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Abstract The main result of this paper is to prove Fang and Wang’s result by another method:
Let E be any normed linear space and Vo : S(E) — S(I') be a surjective isometry. Then Vo can
be linearly isometrically extended to E.
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1. Introduction

We recall that a mapping T from a subset M of a normed space E to a subset of another
normed space F' is called an isometry if ||Tz — Ty|| = ||z — y|| for all z, y € M. In 1972,
Mankiewicz proved in [1] that an isometry mapping an open connected subset of a normed space
E onto an open subset of another normed space F' can be extended to be an affine isometry from

E onto F. In 1987, Tingley raised in [2] the following problem:

Problem Let E and F' be normed spaces with unit spheres S(E) and S(F). Assume that
Vo : S(E) — S(F) is an onto isometry. Does there exist a linear or affine isometry V : E — F
such that V|gg) = Vo?

Tingley just obtained the following result: If E and F' are finite dimensional Banach spaces
and Vp : S(E) — S(F) is an onto isometry, then Vo(—z) = —Vp(x) for any = € S(E). That is, Vj
preserves anti-polar points. In the past decade, Ding and his group kept on working on this topic
and had obtained a number of significant resultsl®4. Most of these works just concerned the
surjective isometries between spaces of the same type. Ding discussed first in [5] the extension
of isometries between unit spheres of different type spaces. In [6], Fang and Wang gave an
affirmative answer to Tingley’s problem for the case that F' = I'. In this paper, we will give

another method to prove Fang and Wang’s result. Our notation and terminology are standard.
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In the complex spaces, it is evident that the answer to Tingley’s problem is negative. An
obvious counterexample is that E = F' = C (complex plane) and Vj(z) = Z. Hence, we just need

to study the problem in the real spaces.

2. Main result

We note that for any z = (z;), y = (v;) € S(I'), ||x — y|| = 2 if and only if z; and y; have
different signs for each i € supp(z) () supp(y).
First, we prove Fang and Wang’s result for the case that both of the spaces are 2-dimensional.

I{) stands for R® with I'-norm, that is, [|(a1, az)|| = [a1] + |az|. We need the following lemma.

Lemmal Let E = 1%2), di =(3,%),d2=(—3%,3). Then forany z,y € S(E), ||z+di| = |lyxdi|

and ||z + da|| = ||y & da|| imply that x = y.

Proof Let z = (a1,a2), y = (f1,82) € S(E). Suppose that 0 < oy, ap < 1. Then ||z + di| =
2 = |ly + di||, which implies that 0 < B, 82 < 1. Since ||z — di|| = ||y — di]|, if = # y, then
dy = Y. Hence, from ||z + da|| = ||y + da||, we can get a contradiction. In fact, from d; = £

we know that §1 =1 — a1, 2 = 1 — as. Hence,

1 1 1 1
lz = dafl = lI(er + 5,02 = H)| = lax + S| +az — 5

2 2
1 1 3 1
:Hy—d2||:||(1—041+§,1—042—§)||:|§—a1|+|§—a2|.

Since 0 < a7 < 1, we know that % -1 = a1 + % It follows that ag = % Hence, ay = 81 =
Bo = % That is, x = y.

So, x =y if 0 < ay, ag < 1. Similarly, we can get the same result for other cases.

Proposition 2 Let E be a 2-dimensional normed space. Then any isometry Vy : S(E) — S’(l(lz))

can be linearly extended to an isometry on FE.

Proof Since E and l(12) are both 2-dimensional, following Tingley’s result, V preserves anti-
polar points. Let d; = (%, %), doy = (—%, %) and e; = Vo_ldl7 ey = Vo_ldg. Obviously, e; and e
are linearly independent. Moreover, ||e1 + ez = ||d1 + da|| = ||d1 — d2|| = |lex1 — e2|| = 1. Put
A2 {z e S(E): Vox(l), Vox(2) > 0}. We will show that A is a convex subset.

Obviously, e; € A. Fix any z1, 2 € A. By the definition of A and that of the norm,

[Vox1 + di|| = 2. Hence, ||244|| = 1. By the Hahn-Banach theorem, there is 2} € S(E*) such

that 2}(24%) = ||+ = 1. Consequently, zf(z1) = z}(e1) = 1, which implies that
2=ai(P 52 ) < P el <2,
Then,
V(5 + ] = 252 + e =2
That means Vo (££<) (i) > 0 (i = 1,2), which implies that
1252+ all = Vo () + Vo | = 2.

