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Abstract Let V be a linear space over a field F' with finite dimension, L(V') the semigroup, under
composition, of all linear transformations from V into itself. Suppose that V =Vi@Va@--- BV,
is a direct sum decomposition of V, where Vi, Va,...,V,, are subspaces of V with the same
dimension. A linear transformation f € L(V) is said to be sum-preserving, if for each ¢ (1 <
i < m), there exists some j (1 < j < m) such that f(V;) C V. It is easy to verify that all
sum-preserving linear transformations form a subsemigroup of L(V') which is denoted by L% (V).
In this paper, we first describe Green’s relations on the semigroup L® (V). Then we consider
the regularity of elements and give a condition for an element in L% (V) to be regular. Finally,
Green’s equivalences for regular elements are also characterized.
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1. Introduction and preliminaries

Let X be an arbitrary set, 7x the full transformation semigroup on the set X and F be an
equivalence relation on X. The first author observed in [6] a class of transformation semigroups

determined by the equivalence F, namely
Tp(X) ={f €Tx :V(a,b) € E,(f(a), f(b)) € E}.

Tr(X) is obviously a subsemigroup of 7x. The common nature of all elements in Tg(X) is that
they preserve the decomposition induced by the equivalence E. In other words, all f € Tg(X)
satisfy the condition that for each F-class A there exists some F-class B such that f(A) C B.
In recent years, some properties for T (X) are investigated in many papers. For example, [7]
considered the Green’s equivalences, [9] and [10] discussed some subsemigroups of T (X ) inducing
certain lattices of equivalences on the set X, and [8] investigated the rank of Tg(X) for a special
case of X and F.

In this paper we examine a related semigroup defined as follows. Let V' be a linear space over

a field F and L(V) be the semigroup, under composition, of all linear transformations on the
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linear space V. Suppose that V = @&{V; : i € I}, where each V; is a subspace of V with |[I| > 2
and dimV; > 2 for each i. A linear transformation f € L(V) is called sum-preserving if for each
i € I, there exists some j € I such that f(V;) C V;. It is not hard to verify that if f and g are
sum-preserving, then so is fg. Consequently, all sum-preserving linear transformations form a
subsemigroup of L(V') which will be denoted by L®(V).

We notice that many conclusions for 7x have their parallelism for L(V). For example, in
1966, Howiel?! characterized the transformations in Tx that can be written as a product of finite

Bl and Dawlings!*!

number idempotents in 7y . Since then Erdos gave different proofs of the result
that when V is finite-dimensional, o € L(V) is a finite product of proper idempotents in L(V') if
and only if dim(a(V)) < dimV. Later in 1985, Reynolds and Sullivan!®! investigated the case of
infinite-dimensional spaces and obtained the results similar to Howie’s.

We may compare the elements in L% (V) with that in Tr(X) and find that all they are
transformations of a set (or a linear space) preserving some decomposition. Therefore, L (V)
can be regarded as the linear transformation version of the semigroup Tg(X).

In this paper, we are going to consider a special case for the direct sum decomposition,

namely, we assume dimV; =n > 2 for each i € I = {1,2,...,m} with m > 2 while
V=VieWhae --aV,, dimV,=n(1<i<m).

Here we focus our attention to Green’s equivalence relations and the regularity for the semi-
group L®(V). Accordingly, in Section 2, we describe five Green’s relations and conclude that
D = J. In Section 3, we consider the condition for an element f € L®(V) to be regular. By the
way, we describe the Green’s relations for regular elements in the semigroup L® (V).

In order to avoid repeat, in the remainder of the paper, the symbols V;,V;,V;,V; ... will
always denote certain subspaces in the direct sum decomposition V =V; & Vo ® - - - B V,, without
further mention. In addition, if we have defined a number of linear mappings f; : V; — Vi» where
i,4" € I, then there exists a unique linear transformation f € L®(V) satisfying f|V; = f;. Finally,
for convenience, we do not distinguish the zero vector 0 and the singleton set {0}. As we have
seen previously, we write f(V;) = 0 to mean f(V;) = {0}.

For standard concepts and notations in semigroup theory one can consult [1].

2. Green’s relations

In this section, we focus our attention on Green’s relations for the semigroup L¥ (V). We
begin with the relation £. Before stating the result, we need some notations.

Let f € L®(V) with V; N f(V) # 0. Denote W; = @&{V; : 0 # f(V;) C V;}. Then it is easy
to see that f(W;) = V; N f(V). Suppose that all the subspaces V; such that V; N f(V) # 0
are Vj,,Vj,,...,Vj,. Denote K(f) = {Wj,,...,W,,}. Denote by ker(f) the kernel of f, that is,
ker(f) ={z eV : f(z) =0}.

