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1. Introduction

Beta operators are important and applied widely in probability theory and approximation

theory[!—6l,

The generalized summation integral type operators with Beta basis functions are
widely studied!®—18. At present, the investigations for the properties of these operators are only
limited to the functions of bounded variation!®?17, Some authors studied the rate of point-wise
rate of convergence, asymptotic formula of Voronovskaja type, and some direct results about
these type of operators!”:8:10-18]

In this paper, we will study the direct, inverse and equivalent theorems of modified summation
integral type operators in the L,, spaces.

For f € L,[0,00), a new kind of linear positive operators are defined as[6:13:1%]

_ 1 = o
Bu(f,z) = Ba(f(t),@) = ——— ;bn,m) / bui(D)f(1)dt, @ € [0,00) (1.1)
where |
b k(t) = %tk‘l(l +t)y R >,
Let
_(k=1)!'n! 1 s
B(k,n+1) = W, Wz, t) = ] ;bn,k(x)bmk(t)-
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We can write
tk—1(1+t)—n—k—l [e%s)
bost) = g Balli) = [ Wl s

It is easy to verify that B, (1,z) = 1, and the operators B,,(f, z)(1.1) are linear positive ones, the

rate of convergence for these operators cannot be faster than O(n~1)[6:15] Guptal'3l obtained

the direct results for these operators.
Theorem A3 Theorems.1] 1.t ¢ c €10, 00), (CL[0,00) = {f : f € C[0,00), |f(t)| < Ct",r >

0}), and suppose (") exists at a point x € (0,00). Then lim,, 4 Bff)(f, z) = f)(x).

Theorem Bl!3 Theorems.s] .4 feC0,00),and 0 < a < a; < by < b < co. Then for all n
sufficiently large, we have,

1 _
1B (o) = Flcfay < Arwa(F, %;@,b) + Agn ™| flr,

where
Ay = Ay (1), As = As(r, f), [Iflle = sup [FE,
0<t<oo
wi(f,8;a,b) = sup{ AL f(z) : |h| < 8, x, 2 + kh € [a, 8]},

K’,j f(z) is k-th forward difference with step length h.

The authors also gave the inverse result for these operators.

Theorem C!3 Theorem4.3] 1.0 < o < 2,0< a1 <ag <by<by <oo. If f € C.[0,00), then

in the following statements, the implication 1° = 2° holds:
1B (f,) = FTlctar s = O™ 2); 2° £ € Lip*(a, as,bo),

where Lip*(a, ag,be) = {f : ¥§ > 0,3C > 0, such that ws(f,d;a,b) < C6*}.
For convenience, we will introduce some of the notations. Let f € L,[0,00), 1 < p < oco. We

write )
_ AT f@)Pda}r, 1 <p < oo,
1f1l» =
SUPze[0,00) |f(117)|, b =00,

Abof(@) = [+ hp(x)) = 2f(x) + f(z — he(x)),
Wi (fit)p = sup [|AZ,Fllp,
0<h<t
D={g€L,0,00):g € AClioc,p’g" € L,},
K2(f,8%)p = Inf IS =gl + 109" Ip}, (1.2)
D={g:9€Ly0,00),g € ACuoc,g",¢*g" € Ly[0,00)},
—2 .
K, (f,8%), = 12%{Hf = gllp + 210" [l + 119”11}
g
It is well known that!®): there exist constants C;, Cy > 0, such that

C’flwi(f, t)p < Kf:(fa t2)p < Olwi(fv t)pa
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Cy w2 (f )y S K1), < Cow(f,1) (1.3)
2 w@ yUp = o\Js p > gww yU)p- .

Since the first order moment of the operator B, (f,z)(1.1) is not equal to zero, and ¢?(z) =
x(14 ), we need to deal with the problem by a special method. Our main results can be stated

as follows:

Theorem 1.1 (Direct result) For f € L,[0,00) (1 <p < o0), p?(x) = (1 + ), one has

;1 1, 1l
1Ba(f,) = 7@l < O3l +en(f o)+ ).

where

wlfy = swp AL @)y ALF@) = fa+ 5) = flo = 3).

o<t<t 2 2

Theorem 1.2 (The Bernstein-Type inequality) For f € L,[0,00) (1 < p < 00), one has

1By fllp < Cnll £l
Theorem 1.3 (Inverse result) For f € L,[0,00) (1 < p < 0), 0 <a <2, one has
IBa(f2) = f(@)lly = O(n™ %) = 1°. w3 (f,1)p = O(t%);  2° wi(fit)y = O(t2).

Combining the direct result Theorem 1.1 and the converse result Theorem 1.3, we can obtain

the equivalence theorem.

