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Abstract In this paper, by using characterization of the point spectrum of the upper triangular

infinite dimensional Hamiltonian operator H , a necessary and sufficient condition is obtained on

the symmetry of σp(A) and σ
1

p(−A
∗) with respect to the imaginary axis. Then the symmetry of

the point spectrum of H is given, and several examples are presented to illustrate the results.
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1. Introduction

Infinite dimensional Hamiltonian operators are a kind of non-self-adjoint operators with deep

mechanical background. Their spectral theory is the theoretical foundation of the separation of

the variables method solving mechanical problems, and plays a significant role in elasticity me-

chanics and other related fields[1−4]. Recently, the research on infinite dimensional Hamiltonian

operators is very active, and some interesting results are obtained in spectral theory. In [5,6],

the authors got the characterizations of the point spectrum, residual spectrum, and continuous

spectrum; Huang[7] studied the structure of the spectrum, and gave a necessary and sufficient

condition on the symmetry with respect to the imaginary axis of the point spectrum of diagonal

infinite dimensional Hamiltonian operators; and these make the spectrum of infinite dimensional

Hamiltonian operators clearer.

The residual spectrum of many infinite dimensional Hamiltonian operators is empty. Then,

which kind of operators has empty residual spectrum? By the structure of the spectrum of

infinite dimensional Hamiltonian operators, we only need to consider the symmetry of the point
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spectrum with respect to the imaginary axis. In this paper, the point spectrum of a kind of

upper triangular infinite dimensional Hamiltonian operators is investigated, and its symmetry is

explicitly described. We begin with some definitions and lemmas.

Throughout this paper, we believe that the empty set ∅ is symmetric with respect to the

imaginary axis, and the operators involved are always linear.

Definition 1.1 Let X be a Hilbert space, and H : D(H) ⊆ X×X −→ X×X be a densely defined

operator. The operator H is called an infinite dimensional Hamiltonian operator if (JH)∗ = JH ,

where J =

[

0 I

−I 0

]

with I being the identity operator on X , 0 the zero operator on X , and

(JH)∗ the adjoint of (JH).

It can be seen that the infinite dimensional Hamiltonian operator has the following matrix

form:

H =

(

A B

C −A∗

)

: D(H) ⊆ X × X −→ X × X,

where A is a closed densely defined operator, and B, C are both self-adjoint operators.

Definition 1.2 Let X be a complex Banach space, and A be a closed operator in X . The set

ρ(A) = {λ ∈ C : λI − A is a bijection}

is called the resolvent set of A, and the spectrum σ(A) of A is the complement of ρ(A) in C.

Then, we have σ(A) = σp(A) ∪ σr(A) ∪ σc(A), where

σp(A) = {λ ∈ C : λI − A is not an injection} ,

σr(A) =
{

λ ∈ C : λI − A is injective,R(λI − A) 6= X
}

,

σc(A) =
{

λ ∈ C : λI − A is injective,R(λI − A) = X,R(λI − A) 6= X
}

are called the point spectrum, residual spectrum and continuous spectrum of A, respectively.

Recall that if M is the collection of some complex numbers, then M stands for the set

consisting of the complex conjugates of its members, otherwise stands for the closure of M ; a

subset S ⊆ C is symmetric with respect to the imaginary axis if −λ ∈ S for any λ ∈ S.

Lemma 1.1[7] Let A be a closed densely defined operator in a Hilbert space X . Then,

(i) If λ ∈ σp(A), then λ ∈ σp(A
∗) ∪ σr(A

∗);

(ii) If λ ∈ σr(A), then λ ∈ σp(A
∗);

(iii) λ ∈ σc(A) ⇐⇒ λ ∈ σc(A
∗).

Lemma 1.2[7] Let H be an infinite dimensional Hamiltonian operator. Then

(i) λ ∈ σp(H) ⇐⇒ −λ ∈ σp(H
∗);

(ii) λ ∈ σc(H) ⇐⇒ −λ ∈ σc(H
∗);

(iii) λ ∈ σr(H) ⇐⇒ −λ ∈ σr(H
∗).

By the structure of the spectrum of infinite dimensional Hamiltonian operators, we have
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Lemma 1.3[7] Let H be an infinite dimensional Hamiltonian operator. Then

(i) The union of the point spectrum and residual spectrum σpr(H), the continuous spectrum

σc(H) and spectrum σ(H) of H are all symmetric with respect to the imaginary axis;

(ii) If λ ∈ σr(H), then −λ̄ /∈ σr(H);

(iii) σr(H) =
{

λ ∈ C : λ /∈ σp(H),−λ ∈ σp(H)
}

.

