Green’s Relations on a Kind of Semigroups of Linear Transformations

PEI Hui Sheng¹, LU Feng Mei²
(1. Department of Mathematics, Xinyang Normal University, Henan 464000, China; 2. Department of Science, Anyang Polytechnic College, Henan 454900, China)
(E-mail: phszgz@mail2.xytc.edu.cn)

Abstract Let V be a linear space over a field F with finite dimension, $L(V)$ the semigroup, under composition, of all linear transformations from V into itself. Suppose that $V = V_1 \oplus V_2 \oplus \cdots \oplus V_m$ is a direct sum decomposition of V, where V_1, V_2, \ldots, V_m are subspaces of V with the same dimension. A linear transformation $f \in L(V)$ is said to be sum-preserving, if for each i ($1 \leq i \leq m$), there exists some j ($1 \leq j \leq m$) such that $f(V_i) \subseteq V_j$. It is easy to verify that all sum-preserving linear transformations form a subsemigroup of $L(V)$ which is denoted by $L^\oplus(V)$. In this paper, we first describe Green’s relations on the semigroup $L^\oplus(V)$. Then we consider the regularity of elements and give a condition for an element in $L^\oplus(V)$ to be regular. Finally, Green’s equivalences for regular elements are also characterized.

Keywords linear spaces; linear transformations; semigroups; Green’s equivalence; regular semigroups.

Document code A
MR(2000) Subject Classification 20M20
Chinese Library Classification O152.7

1. Introduction and preliminaries

Let X be an arbitrary set, T_X the full transformation semigroup on the set X and E be an equivalence relation on X. The first author observed in [6] a class of transformation semigroups determined by the equivalence E, namely

$$T_E(X) = \{f \in T_X : \forall (a, b) \in E, (f(a), f(b)) \in E\}.$$

$T_E(X)$ is obviously a subsemigroup of T_X. The common nature of all elements in $T_E(X)$ is that they preserve the decomposition induced by the equivalence E. In other words, all $f \in T_E(X)$ satisfy the condition that for each E-class A there exists some E-class B such that $f(A) \subseteq B$. In recent years, some properties for $T_E(X)$ are investigated in many papers. For example, [7] considered the Green’s equivalences, [9] and [10] discussed some subsemigroups of $T_E(X)$ inducing certain lattices of equivalences on the set X, and [8] investigated the rank of $T_E(X)$ for a special case of X and E.

In this paper we examine a related semigroup defined as follows. Let V be a linear space over a field F and $L(V)$ be the semigroup, under composition, of all linear transformations on the
linear space V. Suppose that $V = \oplus\{V_i : i \in I\}$, where each V_i is a subspace of V with $|I| \geq 2$ and $\dim V_i \geq 2$ for each i. A linear transformation $f \in L(V)$ is called sum-preserving if for each $i \in I$, there exists some $j \in I$ such that $f(V_i) \subseteq V_j$. It is not hard to verify that if f and g are sum-preserving, then so is fg. Consequently, all sum-preserving linear transformations form a subsemigroup of $L(V)$ which will be denoted by $L^\oplus(V)$.

We notice that many conclusions for T_X have their parallelism for $L(V)$. For example, in 1966, Howie\cite{howie} characterized the transformations in T_X that can be written as a product of finite number idempotents in T_X. Since then Erdos\cite{erdos} and Dawlings\cite{dawlings} gave different proofs of the result that when V is finite-dimensional, $\alpha \in L(V)$ is a finite product of proper idempotents in $L(V)$ if and only if $\dim(\alpha(V)) < \dim V$. Later in 1985, Reynolds and Sullivan\cite{reynolds} investigated the case of infinite-dimensional spaces and obtained the results similar to Howie’s.

We may compare the elements in $L^\oplus(V)$ with that in $T_E(X)$ and find that all they are transformations of a set (or a linear space) preserving some decomposition. Therefore, $L^\oplus(V)$ can be regarded as the linear transformation version of the semigroup $T_E(X)$.

In this paper, we are going to consider a special case for the direct sum decomposition, namely, we assume $\dim V_i = n \geq 2$ for each $i \in I = \{1, 2, \ldots, m\}$ with $m \geq 2$ while

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_m, \quad \dim V_i = n \quad (1 \leq i \leq m).$$

Here we focus our attention to Green’s equivalence relations and the regularity for the semigroup $L^\oplus(V)$. Accordingly, in Section 2, we describe five Green’s relations and conclude that $D = J$. In Section 3, we consider the condition for an element $f \in L^\oplus(V)$ to be regular. By the way, we describe the Green’s relations for regular elements in the semigroup $L^\oplus(V)$.

In order to avoid repeat, in the remainder of the paper, the symbols $V_i, V_j, V_l, V_{j_1}, \ldots$ will always denote certain subspaces in the direct sum decomposition $V = V_1 \oplus V_2 \oplus \cdots \oplus V_m$ without further mention. In addition, if we have defined a number of linear mappings $f_i : V_i \to V_{i'}$ where $i, i' \in I$, then there exists a unique linear transformation $f \in L^\oplus(V)$ satisfying $f|V_i = f_i$. Finally, for convenience, we do not distinguish the zero vector 0 and the singleton set \{0\}. As we have seen previously, we write $f(V_i) = 0$ to mean $f(V_i) = \{0\}$.

For standard concepts and notations in semigroup theory one can consult \cite{weid}}.

\section{Green’s relations}

In this section, we focus our attention on Green’s relations for the semigroup $L^\oplus(V)$. We begin with the relation L. Before stating the result, we need some notations.

Let $f \in L^\oplus(V)$ with $V_j \cap f(V) \neq 0$. Denote $W_j = \oplus\{V_i : 0 \neq f(V_i) \subseteq V_j\}$. Then it is easy to see that $f(W_j) = V_j \cap f(V)$. Suppose that all the subspaces V_j such that $V_j \cap f(V) \neq 0$ are $V_{j_1}, V_{j_2}, \ldots, V_{j_t}$. Denote $K(f) = \{W_{j_1}, \ldots, W_{j_t}\}$. Denote by $\ker(f)$ the kernel of f, that is, $\ker(f) = \{x \in V : f(x) = 0\}$.

\textbf{Theorem 2.1} Let $f, g \in L^\oplus(V)$. Then fLg if and only if $\ker(f) = \ker(g)$ and $K(f) = K(g)$.