Theorem 1.4 (Equivalence result) For f € L,[0,00) (1 < p < o0), 0 < a < 2, the following

two statements are equivalent:
(1) I1Bu(f,2) = f(@)ll, = O(n~%);
(2) 1°. W2(f 1)y = O(t*); 2°. wi(f,t), = O(t2).

Remark 1.1 From Theorem 1.1, one can get Theorems A and B in the case r = 1, p = oo.
Remark 1.2 From Theorem 1.3, one can get Theorem C in the case r =1, p = co.

Remark 1.3 Throughout this paper, C' denotes a constant independent of n and x which is
not necessarily the same in different cases.

2. The basic properties of the mixed type Beta operators

By simple calculations, one can get the boundedness and the estimates for the moments of

the operators.
Lemma 2.1 For f € L,[0,00), 1 < p < oo, we have || B,(f, )llp < || fllp-
Lemma 2.2 Let 62(z) = ¢*(z) + £, ¢*(z) = 2(1 + ). We have
B,(1,z) =1, (2.1)
2z +1

B,(t—z,z) = — (2.2)
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Ba((t —2)?2) < Ta3(x), (2.3)
Co1()

B, ((t —x)Y,x) < 5

(2.4)

n
Lemma 2.3 For the operator By, we have the estimation B, ((1+t)72,z) < C(1 + z)~?2

Lemma 2.4 For ¢?(x) = z(1 + ), and u between t and x, we have
[t—u] |t—2|, 1 1
ALY )
©2(u) x 14z 1+t
Lemma 2.5 For u between t and z, x € ES = [0,n™!), we have
[t — ul [t — x|
2 1 < 2 1-
p?u)+5 7 V) + g
\t ul

P2 (u)+3
For x < u < t, we have (2.5) which in turn follows from

(2.5)

Proof All we have to do is to estimate in the following ways.

t— t—
@2(;)+L < wz(in and “T*t < %, and the fact that

h(z) = WIH{ increases in [0, 1). -

Fort <u <z <21, (2.5) follows from

Lemma 2.6 For ' € A.C.joc, 1 < p < oo, we have ||[@*B. fll, < 6]l f" |-

Proof Using the relation!!3: Lemma2.6]

oo

By(f,x) = "n+_21 anm / b2 k42(8) " (D)L,
we write
// 1 = ° 2
0 () By (f, x) EZ n—1,k+1(% +bn,k+z(:r)]/0 [Dn—1,k+1(t) + b k()] [ (% + ) £ (2)|dt.
k=1

For p = 00, [¢*(@)BL(/,2)| < 62" |lc. Forp =1,
@) B, )l
<[ Z bt @)+ bua(@)] [ Baosi 6+ bus O] 160 (0
=1

< 6]¢ f”H1~

By the Riesz-Thorin interpolation theorem, we get Lemma 2.6. O

3. The direct theorem

We need the following lemmas to prove our direct theorem.

Lemma 3.1 Let
1 o0

e DIURTNIEY (OSCH LS

2
Then H,((x —t)%,x) = 25 + (2712%)2 — (14 )~
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Proof Noticing that

n n n n
H,(1l,z) = —— — 1 T H(t ) =
(1) n+1 n—l—l( +2) (t,z) n+1x+(n—|—1)
n+2 2z
H,(t*,z) = z’
0y ="t 2y 20

and H,,((x —t)%,2) = H,(t*,2) — 20H,(t,x) + 2> H, (1, z), which imply Lemma 3.1.

Lemma 3.2 For g € D, 62(z) = ¢*(z) + 1, 1 < p < o0, we have

P> “n

1B [ (¢ = w)g" a2, < S 152"

Proof We separate the proof for p = co and p = 1 and prove the result for p = oo first.
When z € E, = [1,00), we have 02(z) ~ ¢?(z). Using Lemmas 2.2, 2.4 and Holder

inequality, we can deduce

Ba([ (¢ = 0" (w0 < 9" .

When z € ES = [0,1), by Lemma 2.5(2.5) and Lemma 2.2, we have

! " 2 I ¢ |t_u|
[Bu(| (= w)g" (w)du 2)| < 1339 | Bu e
t—x)? 0% () 1 C'
< 2 n ( < 2 1 . © .
< Ol e ol Sy )| < IR e 5 s < T

Therefore, Lemma 3.2 is valid for the case p = oco.

To prove the rest of the result for p = 1, we observe that

IBa [ (¢ = w)g" (wdu.2)],

- /Ooo n—ll— 1 kib”vk(w)(/oz +/Oo)bn,k(f) /t(t —u)g" (u)dudt|dz
- z 2
= nil/ooo Ig”<u)l{/:o /Ou—/ou /uoo}(“—t)gbn,k(x)bn,k(t)dtdxdu.