2. Main results

In this section, we give a necessary and sufficient condition on the symmetry of the point

spectrum of upper triangular infinite dimensional Hamiltonian operators

H =

[

A C

0 −A∗

]

. (2.1)

In [5], the point spectrum of H is described as

σp(H) = σp(A) ∪ {λ ∈ C : λ ∈ σp(−A∗),R(Cλ) ∩R(λI − A) 6= ∅} ,

where Cλ = C|N (λI+A∗)∩D(C)\{0}. Write σ1
p(−A∗) = {λ ∈ C : λ ∈ σp(−A∗),R(Cλ) ∩R(λI − A) 6= ∅},

then σp(H) = σp(A) ∪ σ1
p(−A∗), and σ1

p(−A∗) ⊆ σp(−A∗).

In the following, we assume that σp(A) and σ1
p(−A∗) are both nonempty. First of all, we

discuss the symmetry of σp(A) and σ1
p(−A∗).

Lemma 2.1 σp(A) and σ1
p(−A∗) are symmetric with respect to the imaginary axis each other

if and only if

(i) σr(A
∗) = ∅;

(ii) For each λ ∈ σp(A), if −λ ∈ σp(−A∗), then R(C−λ) ∩R(−λI − A) 6= ∅;

(iii) σ1
p(−A∗) ∩ σr(−A) = ∅.

Proof Suppose that (i), (ii), (iii) hold. For λ ∈ σp(A), we have λ ∈ σp(A
∗)∪ σr(A

∗) by Lemma

1.1. Then, by (i), λ ∈ σp(A
∗), i.e., −λ ∈ σp(−A∗); and by (ii), −λ ∈ σ1

p(−A∗). Similarly, from

Lemma 1.1 and (iii), it follows that if λ ∈ σ1
p(−A∗), then −λ ∈ σp(A). Thus, σp(A) and σ1

p(−A∗)

are symmetric with respect to the imaginary axis each other.

Conversely, assume that σp(A) and σ1
p(−A∗) are symmetric with respect to the imaginary

axis each other. Then, for each λ ∈ σp(A), we have −λ ∈ σ1
p(−A∗), i.e., −λ ∈ σp(−A∗) and

R(C−λ)∩R(−λI −A) 6= ∅, and hence (ii) is valid. Note that λ /∈ σr(A
∗), since λ ∈ σp(A

∗). This

shows that σp(A) ∩ σr(A∗) = ∅. Also, by Lemma 1.1, σr(A∗) ⊂ σp(A). Therefore, σr(A
∗) = ∅.

Analogously, (iii) can be proven. 2

Since σp(H) = σp(A) ∪ σ1
p(−A∗), if σp(A) and σ1

p(−A∗) are symmetric with respect to the

imaginary axis each other, then so is σp(H). Thus,

Theorem 2.2 If H satisfies the following conditions, then σp(H) is symmetric with respect to

the imaginary axis:

(i) σr(A
∗) = ∅;
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(ii) For each λ ∈ σp(A), if −λ ∈ σp(−A∗), then R(C−λ) ∩R(−λI − A) 6= ∅;

(iii) σ1
p(−A∗) ∩ σr(−A) = ∅.

Next, we investigate the symmetry of σp(H) when σp(A) and σ1
p(−A∗) are not symmetric

with respect to the imaginary axis each other. There are three cases to consider.

When σr(A
∗) 6= ∅, write M1 = σr(A∗) \ σ1

p(−A∗), M2 = σp(A) \ σr(A∗), then

σp(H) = σp(A) ∪ σ1
p(−A∗) = M1 ∪ M2 ∪ σ1

p(−A∗).

Theorem 2.3 If H satisfies the following conditions, then σp(H) is symmetric with respect to

the imaginary axis if and only if so is M1:

(i) σr(A
∗) 6= ∅;

(ii) For each λ ∈ σp(A), if −λ ∈ σp(−A∗), then R(C−λ) ∩R(−λI − A) 6= ∅;

(iii) σ1
p(−A∗) ∩ σr(−A) = ∅.

Proof Assume that σp(H) is symmetric with respect to the imaginary axis. Without loss of

generality, let M1 6= ∅ and M2 6= ∅. If λ ∈ M1, i.e., λ ∈ σr(A∗) \ σ1
p(−A∗), then −λ ∈ σr(−A∗).

