
Journal of Mathematical Research & Exposition

Nov., 2009, Vol. 29, No. 6, pp. 1035–1040

DOI:10.3770/j.issn:1000-341X.2009.06.011

Http://jmre.dlut.edu.cn

Hopf Ore Extension over Dihedral Group

CHENG Qing Song1, DONG Wen Juan2, SHA Kai Ping2

(1. School of Science, Huaihai Institute of Technology, Jiangsu 222005, China;

2. School of Mathematics, Yangzhou University, Jiangsu 225002, China)

(E-mail: qingsongcheng@sina.com)

Abstract In this paper, the Hopf Ore extension and corresponding module extension of the

group algebra over dihedral group are studied. It turns out that the 1-dimensional and 2-

dimensional simple representations can both be extended to the simple representations over a

class of Hopf Ore extension.
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1. Introduction

The general theory of the Ore extension is firstly introduced in [1]. The method of the Ore

extension commenced in ring theory to construct a class of noncommutative rings, that is, skew

polynomial ring. In recent literatures, the idea of the Ore extension theory was widely applied,

especially in the theory of quantum group. In [2], Panov studied some classes of the Hopf Ore

extension over Hopf algebra. It turns out that one may add (1, r)-primitive element to Hopf

algebra, and then obtain a new Hopf algebra. In addition, Panov gave the relation between Hopf

Ore extension and 1-cocycle algebra over the group Hopf algebra. Based on [2], in this paper,

we continue to study the related problem about the Hopf Ore extension of the group algebra

over dihedral group. Firstly, we introduce the explicit relation between the Hopf Ore extension

and 1-cocycle, and then classify the set of 1-cocycle over the group algebra kDn over dihedral

group Dn. Secondly, we give explicitly the Hopf algebra structure of the Hopf Ore extension of

kDn. Finally, we prove that the 1-dimensional simple representations and 2-dimensional simple

representations can both be extended to some classes of Hopf Ore extension over kDn.

Throughout this paper, we assume that Hopf algebra is over the complex field k = C. We

denote the multiplication by m, the unit by µ, and the comultiplication by ∆, the counit by ǫ,

and the antipode by s. We denote the set of group-like elements by G(H) for any Hopf algebra

H . The basic notations and simple facts about Hopf algebra can be referred to [3] and [4].
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2. Hopf Ore extension

In this section, we shall recall some basic facts about the Hopf Ore extension. Let A be a

k-algebra. Consider an endomorphism σ of and a σ-derivation δ of the algebra A. This means

that δ(k) = 0 and

δ(ab) = σ(a)δ(b) + δ(a)b,

for any a, b ∈ A.

The Ore extension R = A[x, σ, δ] of the k-algebra A is the k-algebra R generated by the

variable x and the algebra A with the relation

xa = σ(a)x + δ(a), ∀a ∈ A.

It is easy to see that every element can uniquely be represented as
∑

λix
i, where λ ∈ k[5].

Definition 2.1 Let A and R = A[x, σ, δ] be Hopf algebras over k. The Hopf algebra R =

A[x, σ, δ] is called the Hopf-Ore extension if ∆(x) = x⊗ 1 + r ⊗ x and A is a Hopf subalgebra in

R, where r is a group-like element in G(H).

Remark If R = A[x, σ, δ] is a Hopf-Ore extension, it is easy to get ǫ(x) = 0 and s(x) = −r−1x.

The following theorem and proposition are the basic facts about the general theory of the

Hopf Ore extension and the proof can be found in [2].

Theorem 2.2 Let A be Hopf algebra, σ be an endomorphism of the algebra A, δ be a σ-

derivation. Then the Hopf algebra R = A[x, σ, δ] is a Hopf-Ore extension of A if and only if the

following conditions are satisfied for any a ∈ A:

(1) There is a character χ : A → k such that

σ(a) =
∑

χ(a1)a2;

(2) The following relation holds:
∑

χ(a1)a2 =
∑

adr(a1)χ(a2),

where adr(a) = rar−1;

(3) The σ-derivation δ satisfies the relation

∆(δ(a)) =
∑

δ(a1) ⊗ a2 + ra1 ⊗ δ(a2).

Let G be a group, A = kG be the group algebra, and χ be a character over kG. Then the

linear form α : kG → k is determined by the values α(g), g ∈ G. We say that α is a 1-cocycle

associated with χ, if α satisfies the following condition

α(gh) = α(g) + χ(g)α(h), ∀g, h ∈ G.

We denote by Z1
χ(G) the set of all 1-cocycle associated with χ over kG.

Proposition 2.3 Let A = kG be a group Hopf algebra. Then every Hopf-Ore extension of
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A = kG is of the form A[x, σ, δ], where σ(a) =
∑

χ(a1)a2, δ is a σ-derivation of the form

δ(a) =
∑

α(a1)(1 − r)a2,

for some α ∈ Z1
χ(G), where χ is a group character and r is an element in the center of the group

G.