Theorem 2.1 Let f,g € L9(V). Then fLyg if and only if ker(f) = ker(g) and K(f) = K(g).
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Proof Suppose fLg. Then there exist u,v € L®(V), such that uf = g and vg = f. Hence
g(ker(f)) = uf(ker(f)) = u(0) = 0.
Thus, ker(f) C ker(g). Similarly, ker(g) C ker(f) and ker(f) = ker(g). Suppose that
K(f)={W;,,...,W;,} and K(g9)={Uy,..., Uy}
Without loss of generality, we may assume that w(V;,) C V;,. So
gWj,) = uf(Wj,) € u(Vy,) SV,

Clearly, g(V;) # 0 for each V; C W;,, since ker(f) = ker(g). Thus W;, C Uj,. Assume f(U;,) =
vg(Uy,) Cou(Vy,) CV, for some p. Notice that f =vg =vuf, f(W;,) CV; and

f(le) = ’qu(le) - vu(‘/jl) - v(Vll) - VP’

we have V,, = V;, and f(U;,) C Vj;,. By ker(f) = ker(g) again, f(V;) # 0 for each V; C Uj,.
Consequently, U;, C W, and W;, = U, holds. Similarly, one can verify that each W € K(f) is
equal to some U € K(g) and s = t. Therefore, K(f) = K(g) and the necessity follows.

In order to show the sufficiency, suppose ker(f) = ker(g) and K(f) = K(g). We must find
some u,v € L9 (V) satisfying uf = g and vg = f. Denote f; = f|V; and g; = g|V; (1 <i < m).
Then kerf; = kerg;. While for each W € K(f) = K(g), f[W and g|W are linear mappings and

ker(f|W) = ker(g|W). (2.1.1)

If V; N f(V) # 0, then there exists some W € K(f) = K(g) such that f(W) = V; n f(V),
gW) = Ving(V). Let f(W) =V] CV; and g(W) = V/ C V. From (2.1.1), V] and V/

have the same dimension. Without loss of generality, we may assume W =V, @V, @ --- d V;.

Take a basis e1,...,€pr,, € 41,-..,6n for Vi, a basis a1,...,0ry, @ryy1,..., 0 for Vo, ... abasis
Biy-osBrys Brit1s - -+, On for Vi, where e, 41, ..., ey, is a basis for ker(f1), apyt1, ..., @y is a basis
for ker(f2), ..., Bry+1,---,0n is a basis for ker(f;). Then {e;} U {a;} U---U{f;} is a basis

for W. While in the subspace VJ, f(e1),..., f(er,) are linearly independent, and so also are
flax), .., fary), ..., and f(B1),..., f(Br,). It is not difficult to see that

‘/j/ = <f(61)a ) f(eh)a f(al)a ) f(aT2)7 - '7f(61)a ) f(ﬂn»

Now we extend f(e1),..., f(er ) to obtain a basis for V/ by adding some f(as) (1 < s <
ra),..., and f(Bk) (1 <k <r;). Without loss of generality, we assume the basis is

f(el)v . '7f(67“1)7f(a1)7 . '7f(ap)7 . '7f(61)a ceey f(ﬁq) (212)
We claim that
gler),...,g(er ), g(cr), ..., 9(ap), .., 9(B1), ..., 9(8y) (2.1.3)

are linearly independent. Otherwise, suppose

71 P q
Y aigled) + Y biglag) +---+ > erg(Br) =0
i=1 j=1 k=1
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for some a;, b;,c, € F. Let
E=aier+ +ap ey +biar 4+ by + 1B+ By € WL

Then g(&) =0 and £ € W Nker(g) = W Nker(f). Hence

T1 p

0= &) =D aif(e) + Y bifla;)+--+> exf(Br)-
k=1

i=1 j=1 —
Notice that (2.1.2) is linearly independent, the above equation implies that
alz...:arl:blz...:bp:...zcl:...:Cq:()_

Thus, (2.1.3) are linearly independent, while being a basis for V}'.
Extend (2.1.2) to a basis B for V; and define a linear mapping u; : V; — V; such that

uj(f(el)) = 9(61), S uj(f(eh)) = g(eﬁ)a
uj(f(a1)) = glar), ... u;(f(op)) = g(ap),

ui(f(B1) = g(Br)s - -, ui(£(By)) = 9(By),

and for each n € B out of (2.1.2), let u;(n) = 0. For each V;, if V; N f(V) # 0, then define u;
on V; as above. If V; N f(V) = 0, then let u;(z) = 0 for each € V;. Thus, these u; uniquely
determine a linear transformation « on the linear space V. Obviously, u € L%(V).

