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Abstract In this article we study the empirical likelihood inference for MA(q) model. We

propose the moment restrictions, by which we get the empirical likelihood estimator of the model

parameter, and we also propose an empirical log-likelihood ratio based on this estimator. Our

result shows that the EL estimator is asymptotically normal, and the empirical log-likelihood

ratio is proved to be asymptotical standard chi-square distribution.
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1. Introduction

In this paper, we consider such time series. Suppose {Xt} satisfy the following time series

model:

Xt = εt + β1εt−1 + β2εt−2 + · · · + βqεt−q, (1)

where {εt} are independent identical distribution random variables such that E(εt) = 0, D(εt) =

1. Let β = (β1, β2, . . . , βq)
τ denote (q) dimension parameter vector, and “τ” stands for the

transpose of a vector or a matrix, and we use β(0) to stand for the real parameter value.

The empirical likelihood (EL) method was first proposed by Owen (1988) and its general

property was subsequently studied by Owen (1990). From then on, it has taken much of the

spotlight in the statistical literature. As for time series models, Monti (1997) derived the EL

confidence regions in time series models by a spectral method, and applied them in ARMA

model. However, in this paper we get EL inference by constructing moment restrictions. The

main objective of this paper is to apply the EL estimation to model (1). Then we derive the EL

estimator from moment restrictions, and prove it is asymptotically normal. In order to examine

the estimator, we propose empirical log-likelihood ratio whose asymptotic distribution is exactly

a standard chi-squared.

The paper is organized as follows. In Section 2, EL estimator of the parameter in the model

is derived by moment restrictions, and the test problem based on this estimator is also proposed.

The asymptotic properties are investigated in Section 3.
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2. Empirical likelihood method

By the moment and independencies of {εt}, we now propose the restriction conditions. Let

gt(β) = (g1t(β), g2t(β), . . . , g(q+1)t(β))τ , and

g1t(β) = X2
t − E(X2

t ) = X2
t − (1 + β2

1 + β2
2 + · · · + β2

q ),

g2t(β) = XtXt−1 − E(XtXt−1) = XtXt−1 − (β1 + β2β1 + · · · + βqβq−1),

· · · · · · · · · · · ·
gqt(β) = XtXt−q − E(XtXt−q) = XtXt−q − βq. (2)

We can easily get Egt(β
(0)) = 0.

Suppose that X1, X2, . . . , Xn are observed samples of the model (1). Let pt = P (X =

Xt) (t = 1, 2, . . . , n). We have the following moment restrictions:

n∑

t=1

ptgt(β) = 0. (3)

In order to get the EL estimator, we should consider the maximum point of the function

Ln(β) =

n∏

t=1

pt

on the set of Dn(β) = { pt | pt ≥ 0,
∑n

t=1 pt = 1,
∑n

t=1 ptgt(β) = 0 }, where gt(β) is as in (2).

It is not difficult to prove that when β ∈ B(β(0), n− 1
3 ), there exist {pt}n

t=1, where pt > 0,

and
∑n

t=1 pt = 1, such that
∑n

t=1 ptgt(β) = 0, where B(β(0), n− 1
3 ) is defined to be the set

{β : ‖β − β(0)‖ ≤ n− 1
3 }. We can easily prove that Ln(β) is a convex function, and for given β,

Dn(β) is a bounded convex set, so the extremum point on the set of Dn(β) is also the maximum

point. Since suppt

∏n

t=1 pt > 0, we can further prove that the maximum point is unique. So we

can use Lagrange multiplier technique and Kuhn–Tucker condition to obtain the optimal {pt}n
t=1,

just as Owen (1991) did in linear models. Let

G =
n∑

t=1

ln pt + µ(1 −
n∑

t=1

pt) − nλτ

n∑

t=1

ptgt(β) +
n∑

t=1

νtpt,

where µ, λ, νt (t = 1, 2, . . . , n) are Lagrange multipliers. Differentiating G with respect to pt, we

get
∂G

pt

=
1

pt

− µ − nλτgt(β) + νt = 0, νtpt = 0, t = 1, 2, . . . , n

and

pt =
1

n [1 + λτgt(β)]

subject to the last restriction in Dn(β):

n∑

t=1

ptgt(β) =
1

n

n∑

t=1

gt(β)

