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Abstract This paper studies coupled nonlinear diffusion equations with more general nonlin-

earities, subject to homogeneous Neumann boundary conditions. The necessary and sufficient
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1. Introduction

In this paper, we consider the following coupled nonlinear diffusion system


































ut = ∆ϕ(u) + f(v)g1(u), x ∈ Ω, t > 0,

vt = ∆ψ(v) + f1(v)g(u), x ∈ Ω, t > 0,

∂ϕ(u)

∂η
=
∂ψ(v)

∂η
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain of R
N with smooth boundary ∂Ω; η is the exterior normal vector

on ∂Ω; nonnegative and nondecreasing functions f1, g1, f , g, ϕ, ψ ∈ C([0,∞)) satisfy f1g1 > 0

for s ≥ 0 and f(s)g(s)ϕ(s)ψ(s) > 0 for s > 0 with ϕ(0) = ψ(0) = 0; initial data u0, v0 ∈ C(Ω̄)

are positive and satisfy the compatibility conditions on the boundary. It is observed that the

nonlinear diffusion system (1.1) possesses more general nonlinearities, and covers many models

from population dynamics, chemical reactions, heat transfer, etc., where u and v represent the

densities of two biological populations during a migration, the thickness of two kinds of chemical

reactants, the temperatures of different materials during a propagation, etc.

Lair[6] considered (1.1) with f1 ≡ g1 ≡ 1, and obtained that classical solutions exist if and
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only if
∫

∞ 1

g(K−1(J(s)))
ds = ∞, or

∫

∞ 1

f(J−1(K(s)))
ds = ∞, (1.2)

where J−1, K−1 are the inverse functions of J(s) =
∫ s

0 f(ξ)dξ, K(s) =
∫ s

0 g(ξ)dξ, respectively.

Moreover, criteria (1.2) also can be used to the existence of generalized solutions. The scalar

problem of (1.1) was discussed in [7].

There are some results on general scalar parabolic equations. Zhang[10] studied the parabolic

equation βt(u) = Lu + f(u) with boundary condition ∂u
∂η

+ σ(x, t)b(u) = 0 on ∂Ω, where Lu =

aij(x)uij + biui is uniformly elliptic; positive functions β ∈ C3([0,+∞)), f ∈ C2([0,+∞)), and

b ∈ C1([0,+∞)); nonnegative σ ∈ C1(Ω̄× [0, T )). The criteria on global and non-global solutions

were obtained with some estimates in time.

For the system with localized terms, Chadam, Peirce, and Yin[3] considered the parabolic

equation ut = ∆u + f(u(x0, t)) with homogeneous Neumann boundary condition. They deter-

mined the conditions for non-global solutions with blow-up set and growth estimates in time.

As for critical blow-up exponents and blow-up rates to semilinear parabolic equations with ho-

mogeneous Dirichlet boundary conditions, one can refer to, e.g.,[8,11]. Much more interesting

results on critical blow-up exponents for various evolution equations can be found in [4] and the

literature cited therein.

In this paper, we will establish the optimal existence criteria for the generalized solutions of

the coupled nonlinear diffusion system (1.1) with more general nonlinearities to extend the main

results in [6,7]. We will state the main results of the paper in Section 2, and then prove them in

Section 3.

2. Main Results

Let (un, vn) be a classical solution of the following nonlinear diffusion system


































un,t = ∆ϕn(un) + fn(vn)g1,n(un), x ∈ Ω, t > 0,

vn,t = ∆ψn(vn) + f1,n(vn)gn(un), x ∈ Ω, t > 0,

∂ϕn(un)

∂η
=
∂ψn(vn)

∂η
= 0, x ∈ ∂Ω, t > 0,

un(x, 0) = u0,n(x), vn(x, 0) = v0,n(x), x ∈ Ω,

(2.1)

where fn, gn, ϕn, ψn, f1,n, g1,n ∈ C∞([0,+∞)) are nonnegative and increasing functions with

f1,ng1,n > 0 for s ≥ 0 and fn(s)gn(s)ϕn(s)ψn(s) > 0 for s > 0, ϕn(0) = ψn(0) = 0; u0,n, v0,n ∈

