq 0, V_0x(2) \geq 0\}$ is also a convex set. Moreover, $x_0 \triangleq V_0^{-1}(d_1 + d_2) \in A \cap B$. It is straightforward to have that $x_0 = e_1 + e_2$.

In fact, e_1 and e_2 are linearly independent, hence, $\{e_1, e_2\}$ is a basis of E. Say, $x_0 = \alpha_1 e_1 + \alpha_2 e_2$. If $x_0 \neq e_1 + e_2$, following $||x_0|| = ||e_1|| = ||e_2|| = ||x_0 - e_1|| = ||x_0 - e_2|| = 1$ and $||x_0 + e_1|| = ||x_0 + e_2|| = 2$, we may claim that

$$x_0 \notin \{\lambda e_1 : \lambda \in \mathbf{R}\} \bigcup \{\lambda e_2 : \lambda \in \mathbf{R}\} \bigcup \{\alpha e_1 + \alpha e_2 : \alpha \in \mathbf{R}, |\alpha| \neq 1\} \bigcup \{e_1 + \lambda e_2 : \lambda \in \mathbf{R}, \lambda \neq 1\} \bigcup \{\lambda e_1 + e_2 : \lambda \in \mathbf{R}, \lambda \neq 1\}.$$

If $0 < \alpha_1 < \alpha_2$, then $[x_0, e_1] \triangleq \{\lambda x_0 + (1 - \lambda)e_1 : \lambda \in [0, 1]\}$ intersects with the line that joints θ and $e_1 + e_2$ at some point x_1 . Obviously, $x_1 = \lambda(e_1 + e_2)$ for some $\lambda \neq 1$. Hence, $||x_1|| \neq 1$. On the other hand, following the convexity of A, $[x_0, e_1] \subset A \subset S(E)$. It means that $x_1 \in S(E)$. It is impossible.

If $0 < \alpha_2 < \alpha_1$, it may also lead a contradiction similarly.

If $\alpha_1 < \alpha_2 < 0$, then

$$||x_0 - e_1|| = ||(\alpha_1 - 1)e_1 + \alpha_2 e_2|| \ge |1 - \alpha_1| - |\alpha_2| = 1 - \alpha_1 + \alpha_2 > 1$$

leads a contradiction.

Similarly, it is impossible for $\alpha_2 < \alpha_1 < 0$.

Hence, $x_0 = e_1 + e_2$.

Since $e_1 + \lambda e_2 \in [e_1, e_1 + e_2]$ for any $0 \le \lambda \le 1$ and e_1 , $e_1 + e_2 \in A$, then $||e_1 + \lambda e_2|| = 1 = ||d_1 + \lambda d_2||$. Similarly, $||\lambda e_1 + e_2|| = 1 = ||\lambda d_1 + d_2||$ for any $0 \le \lambda \le 1$. Then for any $\lambda > 1$, $||e_1 + \lambda e_2|| = \lambda ||\frac{1}{\lambda}e_1 + e_2|| = \lambda = \lambda ||\frac{1}{\lambda}d_1 + d_2|| = ||d_1 + \lambda d_2||$. Following Tingley's result, $V_0(-e_i) = -d_i$, i = 1, 2. Hence, $||e_1 + \lambda e_2|| = ||d_1 + \lambda d_2||$ for any $\lambda \in \mathbf{R}$.

Now, for any $x \in S(E)$, say $x = \lambda_1 e_1 + \lambda_2 e_2$. It is immediate from the above that

$$||V_0x \pm d_1|| = ||x \pm e_1|| = ||(\lambda_1 \pm 1)e_1 + \lambda_2 e_2||$$
$$= ||(\lambda_1 \pm 1)d_1 + \lambda_2 d_2|| = ||(\lambda_1 d_1 + \lambda_2 d_2) \pm d_1||.$$

Similarly, $||V_0x \pm d_2|| = ||(\lambda_1 d_1 + \lambda_2 d_2) \pm d_2||$. Following Lemma 1, $V_0(\lambda_1 e_1 + \lambda_2 e_2) = \lambda_1 d_1 + \lambda_2 d_2$. That is, V_0 is linear on S(E). Then it is easy to show that V_0 has a linearly isometric extension on the whole space E.

For infinite dimensional case, we have the following result.

Lemma 3 Suppose that V_0 is an isometry from S(E) into $S(l^1)$, and that $\{\pm e_i\} \in V_0(S(E))$, where $\{e_i\}$ is the unit basis of l^1 . Let $x_i = V_0^{-1}e_i$. Then $V_0(-x_i) = -e_i$.