1 + λτgt(β)
= 0. (4)

Notice that,

∂

λ

{ 1

n

n∑

t=1

1

1 + λτgt(β)
gt(β)

}
= − 1

n

n∑

t=1

gt(β)gτ
t (β)

[1 + λτgt(β)]2
.
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By implicit function theorem, λ can be regarded as a continuous differentiable function of β, and

is relative to n, written as λn(β). For given β, the log EL function can be defined as

ln(β) =
n∑

t=1

log[1 + λτ
n(β)gt(β)] (5)

whose minimum is just the maximum of Ln(β). So β̂n = argmin ln(β), and the corresponding

Lagrange multiplier can be noted as λ̂n
∆
= λn(β̂n).

In order to indicate the validity of our estimator, we should consider the test problem, that

is, test null hypothesis H0 : β = β(0). We can define the empirical log-likelihood ratio as

T = 2ln(β(0)) − 2ln(β̂n). (6)

In the next section, we mainly discuss the asymptotic properties of our EL estimator and

empirical log-likelihood ratio.

3. Asymptotic properties

In order to gain distinct results, we require three additional conditions.

Assumption 1 E|Xt| 6 < ∞.

Assumption 2 The rank of matrix E
∂gt(β)

∂β
|β=β(0) is q.

Assumption 3 Matrix C is positive definite, which is defined as:

C
∆
= E(gt(β

(0))gτ
t (β(0))) +

2q∑

j=1

E(gt(β
(0))gτ

t−j(β
(0))) +

2q∑

j=1

E(gt−j(β
(0))gτ

t (β(0))).

Owing to special cases, we know that all three assumptions above are reasonable.

By Chen (1997) we can easily prove that 1
n

∑n

t=1 gt(β
(0)) = O(n− 1

2 log log n) almost surely.

And when we suppose Assumption 3 holds, it is also easy to prove that the distribution of
1√
n

∑n

t=1 gt(β
(0)) is asymptotic normal, that is

1√
n

n∑

t=1

gt(β
(0))

L−→ N(0, C).

Before giving the main results, we need some conclusions as in the following lemma, which

are required in the proof of the main results.

Lemma 1 Under the assumptions above, when β ∈ B(β(0), n− 1
3 ) (in the following proof it is

denoted as B), and for n large enough, the following conclusions hold:

1) (i) supβ∈B E||gt(β)||3 = O(1),

(ii) supβ∈B E||∂gt(β)
∂β

|| = O(1) and supβ∈B E||∂
2gt(β)

∂β∂βτ || = O(1).

2) supβ∈B ‖ 1
n

∑n

t=1 gt(β)|| = Op(n
− 1

3 ).

3) (i) supβ∈B ‖ 1
n

∑n

t=1 gt(β)gτ
t (β) −Egt(β

(0))gτ
t (β(0))‖ = op(1), and E[gt(β

(0))gτ
t (β(0))] is a

positive definite matrix.
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(ii) supβ∈B ‖[ 1
n

∑n

t=1 gt(β)gτ
t (β)]−1−[Egt(β

(0))gτ
t (β(0))]−1‖ = op(1), and [Egt(β

(0))gτ
t (β(0))]−1

is a positive definite matrix.

4) (i) supβ∈B ‖ 1
n

∑n

t=1
∂gt(β)

∂β
− E

∂gt(β
(0))

∂β
‖ = o(1).

(ii) supβ∈B ‖ 1
n

∑n

t=1
∂2gt(β)
∂β∂βτ − E

∂2gt(β
(0))

∂β∂βτ ‖ = o(1).

5) Let zn = max1≤t≤n supβ∈B ‖gt(β)‖. Then zn = o(n
1
3 ).