Now we verify that uf = g. For each V; and x € V;, if f(x) = 0, then g(z) = 0 since
ker(f) = ker(g), and uf(x) = g(x) in this case. If f(z) # 0, then there exists some W € K (f)
such that V; C W. Without loss of generality, we assume

W=vieVe® &V,

then f(z) € f(W) = V] CV;. As above, we assume (2.1.2) to be a basis for V. Then

T1 P q
F@) = aif(e) + Y bif(ag)+-+ > crf(Br) = f(E),
i=1 j=1 k=1
where
§:a161+...+anerl +b1a1+"'+bpap+"'+clﬁ1+"'+Cqﬁq-

Since ker(f) = ker(g), we have g(x) = g(§). By the definition of v,

1 P q
wf(w) =u(Y_aif(e)+ Y _bif(ag) + -+ 3 el (B)) = 9(&) = g(x).
i=1 j=1 k=1
Thus, uf(x) = g(x) holds for every z € V;. Consequently, uf(x) = g(z) holds for every z € V
and uf = g. Similarly, one can find v € L®(V) such that vg = f. Therefore, fLg holds. o
Before describing the relation R on L® (V) some notations should be introduced. Let f €

L®(V). If V; N f(V) # 0, then there exists some V; such that 0 # f(V;) C V;. Denote
Bi(f) ={f(Vi) : 0 # f(Vi) € Vj}
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and define a partial order < on P;(f) by letting A < B if and only if A C B. Denote by M;(f)
the collection of all maximal elements in P;(f). Then for each ¢ with 0 # f(V;) C V}, there exists
some s such that f(V;) C f(Vs) € M;(f).

Now we can state and prove the conclusion for the relation R.

Theorem 2.2 Let f,g € L®(V). Then the following statements are equivalent:
(1) fRyg.
(2) For eachi (1 <1i <m) there exist j, k such that f(V;) C g(V;) and g(V;) C f(Vi).
(3) f(V)=g(V) and M;(f) = M;(g) holds for each j with V; N f(V) # 0.

Proof (1)==(2) Suppose fRg. Then there exist u, v € L®(V) such that fu = g and gv = f.
For each ¢, there exists some j such that v(V;) C V;. Consequently, f(V;) = gv(V;) C g(V;).
Similarly, there exists some k such that g(V;) C f(V%) holds.
(2)=(3) Tt is not difficult to see from (2) that f(V) C g(V) and g(V) C f(V), so f(V) =
). Suppose V; N f(V) # 0 and f(V;) € M;(f). Then there exist i1, i2 such that f(V;) C
Vi,) C f(Viy). From f(V;) C V; N f(Vi,), we see that f(Vi,) C V;. Since f(V;) € M;(f) and

g(v
g(
f(Vi) € f(Vi,), we have f(Vi,) = g(Vi,) = f(Vi). Take g(Vi;) € M;(g) such that g(V;,) € g(Viy,)-
By (2) again, there exists i4 such that ¢(V;,) C f(V;,). Thus,

fFVi) € g(Viy) € 9(Viy) € f(Via) CV;

which implies that f(V;,) = f(V;) = g(Vi,) € M;(g) and that M;(f) C M;(g). By symmetry, we
have M,;(g) C M;(f) and therefore M;(f) = M;(g) holds.

(3)==(1) Suppose that (V) = ¢g(V) and M;(f) = M;(g) holds for each j with V;nf (V) # 0.
We first look for some h € L¥(V) such that fh = g. For each V;, if g(V;) = 0, then define h(z) = 0
for each = € V;. If there is some j such that 0 # g(V;) C Vj, then there is some A € M,(g) =
M;(f) such that g(V;) € A. Denote g; = g|V; and assume A = f(V;) = ¢g(V;). Take a basis
€1y y€ryCril,... ey for V; where .41, ..., e, is a basis for ker(g;). Then g(e1), g(ez), ..., g(e;)
are linearly independent. Let fs = f|V; : Vo — V;. Choose €}, ¢5,..., el € Vs such that

fs(er) = gle1), fsler) = gle2),..., fs(er) = gler).
Then €}, €5,...,e. are linearly independent. Define a linear mapping h; : V; — V; such that
hi(e1) = €l,... hi(e,) =¢l., hile,41) =0,...,hi(e,) =0.
Then for each vector x = aje; + -+ + arer + argp16p41 + -+ + aney € Vi, we have
fhi(x) = f(arhi(er) +--- + arhi(er)) = f(are) +--- +are))
=a1f(e)) + - +arfle,) = argler) + - +arg(er)
=9g(z).

These h; defined on each V; determine a linear transformation A on V. It is obvious that
h € L®(V) and fh = g. By symmetry, there exists k € LP(V) such that gk = f holds.
Therefore, fRg. O
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As an immediate consequence of Theorems 2.1 and 2.2, we have the following

Theorem 2.3 Let f,g € L®(V). Then the following statements are equivalent:

(1) (f,9) € H.

(2) ker(f) = ker(g), K(f) = K(g) and for each i (1 < i < m), there exist j, k such that
fVi) € g(Vy), g(Vi) € f(Vi).

Let f € L®(V) and assume that all the subspaces V; with f(V)NV; # 0 are V;,, Vi,,..., Vi
Denote V! = f(V)NV,, (1 <t <s). Then one easily verifies that

s"

fVy=VieV,e oV
The following concept will be useful in describing the relations D and J on L®(V).

Definition 2.4 Let U and W be two subspaces of V' where
U:‘/iQGBVi;@'”@Vi/k and W:Vj/lggvj/z@'”@vj/k

and each V/ is a non-zero subspace of V;, while each V] is a non-zero subspace of V; . If
¢ : U — W is an isomorphism such that for each s (1 < s < k) there exists a uniquer (1 < r < k)
such that ¢(V/) = V] , then ¢ is called a sum-preserving isomorphism.