904 ZHAN H Y

Proof Fix $i_0 \in \mathbb{N}$. Let $\mathcal{A}^+ = \{x \in S(E) : V_0 x(i_0) > 0\}$, where $V_0 x(i_0)$ is the i_0 th coordinate of $V_0 x$. We classify \mathcal{A}^+ in the following way: x, y are in the same class A if and only if $V_0 x(j) \cdot V_0 y(j) \geq 0$ for any $j \in \mathbb{N}$. Let $\mathcal{A}' = S(E) \setminus \mathcal{A}^+$. We may classify it by the same way.

We note that if $V_0x(j) \neq 0$, then $V_0x(j) \cdot V_0(-x)(j) \leq 0$, since $||V_0x - V_0(-x)|| = 2$. Hence, for any $j \in \mathbb{N}$,

$$V_0x(j) \cdot V_0y(j) > 0$$
 implies that $V_0(-x)(j) \cdot V_0(-y)(j) \ge 0$.

If $x \in \mathcal{A}^+$ and $V_0x(j) = 0$ for some $j \in \mathbb{N}$, then there are classes A and B such that

$$V_0 y(j) \ge 0, \ V_0 z(j) \le 0, \ V_0 y(k) \cdot V_0 z(k) \ge 0,$$

for all $y \in A$, $z \in B$, $k \in \mathbb{N}$ $(k \neq j)$, and that $x \in A \cap B$.

Consider such A and B. If $y_1, y_2 \in A$ with $V_0y_1(j) \cdot V_0y_2(j) > 0$, then

$$V_0(-y_1)(j)V_0(-y_2)(j) \ge 0.$$

Thus, $-y_1$ and $-y_2$ are in the same class of \mathcal{A}' , denote it by A'. Similarly, if $z_1, z_2 \in B$ with $V_0z_1(j) \cdot V_0z_2(j) > 0$, then $-z_1$ and $-z_2$ are in the same class of \mathcal{A}' , denote it by B'. On the other hand, since $V_0x(j) = 0$, $V_0(-x)(j)$ may be 0 or ≥ 0 or ≤ 0 . If $V_0(-x)(j) < 0$ ($V_0(-x)(j) > 0$, respectively), then x is regarded as in A and -x is regarded as in A' ($x \in B$ and $-x \in B'$, respectively).

Hence, we say that $-A \subset A'$, which means that $-\bigcap_{A \subset A^+} A \subset \bigcap_{A' \subset A'} A'$. Since $\bigcap_{A \subset A^+} A = \{x_i\}$ and $\bigcap_{A' \subset A'} A' = V_0^{-1}(-e_i)$, we know that $V_0(-x_i) = -e_i$.

Lemma 4 For any $x = \{\alpha_i\}$, $y = \{\beta_i\} \in S(l^1)$ and any $j \in \mathbb{N}$, if $||x \pm e_j|| = ||y \pm e_j||$, then $\alpha_j = \beta_j$.

Proof In fact,

$$\begin{split} \|x \pm e_j\| &= \|\sum_{i=1}^{\infty} \alpha_i e_i \pm e_j\| = \sum_{i \neq j} |\alpha_i| + |1 \pm \alpha_j| = 1 - |\alpha_j| + |1 \pm \alpha_j| \\ &= \|y \pm e_j\| = \|\sum_{i=1}^{\infty} \beta_i e_i \pm e_j\| = \sum_{i \neq j} |\beta_i| + |1 \pm \beta_j| = 1 - |\beta_j| + |1 \pm \beta_j|. \end{split}$$

Hence, $|1 \pm \alpha_j| - |\alpha_j| = |1 \pm \beta_j| - |\beta_j|$. Obviously, $\alpha_j = 0$ if and only if $\beta_j = 0$. Then we just need to show the case that $\alpha_j \cdot \beta_j \neq 0$. If $\alpha_j \cdot \beta_j < 0$, say $\alpha_j < 0 < \beta_j$, then

$$1 + \alpha_i - |\alpha_i| = 1 + \alpha_i + \alpha_i < 1 = 1 + \beta_i - \beta_i = 1 + \beta_i - |\beta_i|$$

leads a contradiction. It is similar for $\beta_j < 0 < \alpha_j$. If α_j , $\beta_j > 0$, then

$$1 - \alpha_j - |\alpha_j| = 1 - 2\alpha_j = 1 - \beta_j - |\beta_j| = 1 - 2\beta_j$$

implies that $\alpha_i = \beta_i$. Similarly, we can get the same result if α_i , $\beta_i < 0$.