\textbf{Proof} Suppose }f \not\subseteq g. \text{ Then there exist } u, v \in L^\oplus(V), \text{ such that } uf = g \text{ and } vg = f. \text{ Hence }

\[g(\ker(f)) = uf(\ker(f)) = u(0) = 0. \]

Thus, }\ker(f) \subseteq \ker(g). \text{ Similarly, } \ker(g) \subseteq \ker(f) \text{ and } \ker(f) = \ker(g). \text{ Suppose that }

\[K(f) = \{W_{j_1}, \ldots, W_{j_s}\} \text{ and } K(g) = \{U_{l_1}, \ldots, U_{l_t}\}. \]

Without loss of generality, we may assume that }u(V_{j_1}) \subseteq V_{l_1}. \text{ So }

\[g(W_{j_1}) = uf(W_{j_1}) \subseteq u(V_{j_1}) \subseteq V_{l_1}. \]

Clearly, }g(V_i) \neq 0 \text{ for each } V_i \subseteq W_{j_1}, \text{ since } \ker(f) = \ker(g). \text{ Thus } W_{j_1} \subseteq U_{l_1}. \text{ Assume } f(U_{l_1}) = vg(U_{l_1}) \subseteq v(V_{j_1}) \subseteq V_p \text{ for some } p. \text{ Notice that } f = vg = vuf, f(W_{j_1}) \subseteq V_{j_1} \text{ and }

\[f(W_{j_1}) = vuf(W_{j_1}) \subseteq vuf(V_{j_1}) \subseteq v(V_{j_1}) \subseteq V_p, \]

we have }V_p = V_{j_1} \text{ and } f(U_{l_1}) \subseteq V_{j_1}. \text{ By } \ker(f) = \ker(g) \text{ again, } f(V_i) \neq 0 \text{ for each } V_i \subseteq U_{l_1}. \text{ Consequently, } U_{l_1} \subseteq W_{j_1} \text{ and } W_{j_1} = U_{l_1}. \text{ Similarly, one can verify that each } W \in K(f) \text{ is equal to some } U \in K(g) \text{ and } s = t. \text{ Therefore, } K(f) = K(g) \text{ and the necessity follows.}

In order to show the sufficiency, suppose }\ker(f) = \ker(g) \text{ and } K(f) = K(g). \text{ We must find some } u, v \in L^\oplus(V) \text{ satisfying } uf = g \text{ and } vg = f. \text{ Denote } f_i = f|V_i \text{ and } g_i = g|V_i \text{ (1 \leq i \leq m)}. \text{ Then } ker f_i = ker g_i. \text{ While for each } W \in K(f) = K(g), f|W \text{ and } g|W \text{ are linear mappings and }

\[\ker(f|W) = \ker(g|W). \quad (2.1.1) \]

If }V_j \cap f(V) \neq 0, \text{ then there exists some } W \in K(f) = K(g) \text{ such that } f(W) = V_j \cap f(V), \text{ hence }

\[g(W) = V_i \cap g(V). \]

Let }f(W) = V'_j \subseteq V_j \text{ and } g(W) = V'_i \subseteq V_i. \text{ From (2.1.1), } V'_j \text{ and } V'_i \text{ have the same dimension. Without loss of generality, we may assume } W = V_1 \oplus V_2 \oplus \cdots \oplus V_t. \text{ Take a basis } e_1, \ldots, e_r, e_{r_1}, \ldots, e_n \text{ for } V_1, \text{ a basis } \alpha_1, \ldots, \alpha_{r_2}, \alpha_{r_2 + 1}, \ldots, \alpha_{r_2 + r_1} \text{ for } V_2, \ldots, \alpha_n \text{ for } V_t, \text{ where } e_{r_1}, \ldots, e_n \text{ is a basis for } \ker(f_1), \text{ and } \alpha_{r_2 + 1}, \ldots, \alpha_{r_2 + r_1} \text{ is a basis for } \ker(f_2), \ldots, \alpha_n \text{ is a basis for } \ker(f_t). \text{ Then } \{e_i\} \cup \{\alpha_i\} \cup \cdots \cup \{\beta_i\} \text{ is a basis for } W. \text{ While in the subspace } V'_j \text{, } f(e_1), \ldots, f(e_{r_1}) \text{ are linearly independent, and so also are } f(\alpha_1), \ldots, f(\beta_{r_2}), \ldots, f(\beta_{r_1}). \text{ It is not difficult to see that }

\[V'_j = \langle f(e_1), \ldots, f(e_{r_1}), f(\alpha_1), \ldots, f(\alpha_{r_2}), \ldots, f(\beta_{r_1}) \rangle. \]

Now we extend } f(e_1), \ldots, f(e_{r_1}) \text{ to obtain a basis for } V' \text{ by adding some } f(\alpha_s) \text{ (1 \leq s \leq r_2), \ldots, and } f(\beta_k) \text{ (1 \leq k \leq r_1). Without loss of generality, we assume the basis is }

\[f(e_1), \ldots, f(e_{r_1}), f(\alpha_1), \ldots, f(\alpha_p), \ldots, f(\beta_1), \ldots, f(\beta_q). \quad (2.1.2) \]

We claim that

\[g(e_1), \ldots, g(e_{r_1}), g(\alpha_1), \ldots, g(\alpha_p), \ldots, g(\beta_1), \ldots, g(\beta_q) \quad (2.1.3) \]

are linearly independent. Otherwise, suppose

\[\sum_{s=1}^{r_1} a_sg(e_s) + \sum_{j=1}^{p} b_jg(\alpha_j) + \cdots + \sum_{k=1}^{q} c_kg(\beta_k) = 0 \]
for some \(a_i, b_j, c_k \in F \). Let

\[
\xi = a_1 e_1 + \cdots + a_r e_r + b_1 \alpha_1 + \cdots + b_p \alpha_p + \cdots + c_1 \beta_1 + \cdots + c_q \beta_q \in W.
\]

Then \(g(\xi) = 0 \) and \(\xi \in W \cap \ker(g) = W \cap \ker(f) \). Hence

\[
0 = f(\xi) = \sum_{i=1}^{r_1} a_i f(e_i) + \sum_{j=1}^{p} b_j f(\alpha_j) + \sum_{k=1}^{q} c_k f(\beta_k).
\]

Notice that (2.1.2) is linearly independent, the above equation implies that

\[
a_1 = \cdots = a_r = b_1 = \cdots = b_p = \cdots = c_1 = \cdots = c_q = 0.
\]

Thus, (2.1.3) are linearly independent, while being a basis for \(V' \).

Extend (2.1.2) to a basis \(B \) for \(V_j \) and define a linear mapping \(u_j : V_j \to V_i \) such that

\[
u_j(f(e_1)) = g(e_1), \ldots, u_j(f(e_r)) = g(e_r),
\]

\[
u_j(f(\alpha_1)) = g(\alpha_1), \ldots, u_j(f(\alpha_p)) = g(\alpha_p),
\]

\[
\ldots
\]

\[
u_j(f(\beta_1)) = g(\beta_1), \ldots, u_j(f(\beta_q)) = g(\beta_q),
\]

and for each \(\eta \in B \) out of (2.1.2), let \(u_j(\eta) = 0 \). For each \(V_i \), if \(V_i \cap f(V) \neq 0 \), then define \(u_i \) on \(V_i \) as above. If \(V_i \cap f(V) = 0 \), then let \(u_i(x) = 0 \) for each \(x \in V_i \). Thus, these \(u_i \) uniquely determine a linear transformation \(u \) on the linear space \(V \). Obviously, \(u \in L^\oplus(V) \).