We need to prove that

J = {[jo /u—/uLm}(u—t)ibnyk(x)bnyk(t)dtdx
; S st st

(J1 + J2) < C62(u) = C (% (u) + %)

We will estimate J;. Using the integration by parts and recalling the fact

k() = (04 1) (bns1k-1(t) = bngrk(t), k=1,
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we have

n+1 <

Ji < (n+Dur(1+u)"" "+ Z/ (t —u)*bpy 1k ()on_1 pr1 (w)dt.
k=10

Similarly, Jo < 22;021 f;o(t — )2 b1k (£)br—1 1 (w)dt.
Using Lemma 3.1,
1 =, [0
§(J1 + JQ) S (n + 1)u2(1 + ’U,)inil =+ Z/ (t — U)anJrLk(t)bn,LkJrl(’U,)dt
<u® +¢?(u) < OO (u).

Thus,

J < =(J1+ J2) < C82(u).

l\DI»—A

Lemma 3.2 is true for p = 1. Again using the Riesz-Thorin interpolation theorem completes the
proof of Lemma 3.2 for 1 < p < cc.

Now we can prove our direct theorem.

Proof of Theorem 1.1 We construct a function A, (f,z) such that
Auf2) = Bal£,2) + La(f,2), La(f,2) = () = (& + ). (31)
Then An(1,2) =1, Ap(t —z,2) = 22, A, ((t — 2)%,2) < %, Al <3,
Lty ={ [ 17 = 1o+ DPdsk? <l 2y

By the definition of Fi( f,t%)p, we now choose g € D satisfying

1 —2 1
1f = gllp + ~ll¥°9"llp + — Hg”llp S 2K, (f, v (32)
Using the Taylor formula with integral remainder, we have
t
145 (g, ) = g(x)lp < 9" (@) An(t =z, 2)l|, + [|An / (t —u)g" (u)du, z)||
2 // "
SEH:EQ( ||,,+HB / duw ’ —l—H/ $+—— u)g (u)dqu.

Recalling

1
[ e g, < 1

by the relation®”), ||z f'||, < C(||z*f"|l, + || f|lp), and Lemma 3.2 and the choice of g (3.2), we

write
— 1 2
140(g.2) = 9(@)lly < CE (£, 2o+ -1/l (3.3)

Combining (3.1)—(3.3) and the equivalence relation (1.3), we get
1Bn(f,2) = f(@)llp < [An(f,2) = f(@)llp + Lo (fs )]l
)p

1
< A4f = gllp + 1 4ng = gllp + w1 (£, ~



Approximation by modified summation integral type operators in the L, spaces 1075

< CAf R+l iy

4. The inverse theorem

We also need the following lemmas to prove Theorems 1.2 and 1.3.

1
n

Lemma 4.1 For x € E,, = [, 00), we have

k—1-2x -
)]

2
@), (2)] < C Y n'FEby (@)
i=0

Proof Since
ii,k(:c)
_ bn,k (I)
z2(1+4x)?

2
et S DG i (o),

~22(1+2)? n n

[~n+2)z(1+2)+ (k—1—(n+2)2)* — (1 +22)(k —1— (n+2)2)]

i=

where
—nz(l + ) n?

Qo(e) = (1 +2)(n+2), Q@)= —"5= Q@) =g

on the other hand, for ¢ = 0,1, 2, one has

- - i n 143
| 2(1 + ) 2Ql(x)n | < O(m) ,

which completes the proof of Lemma 4.1. O

1

n’

/ b (@) (@) (F

Lemma 4.2 Forx € E,, = [+,00), p?(x) = 2(1 + ), one has

—x)zmdxgg, m=20,1,2,... .
n nm

Proof We recall that fE by k(x)dx < 1, which is Lemma 4.2 for the case m = 0.
We assume, using induction, that

k

[ beat@e o

—2)%dz < Cn7l.
n

Now we shall show for the case m = [ + 1 that

/ bn,k($)90_2(l+1)($)(% _ :E)2(l+1)d:v < Con~ WD), (4.1)

n

Using the integration by parts, we write
bnﬁk(x) k 2ld _ bn,k(%) k 1 20+1
T ) - iRy] 11(___) +
e, T'(1+2)'n +1)E)ya+H'n n
2H—n—|—2/ by k() (E_w)mﬂ(k—l—l B
204+1  Jp, 2 (1 +2)H n 204+ n+2

x)da.
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By the assumption, one has

}/ $l+11+$l+1(

<ottt n(lb;ﬁ(kl(j_)l)l(% _ %)2l+1)'

k k—1-1

)2l+1(
204+ n+2

— z)dz|

Since %(k — 12 < On~t we get

k op1, B—1-1 1
’/ 2 1+xl+1( M G~ 9l =067,
bet kE—2(+1)( k) k+1 1
nK — + 1)(n + +
Gnir = : < p< 2l E, =[~,
w=1z nin+ 20+ 2) ==y = o)
On E, \ Gy, we have the following relations
k k—1-1
G =g~ 9 >0 (4.2)
k k—1—-1
| 7l _O|2l+n+2 | (4.3)
Next, we will prove (4.1) for the case m =0,1,2,... . Write
k
[ tua@e 0@ et [ [ s GisGe
n n En\Gn,k Gn,k