Next, we show the main result.

Theorem 5 Let E be any normed linear space and $V_0: S(E) \to S(l^1)$ be a surjective isometry. Then V_0 can be linearly isometrically extended to E.

Proof Fix $n \in \mathbb{N}$. For any subset Δ_1 of $\{1,\ldots,n\}$, let $\Delta_2 = \{1,\ldots,n\}\setminus\Delta_1$. We denote $B_{\Delta_1} = \{x \in S(E) : V_0x(i) \leq 0, \ V_0x(j) \geq 0 \text{ for any } i \in \Delta_1, \ j \in \Delta_2\}$, and $d_{\Delta_1} = \frac{1}{n}(\sum_{i \in \Delta_1} e_i - \sum_{j \in \Delta_2} e_j)$. Then $d_{\Delta_1}(i) \geq 0$, $d_{\Delta_1}(j) \leq 0$ for any $i \in \Delta_1$, $j \in \Delta_2$. Since V_0 is surjective, there is $z \in S(E)$ such that $V_0z = d_{\Delta_1}$.

Following the same steps shown in the proof of Proposition 2, we know that B_{Δ_1} is convex.

Now, for any real scalar α_i $(1 \leq i \leq n)$ with $\alpha = \sum_{i=1}^n |\alpha_i| \neq 0$. Let $\Delta_1 = \{1 \leq i \leq n : \alpha_i \geq 0\}$, $\Delta_2 = \{1, \ldots, n\} \setminus \Delta_1$, and $x_i = V_0^{-1} e_i$. Following Lemma 3, $V_0(-x_i) = -e_i$. Moreover, $x_i \in B_{\Delta_2}$, $-x_j \in B_{\Delta_2}$ for any $i \in \Delta_1$, $j \in \Delta_2$. Since B_{Δ_2} is convex,

$$\sum_{i \in \Delta_1} \frac{\alpha_i}{\alpha} x_i + \sum_{j \in \Delta_2} \frac{-\alpha_j}{\alpha} (-x_j) \in B_{\Delta_2}.$$

That is, $\sum_{i=1}^{n} \alpha_i x_i \in \alpha \cdot B_{\Delta_2}$. It follows that

$$\|\sum_{i=1}^{n} \alpha_i x_i\| = \alpha = \sum_{i=1}^{n} |\alpha_i| = \|\sum_{i=1}^{n} \alpha_i e_i\|.$$

Now, for any $\sum_{i=1}^n \alpha_i x_i \in S(E)$, say $V_0(\sum_{i=1}^n \alpha_i x_i) = \sum_{i=1}^\infty \beta_i e_i$, then for all $1 \le j \le n$,

$$\|\sum_{i=1}^{\infty} \beta_i e_i \pm e_j\| = \|V_0(\sum_{i=1}^n \alpha_i x_i) \pm V_0 x_j\| = \|\sum_{i=1}^n \alpha_i x_i \pm x_j\| = \|\sum_{i=1}^n \alpha_i e_i \pm e_j\|.$$

Following Lemma 4, $\beta_j = \alpha_j$ for any $1 \leq j \leq n$, and $\beta_j = 0$ for any j > n. That is, $V_0(\sum_{i=1}^n \alpha_i x_i) = \sum_{i=1}^n \alpha_i e_i$.

It is easy to check that V_0 can be extended to $S(E) \bigcup [x_i : 1 \le i \le n]$. Denote the extension by V_n , where V_n is a linear isometry on $[x_i : 1 \le i \le n]$.

Now, for any $x \in S(E)$, say $V_0 x = \sum_{i=1}^{\infty} \alpha_i e_i$. Let $\beta_n = \sum_{i=1}^n |\alpha_i|$. Then $\beta_n = \|\sum_{i=1}^n \alpha_i e_i\| = \|\sum_{i=1}^n \alpha_i x_i\|$, and $\beta_n \to 1$ $(n \to \infty)$. Since

$$||x - \sum_{i=1}^{n} \alpha_{i} x_{i}|| \leq ||x - \sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i}|| + ||\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i} - \sum_{i=1}^{n} \alpha_{i} x_{i}||$$

$$= ||V_{0} x - V_{0} (\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i})|| + ||V_{n} (\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i}) - V_{n} (\sum_{i=1}^{n} \alpha_{i} x_{i})||$$