C∞(Ω̄) are nonnegative. The solution sequence {(un, vn)} of (2.1) is a sequence of approximating

solutions to (1.1) if, for any compact subset S ⊂ [0,+∞),

lim
n→∞

(‖fn − f‖∞,S + ‖gn − g‖∞,S + ‖f1,n − f‖∞,S + ‖g1,n − g‖∞,S) = 0,

lim
n→∞

(‖ϕn − ϕ‖∞,S + ‖ψn − ψ‖∞,S) = 0,

lim
n→∞

(‖u0,n − u0‖∞,Ω̄ + ‖v0,n − v0‖∞,Ω̄) = 0.

Definition 1 We call (u, v) a generalized solution of (1.1) if there exists a sequence {(un, vn)}
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of (2.1), satisfying supn{‖un‖∞,Ω×(0,T ) + ‖vn‖∞,Ω×(0,T )} < +∞ and converging to (u, v) weakly

in L
1(Ω × (0, T )) norm for every T > 0.

Let (y, z) be a classical solution of






y′(t) = 2f(z)g1(y), z
′(t) = 2f1(z)g(y), t > 0,

y(0) = z(0) = M = ‖u0‖∞ + ‖v0‖∞ + 1.
(2.2)

For convenience, we introduce some functions as follows,

F (s) =

∫ s

0

f(ξ)

f1(ξ)
dξ, G(s) =

∫ s

0

g(ξ)

g1(ξ)
dξ,

F̃ (z) = F (z) +G(M) − F (M), G̃(y) = G(y) −G(M) + F (M),

H(y(t)) =

∫ y(t)

M

ds

2g1(s)f(F−1(G̃(s)))
= t, Q(z(t)) =

∫ z(t)

M

ds

2f1(s)g(G−1(F̃ (s)))
= t.

We state the main results of the paper, namely, the necessary-sufficient conditions for the

existence of generalized solutions to (1.1), and the growth rate estimates for the solutions.

Theorem 1 System (1.1) has a nonnegative generalized solution (u, v) if and only if
∫

∞ 1

f1(s)g(G−1(F (s)))
ds = ∞, or

∫

∞ 1

g1(s)f(F−1(G(s)))
ds = ∞, (2.3)

where F−1, G−1 are the inverse functions of F , G, respectively. Moreover,

0 ≤ u(x, t) ≤ H−1(t), 0 ≤ v(x, t) ≤ Q−1(t), (2.4)

where H−1, Q−1 are the inverse functions of H , Q, respectively.

Remark 1 Obviously, (2.3) is an optimal condition for generalized solutions to the nonlinear

diffusion equations (1.1), corresponding to the so called critical global existence exponents. For

example, if g1(u) = um, f(v) = vp, f1(v) = vn, g(u) = uq, ϕ(u) = u, ψ(v) = v, then (2.3)

becomes pq ≤ (m− 1)(n− 1), a well known criterion for global solutions[8,11].

Remark 2 From Theorem 1, one can check that the criteria (2.3) is independent of the diffusion

terms in nonlinear diffusion equations, subject to homogeneous Neumann boundary conditions,

which extends the results of [6,7].

3. Proof of Theorem 1

Using approximating methods[2], we prove Theorem 1 by three steps. The first step deals

with the following ordinary differential system
{

y′(t) = f(z(t))g1(y(t)), z′(t) = f1(z(t))g(y(t)), t > 0,

y(0) = a ≥ 0, z(0) = b ≥ 0, a+ b > 0.
(3.1)

Proposition 1 System (3.1) has a nonnegative classical solution (u, v) if and only if (2.3) is

true.

Proof Assume that system (3.1) has a classical solution y = y(t). Let a > 0. It follows from
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system (3.1) that d
dt

[G(y) − F (z)] = 0. Hence, G(y) = F (z) + G(a) − F (b). It is easy to check

that the inverse functions F−1, G−1 exist. So, y = G−1(F (z) +G(a) − F (b)). If b > 0, we have

∫ z(t)

b

ds

f1(s)g(G−1(F (s) +G(a) − F (b)))
= t. (3.2)

The conclusion (2.3) can be obtained by letting t→ ∞ in (3.2). In fact, since z′(t) ≥ f1(b)g(a) >

0, we have z(t) → ∞ as t→ ∞. If b = 0, we find some δ > 0 satisfying z(δ) > 0 and obtain (3.2)

with b replaced by z(δ). Then (2.3) holds also by letting δ → 0.