Now we verify that \(uf = g \). For each \(V_i \) and \(x \in V_i \), if \(f(x) = 0 \), then \(g(x) = 0 \) since \(\ker(f) = \ker(g) \), and \(uf(x) = g(x) \) in this case. If \(f(x) \neq 0 \), then there exists some \(W \in K(f) \) such that \(V_i \subseteq W \). Without loss of generality, we assume

\[
W = V_1 \oplus V_2 \oplus \cdots \oplus V_i,
\]

then \(f(x) \in f(W) = V'_j \subseteq V_j \). As above, we assume (2.1.2) to be a basis for \(V'_j \). Then

\[
f(x) = \sum_{i=1}^{r_1} a_i f(e_i) + \sum_{j=1}^{p} b_j f(\alpha_j) + \sum_{k=1}^{q} c_k f(\beta_k) = f(\xi),
\]

where

\[
\xi = a_1 e_1 + \cdots + a_r e_r + b_1 \alpha_1 + \cdots + b_p \alpha_p + \cdots + c_1 \beta_1 + \cdots + c_q \beta_q.
\]

Since \(\ker(f) = \ker(g) \), we have \(g(x) = g(\xi) \). By the definition of \(u \),

\[
u f(x) = u(\sum_{i=1}^{r_1} a_i f(e_i) + \sum_{j=1}^{p} b_j f(\alpha_j) + \sum_{k=1}^{q} c_k f(\beta_k)) = g(\xi) = g(x).
\]

Thus, \(uf(x) = g(x) \) holds for every \(x \in V_i \). Consequently, \(uf(x) = g(x) \) holds for every \(x \in V \) and \(uf = g \). Similarly, one can find \(v \in L^\oplus(V) \) such that \(vg = f \). Therefore, \(f L g \) holds. \(\square \)

Before describing the relation \(R \) on \(L^\oplus(V) \) some notations should be introduced. Let \(f \in L^\oplus(V) \). If \(V_j \cap f(V) \neq 0 \), then there exists some \(V_i \) such that \(0 \neq f(V_i) \subseteq V_j \). Denote

\[
P_j(f) = \{ f(V_i) : 0 \neq f(V_i) \subseteq V_j \}
\]
and define a partial order \leq on $P_j(f)$ by letting $A \leq B$ if and only if $A \subseteq B$. Denote by $M_j(f)$ the collection of all maximal elements in $P_j(f)$. Then for each i with $0 \neq f(V_i) \subseteq V_j$, there exists some s such that $f(V_i) \subseteq f(V_j) \in M_j(f)$.

Now we can state and prove the conclusion for the relation R.

Theorem 2.2 Let $f, g \in L^\oplus(V)$. Then the following statements are equivalent:

1. fRg.
2. For each i (1 $\leq i \leq m$) there exist j, k such that $f(V_i) \subseteq g(V_j)$ and $g(V_i) \subseteq f(V_k)$.
3. $f(V) = g(V)$ and $M_j(f) = M_j(g)$ holds for each j with $V_j \cap f(V) \neq 0$.

Proof

(1)\implies(2) Suppose fRg. Then there exist $u, v \in L^\oplus(V)$ such that $fu = g$ and $gv = f$. For each i, there exists some j such that $v(V_i) \subseteq V_j$. Consequently, $f(V_i) = ge(V_i) \subseteq g(V_j)$. Similarly, there exists some k such that $g(V_k) \subseteq f(V_i)$ holds.

(2)\implies(3) It is not difficult to see from (2) that $f(V) \subseteq g(V)$ and $g(V) \subseteq f(V)$, so $f(V) = g(V)$. Suppose $V_j \cap f(V) \neq 0$ and $f(V_i) \in M_j(f)$. Then there exist i_1, i_2 such that $f(V_i) \subseteq g(V_{i_1}) \subseteq f(V_{i_2})$. From $f(V_i) \subseteq V_j \cap f(V_{i_2})$, we see that $f(V_{i_2}) \subseteq V_j$. Since $f(V_i) \in M_j(f)$ and $f(V_i) \subseteq f(V_{i_2})$, we have $f(V_{i_2}) = g(V_{i_1}) = f(V_i)$. Take $g(V_{i_1}) \in M_j(g)$ such that $g(V_{i_1}) \subseteq g(V_{i_3})$. By (2) again, there exists i_4 such that $g(V_{i_3}) \subseteq f(V_{i_4})$. Thus,

$$f(V_i) \subseteq g(V_{i_1}) \subseteq g(V_{i_3}) \subseteq f(V_{i_4}) \subseteq V_j$$

which implies that $f(V_{i_4}) = f(V_i) = g(V_{i_3}) \in M_j(g)$ and that $M_j(f) \subseteq M_j(g)$. By symmetry, we have $M_j(g) \subseteq M_j(f)$ and therefore $M_j(f) = M_j(g)$ holds.

(3)\implies(1) Suppose $f(V) = g(V)$ and $M_j(f) = M_j(g)$ holds for each j with $V_j \cap f(V) \neq 0$. We first look for some $h \in L^\oplus(V)$ such that $fh = g$. For each V_i, if $g(V_i) = 0$, then define $h(x) = 0$ for each $x \in V_i$. If there is some j such that $0 \neq g(V_i) \subseteq V_j$, then there is some $A \in M_j(g) = M_j(f)$ such that $g(V_i) \subseteq A$. Denote $g_i = g|V_i$ and assume $A = f(V_i) = g(V_i)$. Take a basis $e_1, \ldots, e_r, e_{r+1}, \ldots, e_n$ for V_i where e_{r+1}, \ldots, e_n is a basis for $\ker(g_i)$. Then $g(e_1), g(e_2), \ldots, g(e_r)$ are linearly independent. Let $f_s = f|V_s : V_s \to V_j$. Choose $e'_1, e'_2, \ldots, e'_r \in V_s$ such that

$$f_s(e'_1) = g(e_1), f_s(e'_2) = g(e_2), \ldots, f_s(e'_r) = g(e_r).$$

Then e'_1, e'_2, \ldots, e'_r are linearly independent. Define a linear mapping $h_i : V_i \to V_s$ such that

$$h_i(e_1) = e'_1, \ldots, h_i(e_r) = e'_r, \quad h_i(e_{r+1}) = 0, \ldots, h_i(e_n) = 0.$$

Then for each vector $x = a_1 e_1 + \cdots + a_r e_r + a_{r+1} e_{r+1} + \cdots + a_n e_n \in V_i$, we have

$$fh_i(x) = f(a_1 h_i(e_1) + \cdots + a_r h_i(e_r)) = f(a_1 e'_1 + \cdots + a_r e'_r)$$

$$= a_1 f(e'_1) + \cdots + a_r f(e'_r) = a_1 g(e_1) + \cdots + a_r g(e_r) = g(x).$$

These h_i defined on each V_i determine a linear transformation h on V. It is obvious that $h \in L^\oplus(V)$ and $fh = g$. By symmetry, there exists $k \in L^\oplus(V)$ such that $gk = f$ holds. Therefore, fRg. \Box
As an immediate consequence of Theorems 2.1 and 2.2, we have the following

Theorem 2.3 Let \(f, g \in L^\oplus(V) \). Then the following statements are equivalent:

1. \((f, g) \in \mathcal{H}\).
2. \(\ker(f) = \ker(g)\), \(K(f) = K(g)\) and for each \(1 \leq i \leq m\), there exist \(j, k\) such that \(f(V_i) \subseteq g(V_j)\), \(g(V_i) \subseteq f(V_k)\).

Let \(f \in L^\oplus(V) \) and assume that all the subspaces \(V_i\) with \(f(V) \cap V_i \neq 0\) are \(V_1, V_2, \ldots, V_s\).

Then, one easily verifies that \(f(V) = V_{i_1} \oplus V_{i_2} \oplus \cdots \oplus V_{i_s}\).

The following concept will be useful in describing the relations \(D\) and \(J\) on \(L^\oplus(V)\).