6) supβ∈B ‖λn(β)‖ = Op(n
− 1

3 ).

7) supβ∈B ‖λn(β) − [ 1
n

∑
t gt(β)gτ

t (β)]−1 · [ 1
n

∑
t gt(β)]‖ = op(n

− 1
3 ).

Theorem 2 Under the assumptions above, when β ∈ B = {β : ‖β − β(0)‖ ≤ n− 1
3 }, we have

P (β̂n is the interior point of B ) → 1, as n → ∞.

Furthermore when β̂n is the intetior point, then

Q1n(β̂n, λ̂n) =
1

n

∑

t

gt(β)

1 + λτ
n(β)gt(β)

∣∣∣
β=β̂n

= 0,

Q2n(β̂n, λ̂n) =
1

n

∑

t

1

1 + λτ
n(β)gt(β)

(
∂gt(β)

∂β
)τλn(β)

∣∣∣
β=β̂n

= 0. (7)

Proof When β ∈ W = {β| ‖β − β(0)‖ = n− 1
3 }, denoted as β = β(0) + µ · n− 1

3 , then by the

conclusions of the lemma above, we can easily have

1

n

∑

t

gt(β) =
1

n

∑

t

gt(β
(0)) +

1

n

∑

t

∂gt(β
(0))

∂β
µn− 1

3 + Op(n
− 2

3 )

and

ln(β) =
n

2
[
1

n

∑

t

gt(β)]τ · [ 1
n

∑

t

gt(β)gτ
t (β)]−1 · [ 1

n

∑

t

gt(β)] + op(n
1
3 ).

So

ln(β) =
1

2
· n 1

3 µτ (E(
∂gt(β

(0))

∂β
))τ [Egt(β

(0))gτ
t (β(0))]−1E(

∂gt(β
(0))

∂β
)µ + op(n

1
3 ).

Because matrix Λ = (E(∂gt(β
(0))

∂β
))τ [Egt(β

(0))gτ
t (β(0))]−1E(∂gt(β

(0))
∂β

) is a positive definite

matrix, such that µτΛµ > c0, where c0 > 0 is the minimum latent root of Λ. And then we get

inf
β∈W

ln(β) ≥ 1

2
c0 · n

1
3 + op(n

1
3 ). (8)

When β = β(0), we know 1
n

∑
t gt(β

(0)) = O(n− 1
2 log log n). Performing the similar proof for

ln(β), we can obtain

ln(β(0)) =
n

2
[
1

n

∑

t

gt(β
(0))]τ [

1

n

∑

t

gt(β
(0))gτ

t (β(0))]−1[
1

n

∑

t

gt(β
(0))] + op(1)

= Op (log log n). (9)

Because ln(β) is a continuous function about β, it follows from (8) and (9) that

P ( β̂n is the interior point of B ) ≥ P
( infβ∈W ln(β) − ln(β(0))

n
1
3

≥ 1

4
· c0

)

≥ P
( 1

2 · c0 · n
1
3 + op(n

1
3 ) − Op(log log n)

n
1
3

≥ 1

4
· c0

)
→ 1, n → ∞.
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So the minimum value point β̂n of ln(β) is interior point which satisfies

0 =
∂ln(β)

∂β

∣∣∣
β=β̂n

=
∑

t

∂λτ

n
(β)

∂β
gt(β) +

∂gτ

t
(β)

∂β
λn(β)

1 + λτ
n(β)gt(β)

∣∣∣
β=β̂n

= (
∂λn(β)

∂β
)τ
∑

t

gt(β)

1 + λτ
n(β)gt(β)

∣∣∣
β=β̂n

+
∑

t

1

1 + λτ
n(β)gt(β)

(
∂gt(β)

∂β
)τλn(β)

∣∣∣
β=β̂n

.

Therefore,

Q1n(β̂n, λ̂n) = 0, Q2n(β̂n, λ̂n) = 0.

