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Abstract This paper is a further investigation of large deviation for partial and random sums of
random variables, where {X,,n > 1} is non-negative independent identically distributed random
variables with a common heavy-tailed distribution function F' on the real line R and finite mean
p € R. {N(n),n > 0} is a binomial process with a parameter p € (0,1) and independent of
{Xn,n >1}; {M(n),n > 0} is a Poisson process with intensity A > 0, S, = Zfi@ Xi —cM(n).
Suppose F' € C, we futher extend and improve some large deviation results. These results can
apply to certain problems in insurance and finance.
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1. Introduction and main results

Hul' introduced a generalized compound binomial risk model, which is based on the following
independent objects:

(i) A binomial process {N(n);n =0,1,2,...} with a parameter p, 0 < p < 1, corresponding
to the claim number process, N(0) = 0;

(ii) A sequence {X,;n > 1} of non-negative i.i.d random variables with common distribution
function (df for short) F', corresponding to the claim size process, 0 < p = EX; < o0;

(iii) A Poisson process {M(n);n = 0,1,2,...} with intensity A > 0, where M (n) is corre-
sponding to the number of customers who buy the insurance portfolios in the time interval (0, n],
M(0)=0;

(iv) {N(n);n=0,1,2,...}; {Xn;n > 1} and {M(n);n =0,1,2,...} are mutually indepen-
dent.

For the GCBRM, the risk reserve process {R(n);n =0,1,2,...} is then given by

N(n)
R(”):U‘FCM(R)—ZXZ-, n=0,1,2,... (1)
=1
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while the net total claim amount process {S(n);n =0,1,2,...} is
S(n)=>_ Xi—cM(n), n=0,1,2,..., (2)
i=1

where ¢ > 0 is the premium of a single insurance portfolio (i.e., the price of the insurance
portfolio), and u > 0 is the initial capital of the company. For the GCBRM, the net profit
condition becomes cA > pEX].

The time of ruin for the GCBRM is described by

T(u) = inf{n; R(n) < 0} = inf{n; S(n) > u}. (3)
In [1], Hu investigated the GCBRM with heavy-tailed claim sizes, namely in
(i) The probabilities of large deviations of {S(n)};
(ii) The Lundberg type limiting results for the finite time ruin probabilities.

He obtained the following results.

Theorem A For the GOBRM, let {S(n)} be as in (2) and suppose that F € ERV (—a, —03)
for some 1 < a < 3 < oo. Then P(S(n) — ES(n) > z) ~ pnF(z) holds uniformly for = > vypn
for any fixed v > 0 satisfying vp > cA, i.e.,
lim  sup |P(S(n) —E’S(n) > x)
N0 a>ypn pnkF(z)
Theorem B For the GCBRM, suppose that F € ERV(—a,—[3) for some 1 < a < 3 < oo.
Then
(i) For every x >0 and y > 0,

lim inf 1
u—oo logu

— 1| =0. (4)

log P(T'(u) < yu®) >z — B -max{l,z}; (5)
(i) For either x=1 and 0 < y < (pu) tor 0 <z < 1 and y > 0,

) 1
lim sup
u—oo logu

log P(T'(u) < yu®) <z — «, (6)

where p = EX; < oo.
In this paper, we will extend FF € ERV (—a,—03) to F € C, and give some counterparts of
(4), (5) and (6). First we give some definitions.

Definition 1 The random variable X (or its d.f.F) is called heavy-tailed, if Ee!* = oo holds
for any fixed t > 0. The two important subclasses of heavy-tailed df are C' and ERV .
(i) We call F € C, if limy|; liminf, ., 25 =1,

(ii) We call F € ERV (—a, —[3), if there exist constants 1 < a < 3 < co such that

F(xy) F(xy)

y P < liminf? < limsupF— <y Vy> 1.

z—oo  F(x z—oo  F(x)
Remark 1 Let N be a random variable with the geometric distribution, i.e., P(N = k) =
p(1 —=p)* 1 k> 1,0 < p < 1; U is another 7.v. with uniform distribution U(0,1) and it is
independent of N. Write X = 22" (1+U)_ F denotes distribution of 7.v.X, then F € C, but
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F ¢ ERV. From Lemma 7 in [2], we have ERV C C. Thereby, C is a larger subclass than
ERV.

Corresponding to the Proposition 2.1 in [1], we have the following result.

Theorem 1 For the GOBRM, if F € C, then for every fixed v > 0, P(Y(n) — EY (n) > z) ~
pnF (z)holds uniformly for x > ypn, that is,
P(Y(n) — EY(n) > z)

lim sup | — —1]=0,
N0 a>ypn pnk(x)

where Y (n) = >N X, n=0,1,2,....
About the large deviations of {S(n)} in (2), we have the following theorem.