$$= ||\sum_{i=1}^{\infty} \alpha_{i} e_{i} - V_{n} (\sum_{i=1}^{n} \frac{\alpha_{i}}{\beta_{n}} x_{i})|| + ||\frac{1}{\beta_{n}} \sum_{i=1}^{n} \alpha_{i} e_{i} - \sum_{i=1}^{n} \alpha_{i} e_{i}||$$

$$= ||\sum_{i=1}^{\infty} \alpha_{i} e_{i} - \frac{1}{\beta_{n}} \sum_{i=1}^{n} \alpha_{i} e_{i}|| + \frac{1 - \beta_{n}}{\beta_{n}} ||\sum_{i=1}^{n} \alpha_{i} e_{i}||$$

$$\leq \frac{2(1 - \beta_{n})}{\beta_{n}} ||\sum_{i=1}^{n} \alpha_{i} e_{i}|| + ||\sum_{i=n+1}^{\infty} \alpha_{i} e_{i}||$$

$$= 2(1 - \beta_{n}) + ||\sum_{i=n+1}^{\infty} \alpha_{i} e_{i}||,$$

which is convergent to 0, we have $x = \sum_{i=1}^{\infty} \alpha_i x_i$. That is, $E = [x_i : i \in \mathbf{N}]$.

Now, we can define the desired isometry. For any $x = \sum_{i=1}^{\infty} \alpha_i x_i$, let $Vx = \sum_{i=1}^{\infty} \alpha_i e_i$. V is

906 ZHAN H Y

well defined since, for any m > n,

$$V_m(\sum_{i=1}^n \alpha_i x_i) = \sum_{i=1}^n \alpha_i e_i,$$

and

$$\| \sum_{i=1}^{n} \alpha_{i} e_{i} - \sum_{i=1}^{m} \alpha_{i} e_{i} \| = \| V_{m} (\sum_{i=1}^{n} \alpha_{i} x_{i}) - V_{m} (\sum_{i=1}^{m} \alpha_{i} x_{i}) \|$$

$$= \| V_{m} (\sum_{i=n+1}^{m} \alpha_{i} x_{i}) \|$$

$$= \| \sum_{i=n+1}^{m} \alpha_{i} x_{i} \| \to 0 \ (m, n \to 0).$$

Obviously, V is a linear isometry. Moreover, we show that V is an extension of V_0 . For any $x = \sum_{i=1}^{\infty} \alpha_i x_i \in S(E)$, let $\beta_n = \|\sum_{i=1}^n \alpha_i x_i\|$. Then $\beta_n \to 1$ $(n \to \infty)$. Hence,

$$Vx = \sum_{i=1}^{\infty} \alpha_i e_i = \lim_{n \to \infty} \sum_{i=1}^{n} \alpha_i e_i$$

$$= \lim_{n \to \infty} V_n \left(\sum_{i=1}^{n} \alpha_i x_i \right) = \lim_{n \to \infty} \beta_n \cdot V_n \left(\sum_{i=1}^{n} \frac{\alpha_i}{\beta_n} x_i \right)$$

$$= \lim_{n \to \infty} \beta_n \cdot V_0 \left(\sum_{i=1}^{n} \frac{\alpha_i}{\beta_n} x_i \right) = \lim_{n \to \infty} V_0 \left(\sum_{i=1}^{n} \frac{\alpha_i}{\beta_n} x_i \right)$$

$$= V_0 \left(\sum_{i=1}^{\infty} \alpha_i x_i \right) = V_0 x.$$

The proof is completed.

Acknowledgement The author would like to thank Prof. Ding Guanggui for his guidance and to thank the referees for the suggestions.

References

- MANKIEWICZ P. On extension of isometries in normed linear spaces [J]. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 1972, 20: 367–371.
- [2] TINGLEY D. Isometries of the unit sphere [J]. Geom. Dedicata, 1987, 22(3): 371–378.
- [3] DING Guanggui. A survey on the problems of isometries [J]. Southeast Asian Bull. Math., 2005, 29(3): 485–492.
- [4] DING Guanggui. On extensions and approximations of isometric operators [J]. Adv. Math. (China), 2003, 32(5): 529–536. (in Chinese)
- [5] DING Guanggui. On the extension of isometries between unit spheres of E and $C(\Omega)$ [J]. Acta Math. Sin. (Engl. Ser.), 2003, 19(4): 793–800.
- [6] FANG Xinian, WANG Jianhua. Extension of isometries between unit spheres of a normed space E and the space l¹(Γ) [J]. Acta Math. Sinica (Chin. Ser.), 2008, 51(1): 23–28. (in Chinese)