2

Theorem 3 Under the assumptions above,

√
n(β̂n − β(0))

L−→ N(0, V ),
√

n(λ̂n − 0)
L−→ N(0, U),

where

V = (−S−1
22.1S21S

−1
11 )C(−S−1

22.1S21S
−1
11 )τ ,

U = (S−1
11 + S−1

11 S12S
−1
22.1S21S

−1
11 )C(S−1

11 + S−1
11 S12S

−1
22.1S21S

−1
11 )τ .

Proof Since

0 =Q1n(β̂n, λ̂n) = Q1n(β(0), 0) +
∂Q1n(β, λ)

∂β

∣∣∣
β=β(0),λ=0

(β̂n − β(0))+

∂Q1n(β, λ)

∂λτ

∣∣∣
β=β(0),λ=0

(λ̂n − 0) + Op(δn),

0 =Q2n(β̂n, λ̂n) = Q2n(β(0), 0) +
∂Q1n(β, λ)

∂β

∣∣∣
β=β(0),λ=0

(β̂n − β(0))+

∂Q2n(β, λ)

∂λτ

∣∣∣
β=β(0),λ=0

(λ̂n − 0) + Op(δn) (10)

where δn = ‖β̂n − β(0)‖2 + ‖λ̂n‖2 = Op(n
− 2

3 ), and

Q1n(β(0), 0) =
1

n

∑

t

gt(β
(0)), Q2n(β(0), 0) = 0,

∂Q1n(β, λ)

∂β

∣∣∣
β=β(0),λ=0

=
1

n

∑

t

∂gt(β
(0))

∂β
,

∂Q2n(β, λ)

∂β

∣∣∣
β=β(0),λ=0

= 0,

∂Q1n(β, λ)

∂λτ

∣∣∣
β=β(0),λ=0

= − 1

n

∑

t

gt(β
(0))gτ

t (β(0)),

∂Q2n(β, λ)

∂λτ

∣∣∣
β=β(0),λ=0

=
1

n

∑

t

(
∂gt(β

(0))

∂β
)τ ,

by (10), we get (
λ̂n − 0

β̂n − β(0)

)
= S−1

n

(
−Q1n(β(0), 0) + op(n

− 1
2 )

op(n
− 1

2 )

)
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where

Sn =





− 1

n

∑
t gt(β

(0))gτ
t (β(0))

1

n

∑
t

∂gt(β
(0))

∂β

1

n

∑
t(

∂gt(β
(0))

∂β
)τ 0




a.s.−→

S =

(
S11 S12

S21 S22

)
=




−E[gt(β

(0))gτ
t (β(0))] E(

∂gt(β
(0))

∂β
)

E(
∂gt(β

(0))

∂β
)τ 0





and

S−1
n → S−1 =

(
S−1

11 + S−1
11 S12S

−1
22.1S21S

−1
11 −S−1

11 S12S
−1
22.1

−S−1
22.1S21S

−1
11 S−1

22.1

)
∆
=

(
T11 T12

T21 T22

)
,

where S22.1 = S22 − S21S
−1
11 S12 = −S21S

−1
11 S12. Therefore

√
n

(
λ̂n − 0

β̂n − β(0)

)
= S−1

n

(
−√

nQ1n(β(0), 0) + op(1)

op(1)

)
.

Let n → ∞. By the asymptotic normality of
√

nQ1n(β(0), 0), we get

√
n

(
λ̂n − 0

β̂n − β(0)

)
L−→ N(0, W ),

and the relevant covariance matrix W is equal to

(
T11 T12

T21 T22

)
·
(

C 0

0 0

)
·
(

T τ
11 T τ

21

T τ
12 T τ

22

)
=




T11CT τ

11 T11CT τ
21

T21CT τ
11 T21CT τ

21



 ,

where

C = Egt(β
(0))gτ

t (β(0)) +

2q∑

j=1

Egt(β
(0))gτ

t−j(β
(0)) +

2q∑

j=1

Egt−j(β
(0))gτ

t (β(0)).