Theorem 2 For the GCBRM, let {S(n)} be as in (2) and suppose that F' € C. Then for any

fixed v > 0, P(S(n) — ES(n) > z) ~ pnF(z) holds uniformly for x > ypn, where yp > c), i.e.,
lim  sup |P(S(n) —EJS(TL) > x)
N0 m>apn pnk'(z)

—1/=o0. (7)

Remark 2 Obviously, (7) is equivalent to the following properties: for any fixed v > 0, where
P > cA,
P(S(n) — ES(n) > x)

P - F
liminf inf (5() _S(n) > ) >1, limsup sup — <1
n—oo &>ypn pnF () n—oo z>~pn pnF(x)

Before giving Theorem 3, we first see Lemma 1.

Lemma 1 Let X be a non-negative random variable with its tail F € C and 0 < = EX; < oo.
There exists some 1 < 3 < 0o, such that K12=" < F(x) < pz~! for all x > z0(3), where the
constant K1 = K1(f) is independent of x.

Proof By Lemma 3.1 in [3], if F € C, then there exists 3 > 1, K > 0 and x¢ > 0, such
that F(z) > Kz=#. For all x > 20, where K > 0 is a constant and independent of z. Since
00> p=EX>EXI x5y > aF(z), F(x) < pz

Recall that T'(u) as in (3) is time of ruin for the GCBRM. By the corresponding Lundberg

type limiting result, we have

Theorem 3 For the GCBRM, suppose that F € C. Then
(i) For every 0 <x <1 andy >0, By = inf{f}, 0 satisfying Lemma 1, we have

lim inf 1
u—oo logu

log P(T'(u) < yu®) > x — fo. (8)

(ii) For 0 < x <1 andy > 0, we get
1

lim sup log P(T'(u) < yu®) <z — 1. (9)

u—co l0gU

2. Proofs of main results

We first prove Theorem 1.
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Proof of Theorem 1 For the GCBRM and F € C, from Lemma 9 in [2] we have
. P(S, — ES, > x)
lim sup | —
n00 g >om nk(x)
where S, =Y " ( X;,n=1,2,....
Since {N(n);n > 0} is a binomial process with a parameter p € (0, 1), there exists a sequence
{Y;;i > 1} which are i.i.d.r.v, independent of {X,,;n > 1}, and P(Y1 =1)=p=1—- P(Y; =0),
such that N(n) =" | Y;. Then

_1|:05

N(n) Y1 Yi+Ys kzi:l i n
IR SPTHD SPU S SR s S P
i=1 i=1 i=Y1+1 et =1
i:kz::1Yk+1

where Z?:l X, :=0 and N(0) := 0. Obviously, {Z;,j =1,...,n} are independent.
j+1
Y,
kgl i nittng+Yig

1 1
Eexp(r Z X)) = Z Z Eexp(r Z Xi)l(vi=ny,....Y;=n,)

J n1=0 n;=0 i=nq+tnj+1
i=3 Yi+1
k=1

Yjt1

Y1
= Eexp(r Z Xi) = Eexp(rZXi).
i=1 i=1

Thus {Z;,j > 1} are iid and EZ; = EY; - EX; = pp > 0.
Since P(Z; > x) = P(X1 > 2,Y1 = 1) = pF(z), * > 0, for any y > 1, we have
P(Zy > zy)
P(Zl > x)

By F € C, we obtain Z; € C. Then

(zy) _ F(zy)

F(z)  F(z)

_>p
p

P( ”121- —E(éZi) > )

1=

e S IR
thereby
lim sup |P(Y(n) — E_(Y(n)) >T) _ 1] =0.
o0 g >m npk(z)
Thus the proof of Theorem 1 is completed. O

Proof of Theorem 2 Observe that {M(n);n =0,1,2,...} is a Poisson process with intensity
A > 0, by [1], there exist a positive sequence {e(n) | 0} as n — oo and

P(|M(n) — An| > e(n)An) = o(1). (10)
Noting that Y (n) = Zij\;(ln) X;,n=0,1,2,..., we have
P(S(n) — ES(n) >x)=P(Y(n) — EY(n) >z — cA\n+ cM(n))

= i P(Y(n) — EY(n) >z —ch\n+ck)P(M(n) = k).
k=0
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Therefore, Theorem 2 will be proved from the following three Lemmas 2-4.

Lemma 2 Let {e(n)} be as in (10). Then for any fixed v > 0

> P(M(n)=k)P(Y(n)— EY(n) >z — cAn + ck) ~ pnF(z)
|[k—An|<e(n)An

holds uniformly for x > ~vypn.

Lemma 3 Let {e(n)} be as in (10). Then for any fixed v > 0 satisfying vp > cA

Z P(M(n) =k)P(Y(n) — EY(n) > x — cAn + ck) = o(pnF(z))
k—An<—e(n)An

holds uniformly for x > ~vypn.

Lemma 4 Let {e(n)} be as in (10). Then for any fixed v > 0

Z P(M(n)=k)P(Y(n) — EY(n) > x — cAn + ck) = o(pnF(z))
kE—An>e(n)An

holds uniformly for x > ~ypn.

Proof of Lemma 2 In view of Theorem 1, for fixed v > 0, we have

P(Y(n) — EY (n) > z) ~ pnF(x),

as n — 00, holds uniformly for x > ypn.

