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Abstract In this article we study the empirical likelihood inference for MA(g) model. We
propose the moment restrictions, by which we get the empirical likelihood estimator of the model
parameter, and we also propose an empirical log-likelihood ratio based on this estimator. Our
result shows that the EL estimator is asymptotically normal, and the empirical log-likelihood
ratio is proved to be asymptotical standard chi-square distribution.
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1. Introduction

In this paper, we consider such time series. Suppose {X;} satisfy the following time series
model:
Xt =&+ 1611+ Pagt—2 + - + ByEt—gs (1)

where {e;} are independent identical distribution random variables such that E(e¢) = 0, D(e;) =
1. Let 8 = (f1,02,...,04)" denote (¢) dimension parameter vector, and “7” stands for the
transpose of a vector or a matrix, and we use 3(9) to stand for the real parameter value.

The empirical likelihood (EL) method was first proposed by Owen (1988) and its general
property was subsequently studied by Owen (1990). From then on, it has taken much of the
spotlight in the statistical literature. As for time series models, Monti (1997) derived the EL
confidence regions in time series models by a spectral method, and applied them in ARMA
model. However, in this paper we get EL inference by constructing moment restrictions. The
main objective of this paper is to apply the EL estimation to model (1). Then we derive the EL
estimator from moment restrictions, and prove it is asymptotically normal. In order to examine
the estimator, we propose empirical log-likelihood ratio whose asymptotic distribution is exactly
a standard chi-squared.

The paper is organized as follows. In Section 2, EL estimator of the parameter in the model
is derived by moment restrictions, and the test problem based on this estimator is also proposed.

The asymptotic properties are investigated in Section 3.
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2. Empirical likelihood method
By the moment and independencies of {;}, we now propose the restriction conditions. Let
9t(8) = (91:(8), 92¢(B), - - -, 9(q+1)t(B))7, and
91(B) = Xi = E(X}?) = XP = (L + 57+ 65+ + 57),
g2t(B) = Xe Xy 1 — BE(Xy Xy 1) = Xe X1 — (B1 + B2B81 + - + BgBq-1),

9qt(B) = Xi Xo—q = E(Xe Xy —q) = X4 Xy g — By (2)
We can easily get Eg,(3) = 0.
Suppose that X7, Xo, ..., X,, are observed samples of the model (1). Let p; = P(X =
X:) (t=1,2,...,n). We have the following moment restrictions:

> pigi(B) = 0. (3)
t=1

In order to get the EL estimator, we should consider the maximum point of the function
n
Ly (B) = Hpt
t=1

on the set of Dp(8) = { pe| pr > 0,37 1 pe = 1,211 peg+(3) =0 }, where g¢(3) is as in (2).

It is not difficult to prove that when 8 € B(ﬁ(o),n_%), there exist {p:},, where p; > 0,
and Y7 pr = 1, such that >} | p;g:(3) = 0, where B(B® n=%) is defined to be the set
{B:118— 80| <n3}. We can easily prove that L, (8) is a convex function, and for given 3,
D, (B) is a bounded convex set, so the extremum point on the set of D, () is also the maximum
point. Since sup,, H?:l pt > 0, we can further prove that the maximum point is unique. So we
can use Lagrange multiplier technique and Kuhn-Tucker condition to obtain the optimal {p;}};,
just as Owen (1991) did in linear models. Let

G = Zlnpt + (1 — Zpt) —nA\" Zptgt(ﬁ) + Z Ve,
t=1 t=1

t=1 t=1
where p, A\, vy (t =1,2,...,n) are Lagrange multipliers. Differentiating G with respect to p;, we

get

oG 1
_:__M_n)\Tgt(ﬁ)+yt207 tht:07 t:1727"'7n
Pt bt

and

Notice that,
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By implicit function theorem, A can be regarded as a continuous differentiable function of 3, and

is relative to n, written as A, (8). For given 3, the log EL function can be defined as
In(B) =) logll + A7 (8)g:(B)] (5)
t=1

whose minimum is just the maximum of L, (8). So B\n = argminl,(8), and the corresponding
Lagrange multiplier can be noted as Xn 2 An (Bn)
In order to indicate the validity of our estimator, we should consider the test problem, that

is, test null hypothesis Hy : = $(?). We can define the empirical log-likelihood ratio as
T = 2,(39) — 2, (Ba). (6)
In the next section, we mainly discuss the asymptotic properties of our EL estimator and
empirical log-likelihood ratio.
3. Asymptotic properties
In order to gain distinct results, we require three additional conditions.
Assumption 1 E|X;|® < co.

Assumption 2 The rank of matrix Eagééﬁ) lp=p is q.