And we define V, U respectively as

V
∆
= T21CT τ

21 = (−S−1
22.1S21S

−1
11 )C(−S−1

22.1S21S
−1
11 )τ ,

U
∆
= T11CT τ

11 = (S−1
11 + S−1

11 S12S
−1
22.1S21S

−1
11 )C(S−1

11 + S−1
11 S12S

−1
22.1S21S

−1
11 )τ ,

especially,
√

n(β̂n − β(0)) = S−1
22.1S21S

−1
11

√
nQ1n(β(0), 0) + op(1),

and
√

n(λ̂n − 0) = −(S−1
11 + S−1

11 S12S
−1
22.1S21S

−1
11 )

√
nQ1n(β(0), 0) + op(1).

We get
√

n(β̂n − β(0))
L−→ N(0, V ),

√
n(λ̂n − 0)

L−→ N(0, U).

Moreover, the EL estimators β̂n and λ̂n are asymptotically irrelative. 2
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The theorem above shows the congruence consistency and asymptotic normality of the EL

estimator, while the following theorem reveals that the distribution of the empirical log-likelihood

ratio (6) is exactly a standard chi-squared.

Theorem 4 If H0 : β = β(0), then under the assumptions above, we have

T
L−→ χ2

q,

where T = 2ln(β(0)) − 2ln(β̂n).

Proof According to the asymptotical normality of EL estimator, we have β̂n −β(0) = Op(n
− 1

2 ),

λ̂n = Op(n
− 1

2 ). Using the above analogous method, we can prove

λn(β̂n) = [
1

n

∑

t

gt(β̂n)gτ
t (β̂n)]−1 · [ 1

n

∑

t

gt(β̂n)] + bn(β̂n)

where ‖bn(β̂n)‖ = op(n
− 1

2 ), and ‖ 1
n

∑
t

gt(β̂n)‖ = Op(n
− 1

2 ). Then

ln(β̂n)

=
n

2
[
1

n

∑

t

gt(β̂n)]τ{[ 1
n

∑

t

gt(β̂n)gτ
t (β̂n)]−1[

1

n

∑

t

gt(β̂n)] + bn(β̂n)} + op(1)

=
n

2
[
1

n

∑

t

gt(β̂n)]τ λ̂n + op(1).

Thus

2ln(β̂n) = n [
1

n

∑

t

gt(β̂n)]τ × λ̂n + op(1)

= n [
1

n

∑

t

gt(β
(0)) +

1

n

∑

t

∂gt(β
(0))

∂β
(β̂n − β(0)) + Op(n

−1)]τ λ̂n + op(1)

= −nQτ
1n(β(0), 0)[ S−1

11 (I + S12S
−1
22.1S21S

−1
11 ) ]Q1n(β(0), 0) + op(1).

At the same time, as for 2ln(β(0)), we have

2ln(β(0)) = n [
1

n

∑
gt(β

(0))]τ [
1

n

∑
gt(β

(0))gτ
t (β(0))]−1[

1

n

∑
gt(β

(0))] + op(1)

= −nQτ
1n(β(0), 0)S−1

11 Q1n(β(0), 0) + op(1).

Hence

T =2ln(β(0)) − 2ln(β̂n)

=nQτ
1n(β(0), 0)(S−1

11 + S−1
11 S12S

−1
22.1S21S

−1
11 − S−1

11 )Q1n(β(0), 0) + op(1)

=[(−S11)
− 1

2
√

nQ1n(β(0), 0)]τ × [(−S11)
− 1

2 S12S
−1
22.1S21(−S11)

− 1
2 ]×

[(−S11)
− 1

2
√

nQ1n(β(0), 0)] + op(1).

Since

R
∆
= (−S11)

− 1
2 S12S

−1
22.1S21(−S11)

− 1
2 = R2

and

tr(R) = tr{(−S11)
− 1

2 S12S
−1
22.1S21(−S11)

− 1
2 } = q,
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we have

T−→χ2
q.

2
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