2 2
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Similarly, there is x5 € S(E*) such that z5(z2) = 5(x1) = z5(e1) = 1. Then

<1t T+
2=u3(—5— te) S [T el <2
which means that
1+ 2o xr1 + T2
||V0(T) +di|l =l 5 +el| =2

Hence, IIJQF—“ € A. Since Vj is continuous and x; and zs are arbitrarily chosen, A is convex.
Similarly, B £ {z € S(E) : Vox(1) < 0, Voz(2) > 0} is also a convex set. Moreover,
xo & Vo_l(dl +ds) € A B. Tt is straightforward to have that 2o = e; + ea.
In fact, e; and ey are linearly independent, hence, {e1, e} is a basis of E. Say, zo =
arer + ages. If 29 # e1 + eq, following ||zo|| = |le1]| = |le2|| = ||lzo — e1]] = ||zo — e2]| = 1 and

|lzo + e1]] = ||xo + e2|| = 2, we may claim that

Zo §é{/\el:)\ER}U{/\eQ:)\ER}U{ael—FaeQ:aER, || # 1}U
{er+Xea: AeRA# I} J{Aer +ea: A€ RN £ 1)

If 0 < a1 < g, then [zg,e1] 2 {Axzo+ (1 —N)ey : A € [0,1]} intersects with the line that joints
0 and e; + e2 at some point 1. Obviously, 21 = A(e; + e3) for some A # 1. Hence, ||z1]] # 1.
On the other hand, following the convexity of A, [zg,e1] C A C S(E). It means that z; € S(E).
It is impossible.

If 0 < a9 < g, it may also lead a contradiction similarly.

If a; < ag <0, then

zo —e1ll = [[(e1 — D)er + azea|| 2 [1 —au| — |az[ =1 - a1 + a2 >1

leads a contradiction.

Similarly, it is impossible for as < a3 < 0.

Hence, o = e1 + €.

Since e1 + Aea € [e1,e1 + €] for any 0 < A < 1 and e, e; + ez € A, then |e; + Aez| =
1 = ||d1 + Adz]|. Similarly, [[Ae1 + e2]] = 1 = ||Ad1 + dz| for any 0 < A < 1. Then for any
A> 1, fler 4+ Aez|| = Al|se1 + eal] = A = A[[$d1 + da|| = [|d1 + Adz]|. Following Tingley’s result,
Vo(—ei) = —d;, i = 1,2. Hence, |le1 + ez = ||d1 + Ads|| for any A € R.

Now, for any = € S(FE), say © = A1e1 + Ageq. It is immediate from the above that

||VQ£L‘ =+ le = HLL‘ + 61” = H()\l =+ 1)61 + )\262”
= [|(M £ 1)dy + Aadz]| = ||(Mdy + Aada) £ dy .
Similarly, ||Vox £dz|| = ||(A1d1 + A2d2) £dz]|. Following Lemma 1, Vo(A1e1+Az2e2) = A1dy + Aada.
That is, Vj is linear on S(E). Then it is easy to show that Vj has a linearly isometric extension

on the whole space E.

For infinite dimensional case, we have the following result.

Lemma 3 Suppose that Vy is an isometry from S(E) into S(I'), and that {%e;} € Vo(S(E)),
where {e;} is the unit basis of I'. Let z; = V 'e;. Then Vo(—x;) = —e;.
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Proof Fix ig € N. Let AT = {z € S(E) : Vox(ip) > 0}, where Vyz(io) is the igth coordinate
of Voz. We classify AT in the following way: =z, y are in the same class A if and only if
Vox(j) - Voy(j) > 0 for any j € N. Let A’ = S(E)\AT. We may classify it by the same way.
We note that if Vox(j) # 0, then Voz(y) - Vo(—2)(j) < 0, since ||[Vox — Vo(—2)|| = 2. Hence,
for any j € N,
Vox(j) - Voy(j) > 0 implies that Vo(—z)(j) - Vo(=y)(j) = 0.
If 2 € AT and Vpz(j) = 0 for some j € N, then there are classes A and B such that

forally € A, z € B, k € N (k # j), and that z € A B.
Consider such A and B. If y1, y2 € A with Voy1(j) - Voyz2(j) > 0, then

Vo(=y1) (1) Vo(—y2)(j) > 0.

Thus, —y; and —y9 are in the same class of A’, denote it by A’. Similarly, if z;, 22 € B with
Voz1(4) - Voza(j) > 0, then —z1 and —z9 are in the same class of A’, denote it by B’. On the other
hand, since Voz(j) = 0, Vo(—z)(§) may be 0 or > 0 or < 0. If Vo(—2z)(j5) < 0 (Vo(—z)(4) > 0,
respectively), then z is regarded as in A and —z is regarded as in A’ (x € B and —z € B,
respectively).

Hence, we say that —A C A’, which means that — (- 4+ A C (Vg cu A’ Since Ny 40 A=
{@i} and Ny o0 A" = Vy ' (—ei), we know that Vo(—z;) = —e;.