Assumption 3 Matrix C is positive definite, which is defined as:

2q 2q

A - . -
C = E(g:(Bg7 () + > E(9:(B)g7_;(B)) + Y E(gi—3(8)g7 (B™)).
Jj=1 Jj=1
Owing to special cases, we know that all three assumptions above are reasonable.
By Chen (1997) we can easily prove that L+ 51" | ¢,(3()) = O(n~2 loglogn) almost surely.
And when we suppose Assumption 3 holds, it is also easy to prove that the distribution of
ﬁ S, g1(B©)) is asymptotic normal, that is

—= > a(3) L N0.C).
t=1

Before giving the main results, we need some conclusions as in the following lemma, which

are required in the proof of the main results.

Lemma 1 Under the assumptions above, when 3 € B(ﬁ(o),n’%) (in the following proof it is
denoted as B), and for n large enough, the following conclusions hold:
1) (i) supgep Bllg:(B)|° = O(1),
(ii) sup e p B[ 2242 | = O(1) and supye  B|| 552 = O(1).
2) swpgep |+ Ximy 9:(B)]] = Op(n=3).
3) (i) supgep 5 oot 9¢:(B)97 (B) — Egi(B)gf (B = 0p(1), and Elge(5©)g7 (8V)] is a
positive definite matrix.
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(ii) supge g 1[5 21—y 96(8)97 (B)] " = [Ege (8)g7 (B)) | = 0p(1), and [Egy(58©))g7 (5]~
is a positive definite matrix.

994 ( 9g: (B
4) (i) supsep |12 Y1, 248 — BT | = o(1).

9%g: (8 a2 ﬁ() _
(i) supgep |12 0, 65523 E ggaﬁf I = o(1).

5) Let z, = maxi<i<n SUDPgep llge(B)]|. Then z, = o(n
6) SUPgeB A (B = Op(n_%)'
7) supgeg 1A (B) = (232, 9:(B)97 (B) 71 (230, e(B)]]| = 0p(n~5).

Theorem 2 Under the assumptions above, when 8 € B={3: |3 — 8| < n~3}, we have

wl=

).

P(@n is the interior point of B ) — 1,as n — 0.

Furthermore when 371 is the intetior point, then

an(B\nvxn> = Z 1+ )\T ﬁ) 5=3,, = 0,

20N ) — l 1 agt(ﬁ) T _
0 "’A")_nztlez(mgt(ﬁ)( a5 M5, = ™

Proof When 8 € W = {8| |3 — 8O = n=3}, denoted as 3 = 3O + ;- n=3, then by the

conclusions of the lemma above, we can easily have

9g: (B . 2
%th(ﬁ) = % th(ﬁ(o)) + %Z %Mﬂ‘g +0,(n~3)
t t t

and
n(8) =5 [ a0 [ S oD O™ [ a0 +onnd).
So
1 (30 B (30 N
() = 5 b (B (B (557 (50 BTy, 0,

Because matrix A = (E(%%(D))))T[Egt(ﬁ(o))g[(ﬁ(o))]_lE(%ﬁ(m)) is a positive definite
matrix, such that u” Ay > cg, where ¢g > 0 is the minimum latent root of A. And then we get

)- (®)

wb-t

. 1
ﬁlél&/ln(ﬁ) > 500 n3 + op(n

When 3 = 89, we know L =D g:(B) =0(n~ 3 log log n). Performing the similar proof for

1,,(83), we can obtain

n(6) th DS SPACLIY th BN +0,(1)

=0, (log logn). (9)

Because [,,(3) is a continuous function about 3, it follows from (8) and (9) that

infgew In(8) — hl(ﬂ(())) > . co)

1
ns3

RN,

P( B, is the interior point of B ) > P(

> P

%-co-n% +0,(n3) — Oy(loglogn) _ 1
( ZZ-CO)—>1, n — o0.

Wl

n
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So the minimum value point Bn of 1,,(0) is interior point which satisfies
0 ol, 6)’ - Z w@ﬁ(ﬁ)gt(m — ﬁ))\ (5)}
B lp=p. 4 1+ A (B)g (ﬁ) B=Bn

_ 3/\n(5) T gt(ﬁ) 1 39t(5)
= e i o TR

66 )T)\n(ﬁ) ﬁ:Bn'

Therefore,

an(B\n;Xn) - 07 QQn(B\n,Xn) = 0.