Suppose that f,g € LP(V) and ¢ : f(V) — g(V) is a sum-preserving isomorphism satisfying
o(Vin f(V)) =V;ng(V). If for each A € M;(g), there exists B € M;(f) such that ¢(B) = A,
while for each C' € M;(f) there exists D € M;(g) such that ¢(C) = D, then we write ¢(M;(f)) =
M;(g)-

Next we consider the condition for two elements in L (V') to be D equivalent.

Theorem 2.5 Let f,g € L®(V). Then fDg if and only if there exists a sum-preserving
isomorphism ¢ : f(V)) — g(V') such that for each i with f(V)NV; # 0, there exists some j such
that ¢(f (V) N Vi) = g(V) N V; and ¢(Mi(f)) = M;(g).

Proof Suppose fDg. Then there exists h € L®(V) such that f£h and hRg. From Theorems
2.1 and 2.2, we have ker(f) = ker(h), K(f) = K(h), h(V) = ¢g(V) and M;(h) = M;(g) holds for
each j with (V)N V; # 0.

We first establish the isomorphism ¢ from f (V) onto h(V'). Suppose f(V)NV; # 0. Take W €
K(f) = K(h) such that f(W) = f(V) N V;. Then there is some j such that h(W) = h(V) N V;.
Since ker(f) = ker(h), we have ker(f|W) = ker(h|W) and dimf (W)= dimh(W) which implies
that f(W) and h(W) are isomorphic. Take a basis ey, e, ..., e, for f(W) = f(V)NV; and choose

wy, Wa, ..., w, € W such that

flwr) = e, f(we) =ea,..., f(w.) =e,.

Then wy,ws,...,w, are linearly independent.
Let

el = h(w1), ey = h(ws), ..., e. = h(w,).

Then e}, e, ..., e are linearly independent while being a basis for h(W). Define a linear mapping
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¢i - f(V)NV; — h(V)NV; such that ¢;(e:) =e;, t =1,2,...,r. Then ¢; is an isomorphism and
¢if(z) = h(x) for each x € W. Suppose

M;i(f) ={f(Vi,), f(Vin), -, fF (Vi) }-
By virtue of ker(f) = ker(h), one routinely verifies that
M;(h) = {h(Vi,), h(Vi,), ..., h(Vi,)}.
Besides, since V;,, Vi,, ..., V;, are contained in W and ¢; f = h on W, we have

which implies that ¢;(M;(f)) = M;(h). Notice that h(V) = g(V) and M;(h) = M;(g), it is
evident that ¢; : f(V) NV, — ¢g(V) NV, is an isomorphism satisfying ¢;(M;(f)) = M;(g).
Furthermore, we obtain the isomorphism ¢ from f(V) onto g(V) determined by these ¢; on
Ff(V)NV;. Clearly, ¢ is a sum-preserving isomorphism as required.

Conversely, suppose that there exists a sum-preserving isomorphism ¢ : f(V) — g(V) sat-
isfying the condition of the theorem. Let h = ¢f. Then h € L®(V), h(V) = ¢g(V) and
ker(f) = ker(h). Assume W € K(f) with f(W) = f(V) NV, # 0. Then there exists j such that

h(W) = of (W) =¢(f(V)N Vi) =g(V)NV; = h(V)NV; C V.
Notice that f(V;) # 0 for every V; C W and that ker(f) = ker(h), it readily follows that h(V;) # 0

for every V; C W. Denote W' = @®{V; : 0 # h(V;) C V;}. Then W' € K(h) and W C W’. Hence
K(f) refines K (h). Take W* € K (h). Then there exists some s, such that

¢fW™) = h(W*) =h(V) N Ve =g(V)NVi.
Since ¢ is a sum-preserving isomorphism, there exists some ¢ such that

o(fW™)) =g(V) N Vs = o(f(V) N V).

It follows that f(W*) = f(V)NV, and that W* is contained in some W € K(f). So K(h) refines
K(f) as well and K(f) = K(h). Consequently, fLh holds.

Finally we verify that hRg. As we have seen above that h(V) = g(V). Now for each V; with
g(V)N'V; # 0, there exists some j such that ¢(f(V)NV;) =g(V)NV; and ¢(M;(f)) = Mi(g).
Then

h(V)NVi=of(V)NVi=g(V)NVi=o(f(V)NV)),

which together with ker(f) = ker(h) and K (f) = K(h) implies that M;(h) = ¢(M,(f)) = M;(g)
and hRg. Consequently, fDg follows and the proof is completed. O

Now we consider the final Green relation J on the semigroup L% (V).