Definition 2.4 Let \(U\) and \(W\) be two subspaces of \(V\) where

\[U = V_{i_1}' \oplus V_{i_2}' \oplus \cdots \oplus V_{i_h}'\]
and each \(V_{i_i}'\) is a non-zero subspace of \(V_{i_i}\) while each \(V_{j_j}'\) is a non-zero subspace of \(V_{j_j}\). If \(\phi : U \to W\) is an isomorphism such that for each \(1 \leq s \leq k\) there exists a unique \(r (1 \leq r \leq k)\) such that \(\phi(V_{i_i}') = V_{j_j}'\), then \(\phi\) is called a sum-preserving isomorphism.

Next we consider the condition for two elements in \(L^\oplus(V)\) to be \(D\) equivalent.

Theorem 2.5 Let \(f, g \in L^\oplus(V)\). Then \(fDg\) if and only if there exists a sum-preserving isomorphism \(\phi : f(V) \to g(V)\) such that for each \(i\) with \(f(V) \cap V_i \neq 0\), there exists some \(j\) such that \(\phi(f(V) \cap V_i) = g(V) \cap V_j\) and \(\phi(M_i(f)) = M_j(g)\).

Proof Suppose \(fDg\). Then there exists \(h \in L^\oplus(V)\) such that \(fLh\) and \(hRg\). From Theorems 2.1 and 2.2, we have \(\ker(f) = \ker(h)\), \(K(f) = K(h)\), \(h(V) = g(V)\) and \(M_j(h) = M_j(g)\) holds for each \(j\) with \(h(V) \cap V_j \neq 0\).

We first establish the isomorphism \(\phi\) from \(f(V)\) onto \(h(V)\). Suppose \(f(V) \cap V_j \neq 0\). Take \(W \in K(f) = K(h)\) such that \(f(W) = f(V) \cap V_j\). Then there is some \(j\) such that \(h(W) = h(V) \cap V_j\). Since \(\ker(f) = \ker(h)\), we have \(\ker(f|W) = \ker(h|W)\) and \(\dim f(W) = \dim h(W)\) which implies that \(f(W)\) and \(h(W)\) are isomorphic. Take a basis \(e_1, e_2, \ldots, e_r\) for \(f(W) = f(V) \cap V_i\) and choose \(w_1, w_2, \ldots, w_r \in W\) such that

\[f(w_1) = e_1, f(w_2) = e_2, \ldots, f(w_r) = e_r.\]

Then \(w_1, w_2, \ldots, w_r\) are linearly independent.

Let

\[e_1' = h(w_1), e_2' = h(w_2), \ldots, e_r' = h(w_r).\]

Then \(e_1', e_2', \ldots, e_r'\) are linearly independent while being a basis for \(h(W)\). Define a linear mapping
\begin{equation}
\phi_1: f(V) \cap V_i \rightarrow h(V) \cap V_j \text{ such that } \phi_1(e_1) = e'_i, \quad t = 1, 2, \ldots, r. \text{ Then } \phi_1 \text{ is an isomorphism and } \\
\phi_1 f(x) = h(x) \text{ for each } x \in W. \text{ Suppose } \\
M_i(f) = \{f(V_{i_1}), f(V_{i_2}), \ldots, f(V_{i_s})\}.
\end{equation}

By virtue of ker\(f) = \ker(h), \text{ one routinely verifies that } \\
M_j(h) = \{h(V_{i_1}), h(V_{i_2}), \ldots, h(V_{i_s})\}.

Besides, since \(V_{i_1}, V_{i_2}, \ldots, V_{i_s} \text{ are contained in } W \text{ and } \phi_i f = h \text{ on } W, \text{ we have } \\
\phi_i(f(V_{i_1})) = h(V_{i_1}), \ldots, \phi_i(f(V_{i_s})) = h(V_{i_s})

which implies that \(\phi_i(M_i(f)) = M_j(h). \text{ Notice that } h(V) = g(V) \text{ and } M_j(h) = M_j(g), \text{ it is evident that } \\
\phi_i : f(V) \cap V_i \rightarrow g(V) \cap V_j \text{ is an isomorphism satisfying } \phi_i(M_i(f)) = M_j(g).

Furthermore, we obtain the isomorphism \(\phi\) from \(f(V)\) onto \(g(V)\) determined by these \(\phi_i\) on \\
f(V) \cap V_i. \text{ Clearly, } \phi \text{ is a sum-preserving isomorphism as required.}

Conversely, suppose that there exists a sum-preserving isomorphism \(\phi : f(V) \rightarrow g(V)\) satisfying the condition of the theorem. \text{ Let } h = \phi f. \text{ Then } h \in L^{\oplus}(V), \text{ \(h(V) = g(V)\) and ker\(f) = \ker(h). \text{ Assume } W \in K(f) \text{ with } f(W) = f(V) \cap V_i \neq 0. \text{ Then there exists } j \text{ such that } \\
h(W) = \phi f(W) = \phi(f(V) \cap V_i) = g(V) \cap V_j = h(V) \cap V_j \subseteq V_j.

Notice that \(f(V_i) \neq 0\) for every \(V_i \subseteq W\) and that ker\(f) = \ker(h), \text{ it readily follows that } h(V_i) \neq 0 \text{ for every } V_i \subseteq W. \text{ Denote } W' = \oplus\{V_i : 0 \neq h(V_i) \subseteq V_j\}. \text{ Then } W' \in K(h) \text{ and } W \subseteq W'. \text{ Hence } \\
K(f) \text{ refines } K(h). \text{ Take } W^* \in K(h). \text{ Then there exists some } s, \text{ such that } \\
\phi f(W^*) = h(W^*) = h(V) \cap V_s = g(V) \cap V_s.

Since \(\phi\) is a sum-preserving isomorphism, there exists some \(t\) such that \\
\phi(f(W^*)) = g(V) \cap V_s = \phi(f(V) \cap V_i).

It follows that \(f(W^*) = f(V) \cap V_i\) and that \(W^*\) is contained in some \(W \in K(f)\). \text{ So } K(h) \text{ refines } \\
K(f) \text{ as well and } K(f) = K(h). \text{ Consequently, } f L h \text{ holds.}

Finally we verify that \(h \mathcal{R} g. \text{ As we have seen above that } h(V) = g(V). \text{ Now for each } V_i \text{ with } \\
g(V) \cap V_i \neq 0, \text{ there exists some } j \text{ such that } \phi(f(V) \cap V_j) = g(V) \cap V_i \text{ and } \phi(M_j(f)) = M_i(g). \text{ Then } \\
h(V) \cap V_i = \phi f(V) \cap V_i = g(V) \cap V_i = \phi(f(V) \cap V_j),

which together with ker\(f) = \ker(h) \text{ and } K(f) = K(h) \text{ implies that } M_i(h) = \phi(M_j(f)) = M_i(g) \text{ and } \\
h \mathcal{R} g. \text{ Consequently, } f \mathcal{D} g \text{ follows and the proof is completed.} \quad \Box

Now we consider the final Green relation \(J\) on the semigroup \(L^{\oplus}(V)\).