3. 1-cocycle over kDn

In this section, we describe explicitly the set of all 1-cocycle over kDn. For n ∈ N, let

Dn = 〈a, b|an = b2 = (ab)2 = 1〉 be the 2n order dihedral group. Assume that n is an even

number and n ≥ 2. It is well-known that Dn has the following four linear representations over

k = C:

χ1(a) = χ1(b) = 1, χ2(a) = 1, χ2(b) = −1,

χ3(a) = −1, χ3(b) = 1, χ4(a) = −1, χ4(b) = −1.

And we also know that the center of Dn is {1, aν}, where n = 2ν.

Lemma 3.1 Let χi(i = 1, 2, 3, 4) be the trivial character of kDn. Then we have

(1) Z1
χ1

(Dn) = 0,

(2) Z1
χ2

(Dn) = k,

(3) Z1
χ3

(Dn) = k,

(4) Z1
χ4

(Dn) = k.

Proof (1) Let g ∈ Dn. Notice that the order of g is finite, hence there exists an m ∈ N such that

gm = 1. For any α ∈ Z1
χ1

(Dn), it is easy to see that χ1(g) = 1, α(1) = 0 and α(g2) = 2α(g). By

induction, we have α(gm) = mα(g), so we get that α(g) = 0.

(2) Let α ∈ Z1
χ2

(Dn). Note that an = 1 and χ2(a) = 1, it follows that α(a) = 0 by using the

proof of Lemma 3.1. And also we have

α(b2) = α(b) + χ2(b)α(b) = 0.

Thus, we have

α(ab) = α(b) = α(ban−1),

so, there exists λ ∈ k such that α(b) = λ. Conversely, for any λ ∈ k, we set

α(ai) = 0, α(aib) = λ, 0 ≤ i ≤ n − 1.

Then it can be easily proved that α ∈ Z1
χ2

(Dn). Thus, we have that Z1
χ2

(Dn) = k.

(3) Let α ∈ Z1
χ3

(Dn). Note that b2 = 1 and χ3(b) = 1, it follows that α(b) = 0 by using the

proof of (1). And also we have

α(ai) =

{

0, i is even,

α(a), i is odd,

and

α(aib) =

{

0, i is even,

α(a), i is odd.
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Thus, there exists λ ∈ k such that α(a) = λ. Conversely, for any λ ∈ k, we set

α(ai) =

{

0, i is even,

λ, i is odd.

And

α(aib) =

{

0, i is even,

λ, i is odd.

Then it can be easily proved that α ∈ Z1
χ3

(Dn). Thus, we have that Z1
χ3

(Dn) = k.

(4) Let α ∈ Z1
χ4

(Dn). Note that an = 1 and χ4(a) = −1, it follows that

α(ai) =

{

0, i is even,

α(a), i is odd.

From the relation (ba)2 = 1, we have

0 = α(1) = α((ba)2) = α(ba) + χ(ba)α(ba) = 2α(ba) = 2(α(b) − α(a)),

and hence α(a) = α(b). Thus, there exists λ ∈ k such that α(a) = α(b) = λ. Conversely, for any

λ ∈ k, we set

α(ai) =

{

0, i is even,

λ, i is odd,
α(aib) =

{

λ, i is even,

0, i is odd.

Then it can be easily proved that α ∈ Z1
χ4

(Dn). Therefore, the assertion follows.

At the end of this section, let n = 2ν + 1 be odd. We know that kDn has two linear

representations:

ρ1(a) = ρ1(b) = 1, ρ2(a) = 1, ρ2(b) = −1. 2

Similar to the proof above, we have

Lemma 3.2 Let n be odd. Then we have Z1
ρ1

(Dn) = 0 and Z1
ρ2

(Dn) = k.

4. Hopf Ore extension over kDn

In this section, we shall explicitly give the generators and relations of the Hopf Ore extension

over kDn. Throughout this section, we assume that n = 2ν is even. Set χ = χ3, α(a) = q

,α(b) = 0, and r = aν . We denote the corresponding Hopf Ore extension kDn[x, σ, δ] by A(n, q),

where

σ(a) = −a, σ(b) = b, δ(a) = q(1 − aν)a, δ(b) = 0.

Thus, we have the following theorem

Theorem 4.1 The Hopf Ore extension A(n, q) is a k-algebra generated by a, b and x with the

following relations:

an = b2 = 1, (ba)2 = 1, xa = −ax + q(1 − aν)a, bx = xb.