Theorem 2.6 Let f,g € L®(V). Then fJg if and only if there exist sum-preserving isomor-
phisms

¢: f(V)—g(V) and ¢:g(V)— f(V),
such that for each i, there exist p,q such that f(V;) C ¢ (g9(V})), 9(Vi) C ¢(f(Vy))-
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Proof Suppose fJg. Then there exist h,k,u,v € L®(V) such that hfk = g and ugv = f.
Thus, uhfkv(V) = f(V). Since fkv(V) is a subspace of f(V) and

(
dimf (V) = dimuh fko(V) < dimfko(V) < dimf(V),

we have dimfkv(V) = dimf(V) and fko(V) = fk(V) = f(V). Similarly, g(V) = guv(V).
Consequently, from hf (V) = h(fk(V)) = g(V) we see that dimg(V) < dimf (V). By symmetry,
dimf(V) < dimg(V). Thus, dimf(V) = dimg(V) and f(V) is isomorphic to g(V). Let ¢ =
h|f(V) and ¢ = u|g(V). Then ¢ : f(V) — ¢g(V) and ¢ : g(V) — f(V) are isomorphisms. Next

we verify that both ¢ and i are sum-preserving. Suppose
fV) =V, eVie eV, mdgV)=V,aV,e eV,

where Vz’p =fV)nVv;,,1<p<tand Vj’q =g(V)NV;,,1 <q<s. Since h is sum-preserving,
for each p there exists a unique ¢ such that (b(‘/l’p) C V]’q Notice that ¢ is surjective, it must be
the case that t > s. By symmetry, s > t and t = s. Thus, gb(Vl’p) = Vj’q and ¢ maps different
V;’p into different Vj’q isomorphically. Hence ¢ is a sum-preserving isomorphism. Similarly, 1 is
sum-preserving isomorphism as well.

Now for each ¢, there exists some p such that v(V;) C V,,. Then f(V;) = ugv(V;) Cug(V,) =
¥(g(Vp)). By symmetry, there exists ¢ such that g(V;) C ¢(f(Vy)), and the necessity follows.

Conversely, suppose the condition holds and we need to show that fJ7g. We first look for
some h,k € LP(V) such that hfk = g. For each i, if g(V;) = 0, then define k(x) = 0 for
every x € V;. If g(V;) # 0, choose a basis e1,..., e, €r41,...,e, for V; such that g(e,+1) =
0,...,9(en) = 0 and g(e1),...,g(e,) are linearly independent. By hypothesis, there exists V,
such that ¢g(V;) C ¢(f(Vy)). Take linearly independent vectors €1, €3, ...,&, in V5 such that

gler) = of(e1), gle2) = df(e2), ..., g(er) = ¢ f(er).
Define a linear mapping k from V; into V; such that
k(e1) = e1,k(e2) = e2,..., kier) =er,k(er41) =0,...,k(en) = 0.

One easily verifies that g(z) = ¢fk(z) holds for each x € V;. Thus, these k defined on each V;
determine uniquely a linear transformation k of V. Clearly, k € L®(V) and g(x) = ¢fk(x) for
eachz e V.

Now we define the linear transformation h. For each V; with V; N f(V) = 0, define h(z) =0
for every x € V;. For those V; with f(V) NV, # 0, since ¢ is sum-preserving, there exists some
I such that ¢(f(V)NV;) = g(V)NV;. Take a basis e1,...,e, for f(V)NV; and extend this to a
basis

€1y €ry €rq1,...5€6n

for V;. Define a linear mapping h from Vj into V; such that

h(e1) = ¢(e1),. .., h(er) = ¢(er), hler41) =0,...,h(e,) = 0.
Then one routinely verifies that h|(f(V)NV;) = ¢|(f(V) NV;). Consequently, there exists a

unique linear transformation h on V determined by these linear mappings h defined on each



Green’s relations on a kind of semigroups of linear transformations 939

Vj. Clearly, h € L®(V), h|f(V) = ¢ and g(z) = ¢fk(z) = hfk(x) holds for arbitrary z € V.
Consequently, g = hfk. By symmetry, there exist u, v € L®(V) such that ugv = f and it follows
that fJg. O
It is well-known that D C J for every semigroup. In what follows, we will soon see that
D = J for the semigroups L®(V).
Suppose f,g € LP(V) and fJg. Assume that

fVy=Vviov,e eV, gV)=V, oV, oV,
and ¢ : f(V) — g(V), ¢ : g(V) — f(V) are both sum-preserving isomorphisms satisfying the

condition in Theorem 2.6. Then we have the following two lemmas.

Lemma 2.7 There exists a positive integer r such that (@) : f(V) — f(V) is a sum-

preserving isomorphism such that

(V)" (Vi) =V, and ()" (M;,(f)) = M;,(f)
holds for each k (1 < k < s).

Proof Tt is clear that ¢ : f(V) — f(V) is a sum-preserving isomorphism and for each i,

there exists a unique ) such that
VoV =V, k=12 s

Thus, ¥¢ induces a permutation p of the set {i1,1s,...,is} where

il ig . is
p= g . :
le 7/2 oo Z/S

By the property of permutations, there exists a positive integer r such that p” is the identity
permutation of the set {i1,i2,...,is}. Let £ = (¥¢)". Then & : f(V) — f(V) is a sum-preserving
isomorphism satisfying (V) =V/ , k=1,2,...,s.