O
Theorem 3 Under the assumptions above,
V(B — 89) L N(0,V), Va(h, —0) - N(0,U),
where
= (—539152197" ) C (=551 92151,)7,
= (87" + 8111812555 82181 )C (St + S11t 812555 821517
Proof Since
N ann(ﬁa ) )
= = (0) 1)
0=Qun(Br A) = Quu(8©,0)+ =522 (B 8O+
ann(ﬁuA) N
s s = 0+ 0y(00),
~ % 0Q1n(8,A) =
- = (0) J 1)
0=Qon(BRn) = Qan(80,0) + =522 (B = )
aQ?n(ﬁuA) N
v ‘B:B“) A:O(An—O)JrOp(én) (10)
where 6, = [|Bn — B2 + | Aa]|? = Op(n3), and
_1 5O ©0) 0y —
Qun (8 nztj ), Qan(8”,0) =0,
IQ1n (8, N) :_Zagt(ﬁ(o))
o3 B=BOA=0 N & o3
aQZn(ﬂv)‘) _
0B B=B) A=0 ’
0Q1(B, ) _ 1 0y, (3(0)
ONT B=BO) A=0 n;gt(ﬁ gt (57,
O™ B=BOA=0 N4 08 ’

by (10), we get

( o =0 ) _ g ( ~Qun(8, 0)+ 0p(n~}) )
n_ﬁ(o) " ( )

NI»—A



928 CHEN Y H and SONG L X

where
L a0 o) Ly, %ﬁﬂ“’))
S, = .
5gt(ﬁ(0)) .
n t(Tg) 0
89,(8©
:<&lsw>: _MMM%TW%JE@%%J>
S. S. agt(ﬁ ) .
; . E(——F7— op ) 0
and
Syt =S5t =

n

( ST+ St S1285 5218 — STt S1255Y ) A ( Ty T )

— S S2157;" Sran Ty T2

where 522,1 = 522 — Sglsfllslg = —Sglsﬂlslg. Therefore

M=0 ) o [ —VAQu(B®), 0) +0,(1)
A5 e = ().

Let n — oo. By the asymptotic normality of v/nQ1,(3®,0), we get

-
\/ﬁ< ; _g(o) ) Ly N(O,W),

and the relevant covariance matrix W is equal to
( Ty Tie ) . ( c 0 ) . ( T 17, ) B L COT7, TuCT3;
Toy Too 0 0 7, T To:CTT, To1CTY,

C = Egi(8)g7 (8) + ZEgt BT (B + ZEgt J(B)g7 (B)).

where

And we define V, U respectively as
V 2 15,073, = (—S5'152151, ) C (= S35 921 51717,
U 2 TyCTY, = (S5 + Si11 51285}, S217,)C (ST + S171 S1285,), S21571),

especially,
V(B = B2) = 55180155 ViQ1a (B, 0) + 0,(1),
and
Vi = 0) = —(S5" + 857" $1295,11 S21.91 )V Q1 (B2, 0) + 0, (1).
We get

VB, - B9) L5 N(0,V), Va(\, —0) - N(0,U).

Moreover, the EL estimators Bn and :\\n are asymptotically irrelative. O
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The theorem above shows the congruence consistency and asymptotic normality of the EL
estimator, while the following theorem reveals that the distribution of the empirical log-likelihood

ratio (6) is exactly a standard chi-squared.

Theorem 4 If Hy : § = 9, then under the assumptions above, we have
T -5 2

where T = 21,,(3) — 20,,(3,).

Proof According to the asymptotical normality of EL estimator, we have Bn — B0 = Op(n_%),

Ao = Op(n*%). Using the above analogous method, we can prove

)\n th ﬁn gt ﬁn th ﬁn +b (ﬁn)

where an(Bn)H = op(n_f), and ”H zt:gt(ﬁn)ﬂ = Op(n_f). Then

Un(Ba)
-2 [% th@n)r{[% 520 Ba)gf By S+ 0a(B)) + an(1)

Thus

o o L5 2000 (5~ 59) 4 Oy R+ 041)

= —nQT, (B, 0)[ S53' (I + $12555'192151") 1Q1 (8, 0) + 0, (1).

At the same time, as for 2/, (6(0)) we have

W (B9) =n] th th (B)g7 (8 th op(1)

= —ann(ﬂ“’ ,0)ST! anw ©0) + 0, (1).

Hence
T =21,(8) — 2 (B.)
=nQT, (3, 0)(S53! + 5531 51295 52157 — S1)Q1n (8, 0) + 0, (1)
=[(—811) "2 VnQ1n (B, 0)]" x [(—511)_%51252721.1521(—511)_%]><
[(=S11) "2 vnQ1.(89,0)] + 0p(1).
Since
R2 (=811)" 3812553, 81 (~$11) 7 = R?

and

tr(R) = tr{(—S11) "2 S125551 521 (—S11) "2} = ¢,
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we have
T—>Xg.
O
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