Now assume (2.3) is true. Without loss of generality, suppose a > 0. Define

F̃ (s) =

∫ s

b

f(ξ)

f1(ξ)
dξ, G̃(s) =

∫ s

a

g(ξ)

g1(ξ)
dξ, H(s) =

∫ s

a

dσ

g1(σ)f(F̃−1(G̃(σ)))
.

It can be checked from (2.3) that H : [a,∞) → [0,∞) has an inverse function. Define y(t) =

H−1(t) : [0,∞) → [a,∞) and z(t) = F̃−1(G̃(y(t))). A simple computation shows that (y, z) is a

classical solution to (3.1).

The second step deals with the classical solutions of approximating system (2.1) by the similar

method used in [6]. For simplicity, we still use f , g, ϕ, ψ, f1, g1, u0, v0 to denote fn, gn, ϕn,

ψn, f1,n, g1,n, u0,n, v0,n in (2.1), respectively.

Proposition 2 System (2.1) has a nonnegative classical solution (u, v) if and only if (2.3) holds.

Moreover, (u, v) satisfies (2.4).

Proof At first we prove that (2.3) is necessary. Let (u, v) be a nonnegative classical solution of

(2.1). Take T0 > 0 such that infΩ×[T0,∞) min{u, v} ≥ a > 0. Let (y, z) be a nonnegative solution

of the following ordinary differential system










y′(t) =
1

2
f(z)g1(y), z

′(t) =
1

2
f1(z)g(y), T0 < t < t0,

y(T0) = z(T0) =
a

2
,

(3.3)

where t0 = sup
{

τ | the solution of (3.3) exists for t ∈ [T0, τ)
}

.

If t0 = ∞, then (2.3) holds by Theorem 1. If t0 <∞, we claim that

y(t) < u(x, t), z(t) < v(x, t), (x, t) ∈ Ω̄ × [T0, t0). (3.4)

Otherwise, there would exist some (x̃, T ) ∈ Ω̄× (T0, t0) such that at least one of the inequalities

in (3.4) fails.

Define W (x, t) = u(x, t) − εξ(x) and Z(x, t) = v(x, t) − εξ(x), where ξ ∈ C2(Ω̄) satisfies
∂ξ
∂η

|∂Ω < 0 and ξ ≥ 1 on Ω̄, and ε > 0 so small that ξ(x) < m0

2ε
,

−ϕ′(s)∆ξ(x) − εϕ′′(s)|∇ξ(x)|2 ≤
m0

4ε0
, and − ψ′(s)∆ξ(x) − εψ′′(s)|∇ξ(x)|2 ≤

m0

4ε0

with m0 = min
{

a, f1(
a
2 )g(a

2 ), f(a
2 )g1(

a
2 )

}

and s ∈ [0, s0], s0 = maxΩ̄×[T0,T ]{u+ v}. It is easy to

check that W (x, T0) > y(T0), Z(x, T0) > z(T0), x ∈ Ω̄. Define

t1 = sup
{

τ ∈ [T0, T ] | W (x, t) > y(t), Z(x, t) > z(t), (x, t) ∈ Ω̄ × [T0, τ ]
}

.
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Then, for example, W (x, t1) ≥ y(t1) for x ∈ Ω̄, Z(x0, t1) = z(t1) = minΩ̄ Z(·, t1) for some x0 ∈ Ω̄.

Due to ∂(Z−z)
∂η

|∂Ω×(T0,t1) > 0, we know x0 /∈ ∂Ω, and thus ∇Z(x0, t1) = 0, ∆Z(x0, t1) ≥ 0. At

the point (x0, t1), we obtain a contradiction that

0 ≥ Zt − z′ = vt − z′ = ∆ψ(v) + g(u)f1(v) −
g(y)f1(z)

2

≥ εψ′(v)∆ξ + ε2ψ′′(v)|∇ξ|2 + g(u)f1(v) −
g(y)f1(z)

2

≥ −
m0

4
+
g(a/2)f1(a/2)

2
> 0.