Lemma 4 For any x = {o;}, y = {#i} € S(I') and any j € N, if ||z + ¢;|| = ||y & ¢;|, then
Q= ﬂj.
Proof In fact,
o+ ejll = 1D cies £ ejll =Y o + |1+ ay] = 1 = Jay| + |1 + oy
i=1 i#j

=llyEejl =113 Bies £ ejl =Y 16+ L+ 851 =1 - 18] + 1% 5.
i=1 i#j

Hence, |1 £+ o] — |oj| = |1 £ G| — |8;]. Obviously, o; = 0 if and only if 8; = 0. Then we just
need to show the case that oy - 8; # 0. If oj - B; <0, say o;j < 0 < 3, then

l+a;—|oj|l=1l4aj+a;<1=1+p5,-08;=1+p5;,— |5
leads a contradiction. It is similar for 8; < 0 < ay. If a;, B; > 0, then

1=y —laj| =1-20; =1-8; - [B;| =1-28;

implies that a; = 8;. Similarly, we can get the same result if o, 8; < 0.

Next, we show the main result.

Theorem 5 Let E be any normed linear space and Vy : S(E) — S(I*) be a surjective isometry.
Then Vj can be linearly isometrically extended to E.
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Proof Fix n € N. For any subset Ay of {1,...,n}, let As ={1,...,n}\A;. We denote Ba, =
{z € S(E) : Vox(i) <0, Voz(j) > 0for anyi € Al, Jj € Ag},and dA1 = +(Xien, €= jen, &)-
Then da, (i) > 0, da,(j) <0 for any i € Ay, j € Ay. Since Vj is surjective, there is z € S(E)
such that Vpz = da, .

Following the same steps shown in the proof of Proposition 2, we know that Ba, is convex.

Now, for any real scalar o; (1 < i < n) with o = > 1" | Jag| # 0. Let Ay = {1 <i < n:
a; >0}, Ay =A{1,...,n}\Aq, and z; = Voflel-. Following Lemma 3, Vo(—x;) = —e;. Moreover,
x; € Ba,, —x; € Ba, for any i € Ay, j € Ag. Since Ba, is convex,

> o,

i€A1 JEA

CL'] E BAQ

That is, Y, a;x; € a - Ba,. It follows that

n n n
Y il == "ol =1 el
i=1 i=1 i=1
Now, for any > 1, cyz; € S(E), say Vo(Y i, cixi) = Y ooy Bi€s, then for all 1 < j < n,

1Y Biei £ e5]l = VoY cvims) £ Vo || = 1> s || = | > cvies £ 5]
i=1 i=1 =1 =1

Following Lemma 4, 3; = «a; for any 1 < j < n, and §; = 0 for any j > n. That is,
VO(Zz LouT) = Z?:l o;e;.

It is easy to check that Vj can be extended to S(F)J[z; : 1 < i < n]. Denote the extension
by V., where V, is a linear isometry on [x; : 1 <i < n].

Now, for any x € S(E), say Vox = Y ;o) aie;. Let B, = >, |ay|. Then B, = || Yoi | ases| =

[ >oie; ]|, and B, — 1 (n — oo). Since

|z = il <z = %wiﬂ + Z %xi - Zaixiﬂ
i=1 i=1 """ i " j
= [IVo = Vo( Z Il +[1Vn Z )=Vl ezl
=12 e =V, Z z)ll+ 5 Zazez Z%H
i=1
- 1 _677,
HZaiei—ﬂ—ZOzi&H-l- 3 HZO@&‘H

T ||Zazez||+|\ S aiel

1=n—+1

I /\

o0

=2(1=Ba)+ 1 D aell,

1=n—+1
which is convergent to 0, we have x = Y .° a;x;. That is, E = [z; : 1 € NJ.

Now, we can define the desired isometry. For any = >_°°, oy, let Vo = >0 aye;. Vs
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well defined since, for any m > n,

n n
Vm(z Q;x;) = Z ;e
i=1 i=1

and

n m n m
1Y e =Y aieil = Vi (O cimi) = Ve (O cias)|
=1 =1 =1 =1
m

= Vi Y i)
1=n+1

=| Z a;z;|| — 0 (m,n — 0).
1=n—+1

Obviously, V' is a linear isometry. Moreover, we show that V' is an extension of V. For any

z=Y 2 0z € S(E), let B, = || > ; a;z;|. Then 3, — 1 (n — co). Hence,

oo n
V= E a;e; = lim E a;e;
n—oo
i=1 i=1

= lim Vn(z a;r;) = lim G, - Vn(z %xl)
i=1 i=1""

n—oo n—oo

. = Q; . = Q;
= lim G, - VO(Z 5—351) = lim VO(Z 6—171)
i=1 """ i=1 "

V()(Z OéiIi> = V()I.
=1

The proof is completed. O
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