The Hopf algebra structure is determined by

∆(a) = a ⊗ a, ∆(b) = b ⊗ b, ∆(x) = x ⊗ 1 + aν ⊗ x,
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ǫ(a) = ǫ(b) = 1, ǫ(x) = 0, s(a) = a−1, s(b) = b−1, s(x) = −aνx.

5. Module extension

In this section, we shall prove that the 1-dimension and 2-dimension simple representations

over kDn can both be extended to the simple representations over A(n, q). We continue to use

the notations in Section 4.

Firstly, we need the following Lemma.

Lemma 5.1[6] Let R, E be algebras over k, and f : R → E be an algebra homomorphism. And

let σ be an algebra homomorphism of R, δ be α-derivation, ξ ∈ E. If (f, σ, δ, ξ) satisfies

ξf(r) = f(σ(r))ξ + f(δ(r)), ∀r ∈ R,

then there exists a unique algebra homomorphism f̄ : R[x, σ, δ] → E, such that f̄(x) = ξ,

f̄ |R = f .

Let ki be the 1-dimension kDn representation corresponding to the character χi for i =

1, 2, 3, 4. Define an algebra homomorphism χ̄i : A(n, q) → k determined by

χ̄i(a) = χi(a), χ̄i(b) = χi(b), χ̄i(x) =
q(1 − χi(a

ν))χi(a)

2χi(a)
.

From Lemma 5.1, it follows that χ̄i is well-defined. Thus we have four 1-dimension represen-

tations over A(n, q), which will also be denoted by ki for i = 1, 2, 3, 4.

Theorem 5.2 A(n, q) has only four 1-dimension simple representations ki for i = 1, 2, 3, 4.

Proof Note that 1-dimension simple module over A(n, q) must be simple module over kDn,

thus the conclusion can be derived from Lemma 5.1 and the above statement.

In the following, we shall discuss the case of 2-dimension simple modules.

For n = 2ν, ν > 1, 1 ≤ i ≤ ν − 1, we know that kDn has 2-dimension representation

corresponding to the following algebra homomorphism ϕi : kDn → M2(k) determined by

a 7→

(

ω 0

0 ω−1

)

, b 7→

(

0 1

1 0

)

,

where ω is n-primitive root of unity. Denote these 2-dimension representations of kDn by Vi for

1 ≤ i ≤ ν − 1. It is known from [4] that Vi are all 2-dimension simple representations over kDn.

2

Theorem 5.3 Let T =

(

η ξ

ξ η

)

∈ M2(k), where η = 1
2q(1 − ωiv), ξ = 0 (1 ≤ i ≤ ν − 1) or

ξ ∈ k for i = ν
2 when ν is even. Then there exists a unique algebra homomorphism

ϕ̄i : A(n, q) → M2(k)

such that ϕ̄i|kDn
= ϕi and ϕ̄i(x) = T.
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Proof Since T =

(

η1 ξ1

ξ2 η2

)

∈ M2(k), it is known from Lemma 5.1 that there exists unique

algebra homomorphism ϕ̄i : A(n, q) → M2(k) such that ϕ̄i|kDn
= ϕi and ϕ̄i(x) = T with the

following relations:

Tϕi(a) = −ϕi(a)T + q(E − ϕi(a
ν))ϕi(a), Tϕi(b) = ϕi(b)T.

From the second equality above, it follows that T must have the form of T =

(

η ξ

ξ η

)

. From

the first one, we have
(

η ξ

ξ η

)(

ωi 0

0 ω−i

)

= −

(

ωi 0

0 ω−i

)(

η ξ

ξ η

)

+q

(

(1 − ωiν)ωi 0

0 (1 − ω−iν)ω−i

)

,

that is,
(

ηωi ξω−i

ξωi ηω−i

)

= −

(

ηωi ξωi

ξω−i ηω−i

)

+ q

(

(1 − ωiν)ωi 0

0 (1 − ω−iν)ω−i

)

.

Consequently, we have

ξωi = −ξω−i,

ηωi = −ηωi + q(1 − ωiν)ωi, ηω−i = −ηω−i + q(1 − ω−iν)ω−i,

and

ξ(ω2i + 1) = 0, η =
1

2
q(1 − ωiν).

So we have that ξ = 0 or ω2i + 1 = 0. If ω2i + 1 = 0, then ω4i = 1. Note that ω2ν = 1 and

1 ≤ i ≤ ν − 1, it follows that 2i = ν. Thus, the assertion holds. 2

From Theorem 5.3, we get four 2-dimension simple representations over A(n, q). Let ϕ :

kDn → M2(k) be an algebra homomorphism. We say that ϕ can be trivially extended to A(n, q)

if ϕ̄(x) = 0. Using Theorem 5.3, it is easy to prove the following corollary

Corollary 5.4 Let q ∈ k∗. Then ϕi can be trivially extended to A(n, q) if and only if i is even.
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