In order to show the remainder, we assume M;, () = M1UMsU- - -UM,,, where M,.(1 < r < u)
is the collection of those A in M;, (f) with dimA = m,, and m; > mg > --- > m, > 1. By
Theorem 2.6, for each A € M;, (f) there is some p such that A C ¢(g(V},)). While there is some ¢
such that g(V,) C ¢(f(V;)). Hence A C ¥o(f(Vy)). Repeating the discussion, there exists some
p(4) (1 < p(A) < m) such that

AC (o) (f(Vpa))) = E(f (Vpa)))- (2.7.1)

Since ¢ is sum-preserving and &(V})) =
We first verify

!
917

one routinely verifies that f(V,a)) C V.

1

{f(Vpay) - A€ My} = M. (2.7.2)

Suppose A € M. Then dimf(V,4)) < m since m; is the maximal dimension of the elements
in M;, (f). Now by (2.7.1), we have

dimf(Vpa)) > dimA = m;.
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Therefore, dimf(V,4)) = m1 and f(Vpa)) € M1. Thus, {f(Vpa)) : A € My} € M;. From
(2.7.1) it follows that A = &(f(Vp(a))) for each A € M;. Notice that { is a sum-preserving
isomorphism and that M; is a finite set, it is clear that (2.7.2) holds. Consequently, we have
§(My) = M.
Next we verify that
{f(Vop)) : B € Ma} = M. (2.7.3)

Suppose B € M. By (2.7.1) again, we have dimf(V,(p)) > dimB = my. If dimf(V,p)) > ma,
then there exists A € M; such that f(V,p)) € A. Consequently,

B C&(f(Vyp))) CE(A) € My,

which contradicts the hypothesis that B is a maximal element in P;, (f). Hence dimf(V,,p)) = ma
and B = &(f(Vp())). While f(V,(p)) cannot be contained in any element of M;. Consequently,
f(Vy(B)) € My for each B € M and (2.7.3) follows. While we also have (M) = M. Go on in
this way, we can finally get

{f(Vp(A)) A€ Ml} = M,; and §(Mz) =M;, i=1,2,...,u.

Furthermore, M;, (f) = &(M;, (f)) holds. One similarly verifies that M;, (f) = £(M;, (f)) holds
for k =2,...,s. The proof is completed. O

Lemma 2.8 Let 0 = ¢(1¢)"" 1. Then 6 : f(V) — g(V) is a sum-preserving isomorphism.
Moreover, if 0(V; ) =V , then Mj, (g) = 0(M;, (f))-

Proof 0 is clearly a sum-preserving isomorphism and £ = ¢6. Denote
M;, (f) =My UM U--- UM, and M;,(9) = NyUN2U--- UN,,

where dimB = m,. for each B € M, (1 <r < u) and dimA = n; for each A € N; (1 <t <)
with my >mg > --- >m, >1and ny >ng >--- >n, > 1. Suppose 0(V;, ) =V , then

Jk?
W(Vj,) = ve(Vi,) = £(Vi) = V;,.

For each A € Mj, (g) there exists some p such that f(V,) C V; and A C 6(f(V,)). Moreover,
there exists some B € M;, (f) with f(V,) C B. Consequently,

ACO(f(V,)) CO(B). (2.8.1)

By Theorem 2.6, for this B there exists some ¢ such that B C v(g(V,)) and it is clear that
g(Vy) € Vj,_. Thus there is A" € Mj, (g) such that g(V,;) C A’. Hence we have

B C ¢(g(Vy)) S v(A). (2.8.2)
Suppose A € Ny. Then dimA = n;. By (2.8.1) and (2.8.2), we have
n1 = dimA < dimB < dimA’ < n;

and dimB = ny; = dimA’. Notice that B € M;, (f), so dimB < m; and n; < m;. Conversely,
suppose B € M, (f) and dimB = m;. From the discussion above, there exist ¢ and some
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A’ € M;, (g) such that B C 9(g(V;)) € ¥(A"). Hence
mq = dimB < dimA’ < ny

and my; = ny. Thus, (2.8.1) implies that A = §(B) and that every element A € N; is an image of
some B € M; under the isomorphism 6. Consequently, |M;| > |Ny|. Similarly, from (2.8.2), for
each B € M; there exists A’ € N such that B = ¢(A’), so |M;| < |Ny|. Therefore, |M;| = |N1|
and O(My) = Ny.

Now suppose A € Na. By (2.8.1) again, there exists B € M;, (f) such that A C (B). If
B € M;, then there is some A’ € Ny such that A C §(B) = A’ which contradicts the fact that
A is maximal. Thus, it must be the case that B ¢ M7 and dim(B) < m;. While from (2.8.2)
we see that there exists some A" € Mj, (g) such that B C ¢(A’). If dimA’ = ny (= m4), since
6(My) = Ny, then there exists some B’ € My such that A’ = 6(B’). Therefore there exists some
B" € My such that B C ¢(A") C ¢0(B’) = B” holds, contradicting the fact that B is maximal.
So dimA’ < ny (= mq) and

ne = dimA < dimB < dimA’ < ns.