Theorem 2.6 \text{ Let } f, g \in L^{\oplus}(V). \text{ Then } f J g \text{ if and only if there exist sum-preserving isomorphisms } \\
\phi : f(V) \rightarrow g(V) \text{ and } \psi : g(V) \rightarrow f(V),

\text{such that for each } i, \text{ there exist } p, q \text{ such that } f(V_i) \subseteq \psi(g(V_p)), g(V_i) \subseteq \phi(f(V_q)).
Proof Suppose \(f \mathcal{J} g \). Then there exist \(h, k, u, v \in L^\oplus(V) \) such that \(hfk = g \) and \(ugv = f \). Thus, \(uhfkv(V) = f(V) \). Since \(fkv(V) \) is a subspace of \(f(V) \) and

\[
\dim f(V) = \dim uhfkv(V) \leq \dim fkv(V) \leq \dim f(V),
\]

we have \(\dim fkv(V) = \dim f(V) \) and \(fkv(V) = f(k(V) = f(V)) \). Similarly, \(g(V) = gv(V) \). Consequently, from \(h(f(V)) = h(k(V)) = g(V) \) we see that \(\dim g(V) \leq \dim f(V) \). By symmetry, \(\dim f(V) \leq \dim g(V) \). Thus, \(\dim f(V) = \dim g(V) \) and \(f(V) \) is isomorphic to \(g(V) \). Let \(\phi = h|f(V) \) and \(\psi = u|g(V) \). Then \(\phi : f(V) \to g(V) \) and \(\psi : g(V) \to f(V) \) are isomorphisms. Next we verify that both \(\phi \) and \(\psi \) are sum-preserving. Suppose

\[
f(V) = V'_1 \oplus V'_2 \oplus \cdots \oplus V'_{t}, \quad \text{and} \quad g(V) = V'_1 \oplus V'_2 \oplus \cdots \oplus V'_{s},
\]

where \(V'_p = f(V) \cap V_{ip}, \ 1 \leq p \leq t \) and \(V'_q = g(V) \cap V_jq, 1 \leq q \leq s \). Since \(h \) is sum-preserving, for each \(p \) there exists a unique \(q \) such that \(\phi(V'_{ip}) \subseteq V'_{jq} \). Notice that \(\phi \) is surjective, it must be the case that \(t \geq s \). By symmetry, \(s \geq t \) and \(t = s \). Thus, \(\phi(V'_{ip}) = V'_{jq} \) and \(\phi \) maps different \(V'_{ip} \) into different \(V'_{jq} \) isomorphically. Hence \(\phi \) is a sum-preserving isomorphism. Similarly, \(\psi \) is sum-preserving isomorphism as well.

Now for each \(i \), there exists some \(p \) such that \(v(V_i) \subseteq V_p \). Then \(f(V_i) = ugv(V_i) \subseteq ugv(V_p) = \psi(g(V_p)) \). By symmetry, there exists \(q \) such that \(g(V_i) \subseteq \phi(f(V_q)) \), and the necessity follows.

Conversely, suppose the condition holds and we need to show that \(f \mathcal{J} g \). We first look for some \(h, k \in L^\oplus(V) \) such that \(hfk = g \). For each \(i \), if \(g(V_i) = 0 \), then define \(k(x) = 0 \) for every \(x \in V_i \). If \(g(V_i) \neq 0 \), choose a basis \(e_1, \ldots, e_r, e_{r+1}, \ldots, e_n \) for \(V_i \) such that \(g(e_{r+1}) = 0, \ldots, g(e_n) = 0 \) and \(g(e_1), \ldots, g(e_r) \) are linearly independent. By hypothesis, there exists \(V_q \) such that \(g(V_i) \subseteq \phi(f(V_q)) \). Take linearly independent vectors \(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_r \) in \(V_q \) such that

\[
g(e_1) = \phi f(e_1), g(e_2) = \phi f(e_2), \ldots, g(e_r) = \phi f(e_r).
\]

Define a linear mapping \(k \) from \(V_i \) into \(V_q \) such that

\[
k(e_1) = \varepsilon_1, k(e_2) = \varepsilon_2, \ldots, k(e_r) = \varepsilon_r, k(e_{r+1}) = 0, \ldots, k(e_n) = 0.
\]

One easily verifies that \(g(x) = \phi f k(x) \) holds for each \(x \in V_i \). Thus, these \(k \) defined on each \(V_i \) determine uniquely a linear transformation \(k \) of \(V \). Clearly, \(k \in L^\oplus(V) \) and \(g(x) = \phi f k(x) \) for each \(x \in V \).

Now we define the linear transformation \(h \). For each \(V_j \) with \(V_j \cap f(V) = 0 \), define \(h(x) = 0 \) for every \(x \in V_j \). For those \(V_j \) with \(f(V) \cap V_j \neq 0 \), since \(\phi \) is sum-preserving, there exists some \(l \) such that \(\phi(f(V) \cap V_j) = g(V) \cap V_l \). Take a basis \(e_1, \ldots, e_r \) for \(f(V) \cap V_j \) and extend this to a basis

\[
e_1, \ldots, e_r, e_{r+1}, \ldots, e_n
\]

for \(V_j \). Define a linear mapping \(h \) from \(V_j \) into \(V_l \) such that

\[
h(e_1) = \phi(e_1), \ldots, h(e_r) = \phi(e_r), h(e_{r+1}) = 0, \ldots, h(e_n) = 0.
\]

Then one routinely verifies that \(h|(f(V) \cap V_j) = \phi|(f(V) \cap V_j) \). Consequently, there exists a unique linear transformation \(h \) on \(V \) determined by these linear mappings \(h \) defined on each
V. Clearly, $h \in L^{\oplus}(V)$, \(h f(V) = \phi\) and $g(x) = \phi f k(x) = h f k(x)$ holds for arbitrary $x \in V$. Consequently, $g = h f k$. By symmetry, there exist $u, v \in L^{\oplus}(V)$ such that $u g v = f$ and it follows that $f J g$.

It is well-known that $D \subseteq J$ for every semigroup. In what follows, we will soon see that $D = J$ for the semigroups $L^{\oplus}(V)$.

Suppose $f, g \in L^{\oplus}(V)$ and $f J g$. Assume that

$$f(V) = V_{i_1}' \oplus V_{i_2}' \oplus \cdots \oplus V_{i_s}' , \quad g(V) = V_{j_1}' \oplus V_{j_2}' \oplus \cdots \oplus V_{j_r}'$$

and $\phi : f(V) \rightarrow g(V), \psi : g(V) \rightarrow f(V)$ are both sum-preserving isomorphisms satisfying the condition in Theorem 2.6. Then we have the following two lemmas.

Lemma 2.7 There exists a positive integer r such that $(\psi \phi)^r : f(V) \rightarrow f(V)$ is a sum-preserving isomorphism such that

$$(\psi \phi)^r(V_{i_k}') = V_{i_k}' \quad \text{and} \quad (\psi \phi)^r(M_{i_k}(f)) = M_{i_k}(f)$$

holds for each k ($1 \leq k \leq s$).

Proof It is clear that $\psi \phi : f(V) \rightarrow f(V)$ is a sum-preserving isomorphism and for each i_k, there exists a unique i_k' such that

$$\psi \phi(V_{i_k}') = V_{i_k}' , \quad k = 1, 2, \ldots, s.$$

Thus, $\psi \phi$ induces a permutation ρ of the set \(\{i_1, i_2, \ldots, i_s\}\) where

$$\rho = \begin{pmatrix} i_1 & i_2 & \cdots & i_s \\ i_1' & i_2' & \cdots & i_s' \end{pmatrix}.$$

By the property of permutations, there exists a positive integer r such that ρ^r is the identity permutation of the set \(\{i_1, i_2, \ldots, i_s\}\). Let $\xi = (\psi \phi)^r$. Then $\xi : f(V) \rightarrow f(V)$ is a sum-preserving isomorphism satisfying $\xi(V_{i_k}') = V_{i_k}' , \quad k = 1, 2, \ldots, s$.