So, −λ /∈ σp(−A∗), and further −λ /∈ σ1
p(−A∗). Thus, by assumption, −λ ∈ M1 ∪ M2.

If −λ ∈ M2(⊂ σp(A)), then λ ∈ σp(−A∗) ∪ σr(−A∗). By the definition of M2, −λ /∈ σr(A∗),

i.e., λ /∈ σr(−A∗), and hence λ ∈ σp(−A∗). Note that R(Cλ) ∩ R(λI − A) 6= ∅ by (ii), thus

λ ∈ σ1
p(−A∗). This contradicts λ ∈ M1. Therefore, if λ ∈ M1, then −λ ∈ M1, i.e., M1 is

symmetric with respect to the imaginary axis.

Conversely, suppose that M1 is symmetric with respect to the imaginary axis. For each

λ ∈ σp(H), we have λ ∈ M1 ∪ M2 ∪ σ1
p(−A∗). The discussions are as follows:

(a) If λ ∈ M1, then −λ ∈ M1 by the assumption, and so −λ ∈ σp(H);

(b) If λ ∈ M2, similarly to the second paragraph of the proof, −λ ∈ σ1
p(−A∗), hence

−λ ∈ σp(H);

(c) If λ ∈ σ1
p(−A∗), then −λ ∈ σp(A) ∪ σr(A). Note that −λ /∈ σr(A) by (iii), then

−λ ∈ σp(A). Thus, by σp(H) = σp(A) ∪ σ1
p(−A∗), −λ ∈ σp(H). 2

When σ1
p(−A∗) ∩ σr(−A) 6= ∅, write M3 = (σ1

p(−A∗) ∩ σr(−A)) \ σp(A), M4 = σ1
p(−A∗) \

(σ1
p(−A∗)∩σr(−A)), then σp(H) = σp(A)∪M3 ∪M4. As the analogue of Theorem 2.3, we have

Theorem 2.4 If H satisfies the following conditions, then σp(H) is symmetric with respect to

the imaginary axis if and only if so is M3:

(i) σr(A
∗) = ∅;

(ii) For each λ ∈ σp(A), if −λ ∈ σp(−A∗), then R(C−λ) ∩R(−λI − A) 6= ∅;

(iii) σ1
p(−A∗) ∩ σr(−A) 6= ∅.

When σr(A
∗) 6= ∅, σ1

p(−A∗) ∩ σr(−A) 6= ∅, write M5 = σ1
p(−A∗) ∩ σr(A∗) ∩ σr(−A), then

σp(H) = σp(A) ∪ σ1
p(−A∗) = M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5.

Theorem 2.5 If H satisfies the following conditions, then σp(H) is symmetric with respect to

the imaginary axis if and only if M1 and M3 are both symmetric with respect to the imaginary

axis, and M5 = ∅:
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(i) σr(A
∗) 6= ∅;

(ii) For each λ ∈ σp(A), if −λ ∈ σp(−A∗), then R(C−λ) ∩R(−λI − A) 6= ∅;

(iii) σ1
p(−A∗) ∩ σr(−A) 6= ∅.

Proof Without loss of generality, assume that M1 and M3 are both nonempty. If λ ∈ M1, then

−λ /∈ σ1
p(−A∗) ∪ M2 by the proof of Theorem 2.3. Note that M3 ∪ M4 ∪ M5 ⊂ σ1

p(−A∗), so

−λ /∈ M2 ∪ M3 ∪ M4 ∪ M5. Similarly, if λ ∈ M3, then −λ /∈ M1 ∪ M2 ∪ M4 ∪ M5.

We claim that M2 and M4 are symmetric with respect to the imaginary axis each other. In

fact, if λ ∈ M2, then, similarly to the proof of Theorem 2.3, −λ ∈ σ1
p(−A∗). Also, λ ∈ σp(A)

by the definition of M2, which implies λ /∈ σr(A), i.e.,−λ /∈ σr(−A), and so −λ ∈ M4. On the

other hand, if λ ∈ M4(⊂ σ1
p(−A∗)), then −λ ∈ σp(A) ∪ σr(A). By the definition of M4, we see

that λ /∈ σr(−A), i.e., −λ /∈ σr(A), and then −λ ∈ σp(A). Moreover, note that λ ∈ σp(−A∗).

We know that −λ /∈ σr(A∗). Thus, −λ ∈ M2.