Consequently, dimB = ng, A = 6(B) and ny = mo. Similarly, we have |Na| = |Mz| and
6(Ms) = Na. Repeating the discussion above, we finally obtain that

u=v, |N;| = [M;], O(M;) = N, nj =my, i=1,2,...,u.

Consequently, M, (g) = 0(M;,(f)) holds. The proof is completed. O

By Lemma 2.8 and Theorem 2.5, we can prove the following
Theorem 2.9 In the semigroup L®(V), D = 7.

Proof We only need to show that J C D. Suppose (f,g) € J. From Theorem 2.6, there exist
sum-preserving isomorphisms ¢ : f(V) — g(V) and ¢ : (V) — f(V) satisfying the condition in
Theorem 2.6. Let £ = (¢¢)". By Lemma 2.7, £ : f(V) — f(V) is a sum-preserving isomorphism
satisfying that £(V, ) = V/' , €(M;, (f)) = My, (f) (1 < k < s). Denote 6 = ¢(1)¢)"~'. By Lemma
2.8, 0 : f(V) — g(V) is a sum-preserving isomorphism and if 6(V/) = V/ , then M; (g) =
0(M;, (f)). Thus 0 satisfies the condition of Theorem 2.5, hence (f,g) € D and J = D holds. O

3. Regular elements in L#(V)

In this section we consider the condition under which an element in L®(V) is regular and
when the semigroup L®(V) is a regular semigroup. And then we investigate the Green’s relations
for regular elements in the semigroup L¥(V).

For f € L®(V), denote Fix(f) = {z € V : f(z) = z}. The following result is routinely

verified and the proof is omitted.
Lemma 3.1 Let f € L9(V). Then f is idempotent if and only if f(V) = Fix(f).

Lemma 3.2 Suppose f € L9 (V) is an idempotent. Then for each W € K (f) there exits some
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Vi © W such that f(V;) = f(W) =Vin f(V).

Proof Suppose f(W) =V, N f(V). Then for each z € V; N f(V), by Lemma 3.1, z = f(z) €
f(Vi) which implies that V; N f(V) C f(Vi). Hence 0 # f(V;) C V; for some j. Notice that
Vin£(V) € £(Vi) and Vi1 £(V) = £(Vi £(V)) € Vj, s0 Vi = V;. Consequently, £(Vi) C Vi and
f(Vi))=V;n f(V). While V; C W follows from the definition of K (f). O

Theorem 3.3 Let f € L®(V). Then f is regular if and only if for each i with V; N f(V) # 0
there exists some j such that f(V;) =V; N f(V).

Proof If f is regular, then there exists an idempotent g in L®(V) such that f£g. By Theorem
2.1 we have ker(f) = ker(g) and K(f) = K(g). Take a subspace V; such that V; N f(V) # 0.
Then there exists W € K(f) = K(g) such that f(W) = V;N f(V). By Lemma 3.2, we can choose
V; C W such that g(V;) = g(W) = V; Ng(V). Now ker(f) = ker(g) and ¢g(V;) = g(W) implies
that f(V;) = f(W) =V, N f(V) and the necessity holds.

Now suppose that f satisfies the condition and we shall find some idempotent g such that fLg
which of course implies that f is regular. We first define g on each W € K(f). By hypothesis,
there exist ¢ and j such that V; C W and f(V;) = f(W) = V; N f(V). Take a basis {e,} for
Vinf(V) and choose e}, € V; such that f(e],) = e, for each u. Then {e/,} is linearly independent.
Extend this to a basis {e, }U{d, } for W. Then f(d,) = 0 for each v. Now define a linear mapping
g : W — Vj such that g(e],) = e}, for each u and g(d,) = 0 for each v. For those V; (if exists)
with f(V;) = 0, define g(z) = 0 for each = € V;. Thus, we have defined the linear transformation
g of V. Tt is obvious that ¢ € L®(V) and g*> = g. By definition of g it readily follows that
K(f) = K(g) and ker(f) = ker(g). Consequently, fLg and f is regular in L% (V). O

The following example tells us that the semigroup L®(V) is not, in general, a regular semi-
group.
Example Let V =V & Vo ® V5 where V7 has a basis e1,ea,...,¢e, (n > 3), V2 has a basis

a1,Qe,...,a, and Vs has a basis 01, 02, ..., On. Define a linear transformation f : V — V such
that

fler) = f(B1) = an, flan) = flei) = aa, flai) = f(Bi) = a3 (for i # 1).

Then f € L®(V) and Vo N f(V) = (a1, ag, as). However, f(V1) = (a1, as), f(V2) = (as, as)
and f(V3) = (a1, as). It is clear that there is no j (1 < j < 3) satisfying Vo N f(V) = f(V;). By
Theorem 3.3, f is not regular in the semigroup f € L¥(V).