In order to show the remainder, we assume $M_{i_1}(f) = M_1 \cup M_2 \cup \cdots \cup M_u$, where $M_r (1 \leq r \leq u)$ is the collection of those A in $M_{i_1}(f)$ with $\dim A = m_r$, and $m_1 > m_2 > \cdots > m_u \geq 1$. By Theorem 2.6, for each $A \in M_{i_1}(f)$ there is some p such that $A \subseteq \psi(g(V_p))$. While there is some q such that $g(V_p) \subseteq \phi(f(V_q))$. Hence $A \subseteq \psi(f(V_q))$. Repeating the discussion, there exists some $p(A)$ ($1 \leq p(A) \leq m$) such that

$$A \subseteq (\psi \phi)^r(f(V_{p(A)})) = \xi(f(V_{p(A)})).$$

Since ξ is sum-preserving and $\xi(V_{i_1}') = V_{i_1}'$, one routinely verifies that $f(V_{p(A)}) \subseteq V_{i_1}'$.

We first verify

$$\{f(V_{p(A)}) : A \in M_1\} = M_1.$$ \hspace{1cm} (2.7.2)

Suppose $A \in M_1$. Then $\dim f(V_{p(A)}) \leq m_1$ since m_1 is the maximal dimension of the elements in $M_{i_1}(f)$. Now by (2.7.1), we have

$$\dim f(V_{p(A)}) \geq \dim A = m_1.$$
Therefore, \(\dim f(V_{p(A)}) = m_1 \) and \(f(V_{p(A)}) \in M_1 \). Thus, \(\{f(V_{p(A)}) : A \in M_1\} \subseteq M_1 \). From (2.7.1) it follows that \(A = \xi(f(V_{p(A)})) \) for each \(A \in M_1 \). Notice that \(\xi \) is a sum-preserving isomorphism and that \(M_1 \) is a finite set, it is clear that (2.7.2) holds. Consequently, we have \(\xi(M_1) = M_1 \).

Next we verify that
\[
\{f(V_{p(B)}) : B \in M_2\} = M_2. \tag{2.7.3}
\]
Suppose \(B \in M_2 \). By (2.7.1) again, we have \(\dim f(V_{p(B)}) \geq \dim B = m_2 \). If \(\dim f(V_{p(B)}) > m_2 \), then there exists \(A \in M_1 \) such that \(f(V_{p(B)}) \subseteq A \). Consequently,
\[
B \subseteq \xi(f(V_{p(B)})) \subseteq \xi(A) \in M_1,
\]
which contradicts the hypothesis that \(B \) is a maximal element in \(P_1(f) \). Hence \(\dim f(V_{p(B)}) = m_2 \) and \(B = \xi(f(V_{p(B)})) \). While \(f(V_{p(B)}) \) cannot be contained in any element of \(M_1 \). Consequently, \(f(V_{p(B)}) \subseteq M_2 \) for each \(B \in M_2 \) and (2.7.3) follows. While we also have \(\xi(M_2) = M_2 \). Go on in this way, we can finally get
\[
\{f(V_{p(A)}) : A \in M_1\} = M_1 \text{ and } \xi(M_i) = M_i, \quad i = 1, 2, \ldots, u.
\]
Furthermore, \(M_i(f) = \xi(M_i(f)) \) holds. One similarly verifies that \(M_i_k(f) = \xi(M_i_k(f)) \) holds for \(k = 2, \ldots, s \). The proof is completed. \(\square \)

Lemma 2.8 Let \(\theta = \phi(\psi\phi)^{-1} \). Then \(\theta : f(V) \to g(V) \) is a sum-preserving isomorphism. Moreover, if \(\theta(V_{i_k}) = V'_{j_k} \), then \(M_{j_k}(g) = \theta(M_{i_k}(f)) \).

Proof \(\theta \) is clearly a sum-preserving isomorphism and \(\xi = \psi \theta \). Denote
\[
M_{i_k}(f) = M_1 \cup M_2 \cup \cdots \cup M_u \text{ and } M_{j_k}(g) = N_1 \cup N_2 \cup \cdots \cup N_v,
\]
where \(\dim B = m_r \) for each \(B \in M_r \) (\(1 \leq r \leq u \)) and \(\dim A = n_t \) for each \(A \in N_t \) (\(1 \leq t \leq v \)) with \(m_1 > m_2 > \cdots > m_u \geq 1 \) and \(n_1 > n_2 > \cdots > n_v \geq 1 \). Suppose \(\theta(V_{i_k}) = V'_{j_k} \), then
\[
\psi(V'_{j_k}) = \psi(\theta(V'_{i_k})) = \xi(V'_{i_k}) = V'_{i_k}.
\]
For each \(A \in M_{j_k}(g) \) there exists some \(p \) such that \(f(V_p) \subseteq V'_{i_k} \) and \(A \subseteq \theta(f(V_p)) \). Moreover, there exists some \(B \in M_{i_k}(f) \) with \(f(V_p) \subseteq B \). Consequently,
\[
A \subseteq \theta(f(V_p)) \subseteq \theta(B). \tag{2.8.1}
\]
By Theorem 2.6, for this \(B \) there exists some \(q \) such that \(B \subseteq \psi(g(V_q)) \) and it is clear that \(g(V_q) \subseteq V'_{j_k} \). Thus there is \(A' \in M_{j_k}(g) \) such that \(g(V_q) \subseteq A' \). Hence we have
\[
B \subseteq \psi(g(V_q)) \subseteq \psi(A'). \tag{2.8.2}
\]
Suppose \(A \in N_1 \). Then \(\dim A = n_1 \). By (2.8.1) and (2.8.2), we have
\[
n_1 = \dim A \leq \dim B \leq \dim A' \leq n_1
\]
and \(\dim B = n_1 = \dim A' \). Notice that \(B \in M_{i_k}(f) \), so \(\dim B \leq m_1 \) and \(n_1 \leq m_1 \). Conversely, suppose \(B \in M_{i_k}(f) \) and \(\dim B = m_1 \). From the discussion above, there exist \(q \) and some
A' ∈ M_{jk}(g) such that B ⊆ ψ(g(V'_i)) ⊆ ψ(A'). Hence
\[m_1 = \dim B ≤ \dim A' ≤ n_1 \]
and \(m_1 = n_1 \). Thus, (2.8.1) implies that \(A = \theta(B) \) and that every element \(A ∈ N_1 \) is an image of some \(B ∈ M_1 \) under the isomorphism \(\theta \). Consequently, \(|M_1| ≥ |N_1| \). Similarly, from (2.8.2), for each \(B ∈ M_1 \) there exists \(A' ∈ N_1 \) such that \(B = \psi(A') \), so \(|M_1| ≤ |N_1| \). Therefore, \(|M_1| = |N_1| \) and \(\theta(M_1) = N_1 \).