Moreover, for |k — An| < e(n)An with (n) as in (10), and x > vypn,

x—cn+ck=x+c(k—In)=z+o0(x), n— oco.

Then . o
F(x —chn+ck) F(x+o(x))
F(x) - Fla)
By Lemma 8 in [2], for any v > 0, we have
F
lim sup |M—l|:0.
N0 x>ypn F(z)

Thereby
P(Y(n) — E(Y(n)) >z —c\n+ck) ~ pnF(z — c\n + ck)

as n — 0o, holds uniformly for |k — An| < e(n)An and z > ypn. Hence

> P(M(n)=k)P(Y(n)— EY(n) >z — chn + ck)
|k—An|<e(n)An

“wF@) Y PM@m)=k)
|k—An|<e(n)An

~ pnF(z)P(|M(n) — M| < e(n)\n) ~ pnF(x)

F(z — chn + ck)
F(z)

holds uniformly for z > ypn. Lemma 2 is proved.



1052 KONG F C and ZHAO P

Proof of Lemma 3 For = > «ypn, we have

A A
x—cwn=z(1- ﬂ) >az(1 - c_) =7z
T vp

Since FeC c D = {hm sup F}SZ ”)C) < oo} for any fixed 0 < 7/ < 1, again using Theorem 1 and

choosing e(n) as 1n(10) we obtam that
> P(M(n) = k)P(Y(n) — EY (n) > & — c\n + ck)
E—=An<—e(n)An

< > P(M(n) = k)P(Y(n) — EY (n) >z — cAn)
k—An<—e(n)An

— F(x —cAn)
~ pnk(z) P(M(n) = k)—=——
g k—kngz‘(n))\n F(x)

<pF@) Y P(M@) =) FF(ZJ

E=An<—e(n)An
< epnF(z)P(M(n) — An < —e(n)An) = o(1)pnF (z) = o(pnF(z))

uniformly for x > ypn, where v > 0 is a fixed constant, satisfying yp > c¢A and ¢; > 0 is also a

constant. Lemma 3 is proved.

Proof of Lemma 4 Using Theorem 1 once more and choosing £(n) as in(10), we have
> P(M(n)=k)P(Y(n) — EY(n) >z — cAn + ck)
k—An>e(n)An

< Y P(M(n)=kP(Y(n) - EY(n) > )

kE—An>e(n)An

~pnF(z) ) P(M(n)=k)

k—An>e(n)An
= pnF(z)P(M(n) — An > e(n)An) = o(1)pnF (z) = o(pnF(z))

uniformly for > yAn where v > 0 is a fixed constant. Lemma 4 is proved.

By Lemmas 2, 3 and 4, the proof of Theorem 2 is completed. O

Proof of Theorem 3 (i) Proof of (8). Let 0 < <1 and y > 0, in view of Remark 2, for any
0 < 6 < 1 we have uniformly for u large enough that

P(T(u) <yu®) = P(S([yu*]) > u) = P(S([yu’]) — ES([yu"]) > u — (pp — eA)[yu”])
> P(S([yu"]) — ES(lyu”]) > u+ cAlyu”]) > (1 = O)plyu”F (u + cAlyu”])

where [y] stands for the integer part of y € R. Consequently, let 1 < 3 < oo, by Lemma 1

lim inf log P(T(u) < [yu”]) > x + lim inf %(—6) log(u + cAlyu®]) > « — Bo,
ogu

u—oo logu U— 00
thus (8) is proved.
(ii) Proof of (9). Let 0 < < 1 and y > 0. By Theorem 1, for every 0 < 6 < 1, we have
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uniformly for u large enough that

P(T(u) < [yu*]) < P(Y ([yu*] > u) = P(Y([yu’]) = EY ([yu"]) > u — plyu®]p)

< (1 + 0)plyu”]F(u — pulyu®]).

Consequently, by Lemma 4

1 1
li log P(T < gyu*) < li —(-1)1 — ) =x —1.
imsup y— log (T(u) <yu*) <a+ im sup logu( ) log(u — pulyu®]) =z
The proof of Theorem 3 is completed. O
References

(1] HU Yijun. Finite time ruin probabilities and large deviations for generalized compound binomial risk models
[J]. Acta Math. Sin. (Engl. Ser.), 2005, 21(5): 1099-1106.

[2] KONG Fanchao. Large deviations of heavy-tailed random sums in the risk models [J]. Southeast Asian Bull.
Math., 2004, 28(6): 1049-1062.

[3] SU Chun, TANG Qihe, JIANG Tao. A contribution to large deviations for heavy-tailed random sums [J].
Sci. China Ser. A, 2001, 44(4): 438-444.

[4] JIANG Tao. Improvement on: “Large deviations for heavy-tailed random sums in compound renewal model”
[J]. Statist. Probab. Lett., 2001, 52(1): 91-100.

(5] WILLMOT G E. Ruin probabilities in the compound binomial model [J]. Insurance Math. Econom., 1993,
12(2): 133-142.

(6] GERBER H U. An Introduction to Mathematical Risk Theory [M]. Homewood, Ill., 1979.