This concludes (3.4). Hence the solutions of (3.3) can be extended to t > t0, which contradicts

the definition of t0. We have t0 = ∞, and hence (2.3) holds by Proposition 1.

Now, assume that (2.3) holds. Obviously, the system (2.1) admits a local classical solution

(u, v) in Ω̄× [0, T0). In fact, by introducing the regularized systems of (2.1) with ϕ(u) and ψ(v)

replaced by ϕ(u) + 1/m and ψ(v) + 1/m, one can obtain a local classical solution of (2.1) as the

limit of the approximating solutions of the regularized systems as m→ +∞[9].

Let (y, z) be the classical solution of (2.2). Due to (2.3), (y, z) remains bounded for any time

T ′ < +∞. So, it suffices to prove that

u(x, t) < y(t), v(x, t) < z(t), (x, t) ∈ Ω̄ × (0, T ′). (3.5)

Otherwise, there would exist some (x0, T ) ∈ Ω̄× (0, T ′) such that at least one of the two inequal-

ities in (3.5) fails. Set p(x, t) = u(x, t) + εξ(x), q(x, t) = v(x, t) + εξ(x), (x, t) ∈ Ω× [0, T ], where

ξ is defined as above, and ε is so small that

ξ(x) <
1

ε
, (3.6)

−ϕ′(s)∆ξ(x) + εϕ′′(s)|∇ξ(x)|2 ≤
M0

ε0
, (3.7)

−ψ′(s)∆ξ(x) + εψ′′(s)|∇ξ(x)|2 ≤
M0

ε0
(3.8)

with M0 = min{f1(M)g(M), f(M)g1(M)}, s ∈ [0, s0] and s0 = maxΩ̄×[0,T ]{u + v}. By (3.6),

there exists τ0 ∈ (0, T0] such that, e.g., maxx∈Ω̄ p(x, τ0) = y(τ0) and maxx∈Ω̄ q(x, τ0) ≤ z(τ0). De-

fine t0 = sup
{

τ ∈ [0, T ] | p(x, t) ≤ y(t), q(x, t) ≤ z(t), (x, t) ∈ Ω̄×[0, τ ]
}

. Then maxx∈Ω̄ p(x, t0) =

y(t0) and maxx∈Ω̄ q(x, t0) ≤ z(t0). Followed by ∂(p−y)
∂η

= ε ∂ξ
∂η

< 0, there exists an x0 ∈ Ω such

that ∇p(x0, t0) = 0 and ∆p(x0, t0) ≤ 0. By (3.7) and (3.8), we obtain a contradiction at

(x, t) = (x0, t0) that

0 ≤ pt − y′ = −εϕ′(s)∆ξ(x) + ε2ϕ′′(s)|∇ξ(x)|2 + f(v)g1(u) − 2f(z)g1(y) < 0.

This yields T0 = ∞, namely, the system (2.1) admits global solutions.

At last, we prove the growth rates for the global solution (u, v) of (2.1). We have shown

u(x, t) ≤ y(t), v(x, t) ≤ z(t) for (x, t) ∈ Ω̄ × [0,+∞). It only needs to give the growth rates of

(y, z). By using the similar arguments for the proof of Proposition 1, we obtain that

Q(z(t)) =

∫ z(t)

z(0)

1

2f1(s)g(G−1(F̃ (s)))
ds = t.
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One can check that Q−1 exists since Q′(s) > 0. We conclude the growth rate estimate 0 ≤

v(x, t) < z(t) = Q−1(t) (and also 0 ≤ u(x, t) < y(t) = P−1(t) in the same way) for (x, t) ∈

Ω̄ × [0,+∞).

Now we deal with the generalized solutions of (1.1) to prove Theorem 1. The proof is

motivated by [2, 6].

Proof of Theorem 1 At first we prove that (2.3) is necessary for generalized solutions of (1.1).