Now suppose \(A ∈ N_2 \). By (2.8.1) again, there exists \(B ∈ M_{ik}(f) \) such that \(A ⊆ θ(B) \). If \(B ∈ M_1 \), then there is some \(A' ∈ N_1 \) such that \(A ⊆ θ(B) = A' \) which contradicts the fact that \(A \) is maximal. Thus, it must be the case that \(B /∈ M_1 \) and \(\dim(B) < m_1 \). While from (2.8.2) we see that there exists some \(A' ∈ M_{jk}(g) \) such that \(B ⊆ ψ(A') \). If \(\dim A' = n_1 (= m_1) \), since \(θ(M_1) = N_1 \), then there exists some \(B' ∈ M_1 \) such that \(A' = θ(B') \). Therefore there exists some \(B'' ∈ M_1 \) such that \(B ⊆ ψ(A') ⊆ ψ(θ(B')) = B'' \) holds, contradicting the fact that \(B \) is maximal. So \(\dim A' < n_1 (= m_1) \) and
\[n_2 = \dim A ≤ \dim B ≤ \dim A' ≤ n_2. \]

Consequently, \(\dim B = n_2 \), \(A = θ(B) \) and \(n_2 = m_2 \). Similarly, we have \(|N_2| = |M_2| \) and \(θ(M_2) = N_2 \). Repeating the discussion above, we finally obtain that
\[u = v, \ |N_i| = |M_i|, \ θ(M_i) = N_i, \ n_i = m_i, \ i = 1, 2, \ldots, u. \]
Consequently, \(M_{jk}(g) = θ(M_{ik}(f)) \) holds. The proof is completed. \(\square \)

By Lemma 2.8 and Theorem 2.5, we can prove the following

Theorem 2.9 In the semigroup \(L^0(V), D = J \).

Proof We only need to show that \(J ⊆ D \). Suppose \((f, g) ∈ J \). From Theorem 2.6, there exist sum-preserving isomorphisms \(φ : f(V) → g(V) \) and \(ψ : g(V) → f(V) \) satisfying the condition in Theorem 2.6. Let \(ξ = (ψφ)^{-1} \). By Lemma 2.7, \(ξ : f(V) → f(V) \) is a sum-preserving isomorphism satisfying that \(ξ(V'_{ik}) = V'_{ik}, ξ(M_{ik}(f)) = M_{ik}(f) \) (1 ≤ k ≤ s). Denote \(θ = φ(ψφ)^{-1} \). By Lemma 2.8, \(θ : f(V) → g(V) \) is a sum-preserving isomorphism and if \(θ(V'_{ik}) = V'_{ik}, \) then \(M_{jk}(g) = θ(M_{ik}(f)) \). Thus \(θ \) satisfies the condition of Theorem 2.5, hence \((f, g) ∈ D \) and \(J = D \) holds. \(\square \)

3. Regular elements in \(L^0(V) \)

In this section we consider the condition under which an element in \(L^0(V) \) is regular and when the semigroup \(L^0(V) \) is a regular semigroup. And then we investigate the Green’s relations for regular elements in the semigroup \(L^0(V) \).

For \(f ∈ L^0(V) \), denote \(\text{Fix}(f) = \{ x ∈ V : f(x) = x \} \). The following result is routinely verified and the proof is omitted.

Lemma 3.1 Let \(f ∈ L^0(V) \). Then \(f \) is idempotent if and only if \(f(V) = \text{Fix}(f) \).

Lemma 3.2 Suppose \(f ∈ L^0(V) \) is an idempotent. Then for each \(W ∈ K(f) \) there exits some
Let \(V_i \subseteq W \) such that \(f(V_i) = f(W) = V_i \cap f(V) \).

Proof Suppose \(f(W) = V_i \cap f(V) \). Then for each \(x \in V_i \cap f(V) \), by Lemma 3.1, \(x = f(x) \in f(V_i) \) which implies that \(V_i \cap f(V) \subseteq f(V_i) \). Hence \(0 \neq f(V_i) \subseteq V_j \) for some \(j \). Notice that \(V_i \cap f(V) \subseteq f(V_i) \) and \(V_i \cap f(V) = f(V_i \cap f(V)) \subseteq V_j \), so \(V_i = V_j \). Consequently, \(f(V_i) \subseteq V_i \) and \(f(V_j) = V_i \cap f(V) \). While \(V_i \subseteq W \) follows from the definition of \(K(f) \). \(\square \)

Theorem 3.3 Let \(f \in L^\oplus(V) \). Then \(f \) is regular if and only if for each \(i \) with \(V_i \cap f(V) \neq 0 \) there exists some \(j \) such that \(f(V_j) = V_i \cap f(V) \).

Proof If \(f \) is regular, then there exists an idempotent \(g \) in \(L^\oplus(V) \) such that \(fLg \). By Theorem 2.1 we have \(\ker(f) = \ker(g) \) and \(K(f) = K(g) \). Take a subspace \(V_i \) such that \(V_i \cap f(V) \neq 0 \). Then there exists \(W \in K(f) = K(g) \) such that \(f(W) = V_i \cap f(V) \). By Lemma 3.2, we can choose \(V_j \subseteq W \) such that \(g(V_j) = g(W) = V_j \cap g(V) \). Now \(\ker(f) = \ker(g) \) and \(g(V_j) = g(W) \) implies that \(f(V_j) = f(W) = V_i \cap f(V) \) and the necessity holds.

Now suppose that \(f \) satisfies the condition and we shall find some idempotent \(g \) such that \(fLg \) which of course implies that \(f \) is regular. We first define \(g \) on each \(W \in K(f) \). By hypothesis, there exist \(i \) and \(j \) such that \(V_i \subseteq W \) and \(V_j \subseteq W \). Take a basis \(\{e_u\} \) for \(V_i \) and \(\{e'_u\} \) for \(V_j \) such that \(f(e'_u) = e_u \) for each \(u \). Then \(\{e'_u\} \) is linearly independent. Extend this to a basis \(\{e_u\} \cup \{d_v\} \) for \(W \). Then \(f(d_v) = 0 \) for each \(v \). Now define a linear mapping \(g : W \to V_j \) such that \(g(e'_u) = e'_u \) for each \(u \) and \(g(d_v) = 0 \) for each \(v \). For those \(V_i \) (if exists) with \(f(V_i) = 0 \), define \(g(x) = 0 \) for each \(x \in V_i \). Thus, we have defined the linear transformation \(g \). It is obvious that \(g \in L^\oplus(V) \) and \(g^2 = g \). By definition of \(g \) it readily follows that \(K(f) = K(g) \) and \(\ker(f) = \ker(g) \). Consequently, \(fLg \) and \(f \) is regular in \(L^\oplus(V) \). \(\square \)

The following example tells us that the semigroup \(L^\oplus(V) \) is not, in general, a regular semigroup.

Example Let \(V = V_1 \oplus V_2 \oplus V_3 \) where \(V_1 \) has a basis \(e_1, e_2, \ldots, e_n \) \((n \geq 3)\), \(V_2 \) has a basis \(\alpha_1, \alpha_2, \ldots, \alpha_n \) and \(V_3 \) has a basis \(\beta_1, \beta_2, \ldots, \beta_n \). Define a linear transformation \(f : V \to V \) such that

\[
f(e_1) = f(\beta_1) = \alpha_1, f(\alpha_1) = f(e_1) = \alpha_2, f(\alpha_i) = f(\beta_i) = \alpha_3 \quad (\text{for } i \neq 1).
\]

Then \(f \in L^\oplus(V) \) and \(V_2 \cap f(V) = \langle \alpha_1, \alpha_2, \alpha_3 \rangle \). However, \(f(V_1) = \langle \alpha_1, \alpha_2 \rangle, f(V_2) = \langle \alpha_2, \alpha_3 \rangle \) and \(f(V_3) = \langle \alpha_1, \alpha_3 \rangle \). It is clear that there is no \(j \) \((1 \leq j \leq 3)\) satisfying \(V_2 \cap f(V) = f(V_j) \). By Theorem 3.3, \(f \) is not regular in the semigroup \(f \in L^\oplus(V) \).