Now we prove that if λ ∈ M5, then −λ /∈ σp(H). In fact, if λ ∈ M5, then −λ /∈ M1 ∪ M3 by

the first paragraph of the proof. Note that M5 ∩ (M2 ∪M4) = ∅, and M2 and M4 are symmetric

with respect to the imaginary axis, so −λ /∈ M2∪M4. Again, if λ ∈ M5, then λ ∈ σr(−A) by the

definition of M5. Thus, −λ /∈ σp(A). By M5 ⊂ σp(−A∗) ∩ σp(A), we have −λ /∈ M5. Therefore,

if λ ∈ M5, then −λ /∈ M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5 (= σp(H)).

From the above discussions, it can be seen that σp(H) is symmetric with respect to the

imaginary axis if and only if M1 and M3 are symmetric with respect to the imaginary axis, and

M5 = ∅. 2

If σr(A
∗) = ∅ and σ1

p(−A∗) ∩ σr(−A) = ∅, then M1 = ∅ and M3 = ∅, respectively. And in

both cases, M5 = ∅. Thus, Theorems 2.2–2.5 can be rewritten as

Theorem 2.6 Assume that for each λ ∈ σp(A), if −λ ∈ σp(−A∗), then R(C−λ)∩R(−λI−A) 6=

∅. Then, σp(H) is symmetric with respect to the imaginary axis if and only if M1 and M3 are

both symmetric with respect to the imaginary axis, and M5 = ∅.

3. Examples

To illustrate the main theorems, we give some examples.

Example 3.1 Let X be a Hilbert space and C be a self-adjoint operator with non-zero domain.

We consider the infinite dimensional Hamiltonian operator

H =

[

I C

0 −I

]

.

It is clear that σp(I) = 1, σr(I) = ∅. For λ = 1 ∈ σp(I), we have −λ = −1 ∈ σp(−I), thus

R(−λI − I) = X , so R(C−λ)∩R(−λI − I) 6= ∅. Therefore, by Theorem 2.2, σp(H) is symmetric

with respect to the imaginary axis.

Example 3.2 Define the operators A and C on ℓ2 by Ax = (−x1−x2,−2x1−x3,−x4,−x5, . . .)

and Cx = (x1, x2, 0, 0, . . .) for each x = (x1, x2, . . . , xn, . . .), respectively. Then, the infinite
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dimensional Hamiltonian operator

H =

[

A C

0 −A∗

]

satisfies the conditions of Theorem 2.3. We assert that M1 is not symmetric with respect to the

imaginary axis, nor is σp(H).

In fact, direct calculations show that σp(A) = {1,−2} ∪ {λ ∈ C : |λ| < 1}, σp(−A∗) = {2},

σr(A) = ∅, and σr(−A∗) = {−1} ∪ {λ ∈ C : |λ| < 1}, then (i), (iii) are satisfied.

For λ = −2 ∈ σp(A), we have that −λ = 2 ∈ σp(−A∗) and there exist x = (3a
8 ,−a

8 , 0, 0, . . .) ∈

ℓ2 and y = (a, a
2 , a

22 , a
23 , a

24 , . . .) ∈ N (2I + A∗) \ {0} such that (2I − A)x = Cy, i.e., R(C−λ) ∩

R(−λI −A) 6= ∅. This proves that (ii) holds. Also, 2 ∈ σ1
p(−A∗), so σp(−A∗) = σ1

p(−A∗). Thus,

M1 = σr(A∗) \ σ1
p(−A∗) = σr(A∗), which is not symmetric with respect to the imaginary axis.

Example 3.3 Define B : ℓ2 → ℓ2 by Bx = (x1+2x2, x1, x2, . . .) for each x = (x1, x2, . . . , xn, . . .).

Then B∗x = (x1 + x2, 2x1 + x3, x4, x5, . . .). Let

A =

[

B 0

0 −B∗

]

.

Then σr(A) = {−1}. Consider the infinite dimensional Hamiltonian operator

H =

[

A 0

0 −A∗

]

.

Then σ1
p(−A∗) = σp(−A∗). Hence for each λ ∈ σp(A), if −λ ∈ σp(−A∗), then R(C−λ)∩R(−λI−

A) 6= ∅. Note that σ1
p(−A∗) ∩ σr(−A) = σr(−A), and σr(A

∗) = σr(−A) by Lemma 1.2. We

deduce that M5 = σr(−A) = {1} is nonempty. Therefore, σp(H) is not symmetric with respect

to the imaginary axis by Theorem 2.6.
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