Let (u, v) be a generalized solution of (1.1) with approximating solution sequence {(un, vn)},

satisfying system (2.1) and supn

{

‖un‖L∞(Ω×(0,T )) + ‖vn‖L∞(Ω×(0,T ))

}

< +∞ for all T > 0.

Since (u0, v0) is positive and {(u0,n, v0,n)} converges uniformly on Ω̄, there exists some pos-

itive constant a such that min{un, vn} > a on Ω̄. Similarly to the proof of Proposition 1 with

T0 = 0, we obtain that yn(t) ≤ un(x, t), zn(t) ≤ vn(x, t), (x, t) ∈ Ω̄ × [0,+∞), where (yn, zn)

solves (3.3) with f, g, f1, g1 replaced by fn, gn, f1,n, g1,n, respectively. Hence,

yn(t) + zn(t) ≤ sup
k

{‖uk‖∞,Ω×(0,T ), ‖vk‖∞,Ω×(0,T )} < +∞, n ∈ N, 0 ≤ t ≤ T. (3.9)

Since fn, gn, f1,n, g1,n converge uniformly on compact subsets of [0,+∞) to f , g, f1, g1, respec-

tively, (yn(t), zn(t)) converges to (y(t), z(t)) uniformly on compact subsets of [0, t0), where t0

represents the maximal existence time of (3.3). Clearly, (y(t), z(t)) satisfies (3.9) too, and hence

t0 = +∞. By Proposition 1, condition (2.3) holds.

Now consider the sufficient condition for generalized solutions of (1.1). Assume that (2.3)

holds. By using mollifiers and the properties of f , g, ϕ, ψ, f1, g1, u0, v0, one can construct

sequences {fn}, {gn}, {ϕn}, {ψn}, {f1,n}, {g1,n}, {u0,n}, {v0,n} in (2.1), respectively. Further-

more, choose {fn}, {gn}, {ϕn}, {ψn}, {f1,n}, {g1,n}, for each n, to satisfy (2.3) with f , g, f1,

g1 replaced by fn, gn, f1,n, g1,n, respectively. Let (un, vn) be the solution of system (2.1), and

(yn, zn) be the solution of






y′n(t) = 2fn(zn)g1,n(yn), z′n(t) = 2f1,n(zn)gn(yn), 0 < t < +∞,

yn(0) = zn(0) = M = sup
n
{‖u0,n‖∞ + ‖v0,n‖∞} + 1.

(3.10)

Similarly to the discussion for Proposition 2, we have 0 ≤ un(x, t) ≤ yn(t), 0 ≤ vn(x, t) ≤ zn(t),

(x, t) ∈ Ω × [0,+∞). Since (yn, zn) converges to (y, z) locally, we know that (yn, zn) is bounded

locally so that supn

{

‖un‖L∞(Ω×(0,T )) + ‖vn‖L∞(Ω×(0,T ))

}

< +∞ for any 0 < T < +∞. By the

diagonal process, one can choose the subsequence of {(un, vn)}, which converges to (u, v) weakly

in L
1(Ω × (0, T )) norm for every T > 0. Therefore, (u, v) is the generalized solution of system

(1.1) by Definition 1.

By Proposition 2, we obtain that

0 ≤ un(x, t) ≤ H−1
n (t), 0 ≤ vn(x, t) ≤ Q−1

n (t), (x, t) ∈ Ω̄ × [0,+∞), (3.11)

where H−1
n , Q−1

n are the inverse functions of

Hn(yn(t)) =

∫ yn(t)

yn(0)

ds

2g1,n(s)fn(F−1
n (G̃n(s)))

= t,
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Qn(zn(t)) =

∫ zn(t)

zn(0)

ds

2f1,n(s)gn(G−1
n (F̃n(s)))

= t,

respectively; (yn, zn) satisfies (3.10). Similarly to the approximating process above, one can

obtain that Hn(yn(t)) and Qn(zn(t)) converge to H(y(t)) and Q(z(t)) in L
1(Ω × (0, t)) norm,

respectively. Then by (3.11), we have the growth rate estimates in (2.4).
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