Next we investigate when the semigroup \(L^\oplus(V) \) is a regular semigroup.

Theorem 3.4 The semigroup \(L^\oplus(V) \) is regular if and only if \(m = 1 \) or \(\dim V_i = 1 \) for each \(i \).

Proof If \(m = 1 \), then \(V = V_1 \) is an \(n \) dimensional space. Thus, \(L^\oplus(V) = L(V) \) is a regular semigroup. If \(\dim V_i = 1 \) for each \(i \), then \(V \) is a direct sum of \(m \) one dimensional spaces. Let \(f \in L^\oplus(V) \). If \(V_i \cap f(V) \neq 0 \), then we have \(V_i \cap f(V) = V_i \) since the subspace \(V_i \cap f(V) \) must be one dimensional. Notice that there must be some \(j \) such that \(0 \neq f(V_j) = V_i \), otherwise, we would
conclude that \(V_i \cap f(V) = 0 \), a contradiction. Consequently, we have \(f(V_j) = V_i \cap f(V) \neq 0 \). By Theorem 3.3, \(f \) is regular and \(L^{\oplus}(V) \) is a regular semigroup.

Conversely, suppose that \(m > 1 \) and \(n \geq 2 \). Take a basis \(e_1,e_2,\ldots,e_n \) for \(V_1 \), a basis \(g_1,g_2,\ldots,g_n \) for \(V_2 \). Define \(f : V \to V \) such that \(f(e_k) = e_1, f(g_k) = e_2 \) for each \(k \) and \(f(x) = 0 \) for any \(x \in V_s \) (\(s \neq 1,2 \)). Clearly, \(f \in L^{\oplus}(V) \) and \(f(V) = \langle e_1,e_2 \rangle \subseteq V_1 \). Thus, \(V_1 \cap f(V) = \langle e_1,e_2 \rangle \). However, there is no \(j \) satisfying \(V_1 \cap f(V) = f(V_j) \) which implies that \(f \) is not a regular element. Consequently, \(L^{\oplus}(V) \) is not a regular semigroup. \(\square \)

Finally, we describe Green’s equivalences for regular elements in the semigroups \(L^{\oplus}(V) \). We first make some observations.

Theorem 3.5 Let \(f,g \in L^{\oplus}(V) \) be regular. If \(\ker(f) = \ker(g) \), then \(K(f) = K(g) \).

Proof Suppose
\[
W = \oplus \{ V_i : 0 \neq f(V_i) \subseteq V_j \} \in K(f).
\]
Then \(f(W) = V_j \cap f(V) \). Since \(f \) is regular, by Theorem 3.3, there exists some \(l \) such that \(f(W) = V_j \cap f(V) = f(V_l) \). Suppose \(0 \neq g(V_i) \subseteq V_k \) for some \(k \). Denote
\[
U = \oplus \{ V_s : 0 \neq g(V_s) \subseteq V_k \}.
\]
By Theorem 3.3 again, there exists some \(u \) such that \(g(U) = V_k \cap g(V) = g(V_u) \). We claim that \(W = U \). Actually, from \(\ker(f) = \ker(g) \) one routinely verifies that, for each \(V_i \subseteq W \), \(f(V_i) \subseteq f(V) \) implies \(0 \neq g(V_i) \subseteq V_k \). Thus, \(V_i \subseteq U \) and \(W \subseteq U \) holds.

On the other hand, since \(g(V_u) = V_k \cap g(V) \) and \(g(V_i) \subseteq V_k \), we have \(g(V_i) \subseteq g(V_u) \) which together with \(\ker(f) = \ker(g) \) implies that \(f(V_i) \subseteq f(V_u) \). Therefore,
\[
f(V_i) = V_j \cap f(V) = f(V_u).
\]
By \(\ker(f) = \ker(g) \) again, we have \(g(V_i) = g(V_u) \). Now for each \(V_s \subseteq U \), we have \(0 \neq g(V_s) \subseteq g(V_i) \). Hence \(0 \neq f(V_s) \subseteq f(V_i) \). Thus, \(V_s \subseteq W \) and \(U \subseteq W \) holds. Consequently, \(U = W \) and \(K(f) \subseteq K(g) \). By symmetry, \(K(g) \subseteq K(f) \), so \(K(f) = K(g) \). \(\square \)

Theorem 3.6 Let \(f,g \in L^{\oplus}(V) \) be regular elements. If \(f(V) = g(V) \), then, for each \(i \), there exist \(j,k \) such that \(f(V_i) \subseteq g(V_j) \), \(g(V_i) \subseteq f(V_k) \).

Proof If \(f(V_i) = 0 \), then \(f(V_i) \subseteq g(V_j) \) holds for arbitrary \(j \). If \(0 \neq f(V_i) \subseteq V_i \), then
\[
V_i \cap g(V) = V_i \cap f(V) \neq 0.
\]
Since \(g \) is regular, there exists \(j \) such that \(V_i \cap g(V) = g(V_j) \). Consequently,
\[
f(V_i) \subseteq V_i \cap f(V) = V_i \cap g(V) = g(V_j).
\]
By symmetry, for each \(i \), there exists \(k \) such that \(g(V_i) \subseteq f(V_k) \). \(\square \)

As an immediate consequence of Theorems 2.1, 2.2 and 3.3, we have the following result.

Theorem 3.7 Let \(f,g \in L^{\oplus}(V) \) be regular elements. Then

1. \(f \not\leq g \) if and only if \(\ker(f) = \ker(g) \).
Finally, we observe the relation D for regular elements.

Theorem 3.8 Let $f, g \in L_{\oplus}(V)$ be regular elements. Then fDg if and only if there exists a sum-preserving isomorphism from $f(V)$ onto $g(V)$.

Proof Suppose fDg. Then there exists some $h \in L_{\oplus}(V)$ such that fLh and hRG. By Theorem 2.1, $\ker(f) = \ker(h)$ and $K(f) = K(h)$. While by Theorem 2.2, $h(V) = g(V)$. Denote $K(f) = \{W_1, \ldots, W_t\} = K(h)$. Denote $V_i' = f(W_i) = V_i \cap f(V)$ and $V_j' = h(W_j) = V_j \cap h(V)$, $1 \leq r \leq t$. Then

$$f(V) = V_1' \oplus V_2' \oplus \cdots \oplus V_t',$$

$$h(V) = V_1' \oplus V_2' \oplus \cdots \oplus V_t' = g(V).$$

By the proof of Theorem 2.5, there exists a sum-preserving isomorphism from $f(V)$ onto $h(V) = g(V)$.

Conversely, if there exists a sum-preserving isomorphism ϕ from $f(V)$ onto $g(V)$, define $h : V \to V$ by $h = \phi f$. Then it is clear that $h \in L_{\oplus}(V)$, $\ker(f) = \ker(h)$ and $K(f) = K(h)$. By Theorem 2.1, fLh. Hence h is also regular. While from the definition of h one easily verifies that $h(V) = g(V)$ and hRG follows from Theorem 3.7. Consequently, fDg holds. \square

References