Next we investigate when the semigroup L®(V) is a regular semigroup.
Theorem 3.4 The semigroup L® (V) is regular if and only if m = 1 or dimV; = 1 for each i.

Proof If m =1, then V = V; is an n dimensional space. Thus, L®(V) = L(V) is a regular
semigroup. If dimV; = 1 for each 4, then V is a direct sum of m one dimensional spaces. Let
FeL®WV). IfV;n f(V) # 0, then we have V; N f(V) = V; since the subspace V; N f(V) must be

one dimensional. Notice that there must be some j such that 0 # f(V;) = V;, otherwise, we would
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conclude that V; N f(V) = 0, a contradiction. Consequently, we have f(V;) =V; N f(V) # 0. By
Theorem 3.3, f is regular and L%(V) is a regular semigroup.

Conversely, suppose that m > 1 and n > 2. Take a basis ey, es,...,e, for V1, a basis
91,92, --,gn for Vo. Define f : V — V such that f(ex) = e1, f(gr) = ea for each k and
f(z) =0 for any z € V5 (s # 1,2). Clearly, f € L®(V) and f(V) = (e1,e2) C V4. Thus,
V1N f(V) = (e1,e2). However, there is no j satisfying V4 N f(V) = f(V;) which implies that f
is not a regular element. Consequently, L (V) is not a regular semigroup. O

Finally, we describe Green’s equivalences for regular elements in the semigroups L® (V). We

first make some observations.
Theorem 3.5 Let f,g € L®(V) be regular. If ker(f) = ker(g), then K(f) = K(g).

Proof Suppose
W =a{Vi:0# f(Vi) C V;} € K(f).

Then f(W) = V; N f(V). Since f is regular, by Theorem 3.3, there exists some ! such that
fV)=V;n f(V) = f(V). Suppose 0 # g(V;) C Vj, for some k. Denote

U=&{V::0#g(Ve) S Vit

By Theorem 3.3 again, there exists some u such that g(U) = Vi Ng(V) = g(V,,). We claim
that W = U. Actually, from ker(f) = ker(g) one routinely verifies that, for each V; C W,
f(Vi) € f(Vi) implies 0 # g(V;) € g(Vi) € Vi. Thus, V; CU and W C U holds.
On the other hand, since g(V,,) = Vi Ng(V) and ¢(V;) C Vi, we have g(V;) C g(V,,) which
together with ker(f) = ker(g) implies that f(V;) C f(V,,). Therefore,
fV) =V;nf(V) = f(Va).

By ker(f) = ker(g) again, we have g(V}) = g(V,,). Now for each V; C U, we have 0 # g(V;) C
g(Vi). Hence 0 # f(Vs) C f(V;). Thus, Vo C W and U C W holds. Consequently, U = W and
K(f) € K(g). By symmetry, K(g) € K(f), so K(f) = K(g). O

Theorem 3.6 Let f, g € L®(V) be regular elements. If f(V) = g(V'), then, for each i, there
exist j, k such that f(V;) C g(V;), g(Vi) C f(Vk).

Proof If f(V;) =0, then f(V;) C g(V;) holds for arbitrary j. If 0 # f(V;) C V}, then
Ving(V)=Vin f(V) #0.
Since g is regular, there exists j such that V; N g(V) = ¢g(V;). Consequently,
fVy cevinf(v)y=ving(V) = g(V;).

By symmetry, for each i, there exists k such that g(V;) C f(Vi). O

As an immediate consequence of Theorems 2.1, 2.2 and 3.3, we have the following result.

Theorem 3.7 Let f,g € L®(V) be regular elements. Then
(1) fLg if and only if ker(f) = ker(g).
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(2) fRg if and only if f(V) = g(V).

Finally, we observe the relation D for regular elements.

Theorem 3.8 Let f, g € L®(V) be regular elements. Then fDg if and only if there exists a

sum-preserving isomorphism from f(V') onto g(V).

Proof Suppose fDg. Then there exists some h € L®(V) such that fLh and hRg. By Theorem
2.1, ker(f) = ker(h) and K(f) = K(h). While by Theorem 2.2, h(V) = g(V). Denote K(f) =
{Wi,...,Wi} = K(h). Denote V/ = f(W,) =V, N f(V)and V] = h(W,) = V; Nh(V),
1 <r <t Then

V)=V, eV, eV,

V)=V eV & eV, =gV).

By the proof of Theorem 2.5, there exists a sum-preserving isomorphism from f(V') onto A(V) =
g(V).

Conversely, if there exists a sum-preserving isomorphism ¢ from f(V) onto g(V), define
h:V — V by h = ¢f. Then it is clear that h € L®(V), ker(f) = ker(h) and K(f) = K(h).
By Theorem 2.1, fLh. Hence h is also regular. While from the definition of i one easily verifies
that h(V) = g(V) and hRg follows from Theorem 3.7. Consequently, fDg holds. O
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