From the relations (4.2) and (4.3), we write
k@) (ks kol

< k) 2 _
=0 B\Go s T+ 2 Ntnia D
gc(/ +/ ) =0m"""1) +Gs.
n Gn,k
On G, i, for z € G, i, we have
k 1 k
2l = 1+ = 4.4
2 —al=0(=(1+ 1), (4.4)
kE—1—-1 1 k
e el=0G,0+ ) (4.5)
k k
2
> (0= ). )
P@) =z Co(1+ 1) (4.6)

Since the methods to estimate Ga, G5 are similar, we deal here only with G5. By (4.4), (4.6),

B b,k (@) 20+2
Ga = /G 1+ 2) |_ — 2" dz

n,

> k ko —a+1) 1 k. \20+1) —1-1
< b “(14 - (=1 += dz < .
—C/o #@) (14 =) (1+2)" de<Cn

O

Remark In the estimate of G3, we use (4.5). From the estimates of G1, Ga, G3, (4.1) is valid

for the case m =1+ 1. By induction, Lemma 4.2 is true for the case m =0,1,2,....
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Lemma 4.3 Forx € E,, = [%,oo), m = 0,1,2, we have

ank ——:17) 2m o o)

-1

Proof From the following equahtles

)

ank(x)% :(n—l—l)n(n—i-2)x+n;li-1

ibnk k2 :(n—l—1)(n+2)(n+3)x2+3(n+1)(n+2)x+n+1

n? 2 —
ibnkx)i—z=(n+1)(n+2i§n+3)(n+4)x3+6(n+1)(n7;2)(”+3) )
7(n+1)gn+2)w+nt)17
ib"k( )z_i_(n+1):4.(n+5)x4flo(n+1).n.;(n+4)x3+
25(n+1)(n+2)(n+3)xg+15(n+1)(n+2)x+n+1

nt nt
we can obtain Lemma 4.3.

n4

Lemma 4.4 For f € L,[0,00) (1 <p < o0), we have || B}, (f,z)|l, < Cn|f|,.

Proof Noticing that b;, ;. (t) = (n + 1)(bn+1,5-1(t)) — bnt1,4(2)),

B, (f,) anw /[bn,m(t))—bn,k<t>1f<t>dt

k=1
which implies Lemma 4.4.

<Y busrala) [ Do () +b,u(0)] - £,

Lemma 4.5 For f, f' € L,y[0,00) (1 < p < 00), we have || B}, (f, )|, < C|f'llp-

)

e+

1077

Proof Recalling that b, ,(t) = (n + 1)(bnt1,6-1(t)) = bny1,k(t)), and by, o(z) = 0, one has the

estimates for || B, (f,x)llp,

BL(f.0) = il bale) [ busl )t
<o anﬂ,k(x) | bl
k=1

Proof of Theorem 1.2 Using the technique of Lemmas 4.1 and 4.2, for z € E,,, one has

ibn,k(x)(k — 1n_ 2z )2m < C(’O ( )

nm—1"

(4.7)
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2
i i k—1—2I . i
b(z)| < CS b, p(z)rt | (14 2) R 48
|2 1(2)"] < ;" 2o p (@) 2 | —— | (1+a)7' 72, (4.8)
k—1-2
/ @72m(x)bn7k(x)(Tx—x)zmdeCnfm, m=0,1,2,.... (4.9)
E,

To estimate ||p? By f|,, we write
2 ! " 2 p! o
16" B (f,2)llp < leBy (f, 2)llp + (|2 B, (f, 2)llp := F1 + F.
First we will estimate F}.
Fu < 2By (f,2) e,y + 12° B (f,2) lpezs) = Fin + Fia.

For the case p = 1, from relations (4.8), (4.9) and Hélder inequality, and recalling that

= buk(x)
/0 <

we have
1 > o0
< —— M / bk () f(t)dt|d
=0T En‘xkz‘: ke () | () f(t)dt|dz
2 X 00
<Oy nt )i+ 1) [ 50Nt < Cnlfl.
i=0 0

Using the expression of B (f,z)% Lemma2.6] g5 p >4, 7 < %, we have

o<t [ C|ben+2k D) [ a0t

o0

=z / me,k(x) [n(n = 1)bni(t) = 2n(n = 1)bp g1 (8)+
k=1 0
n(n = 1)bn k42(8)]|f(¢)|dtdz < Cnl[f]1.

Thus, Fi < Cn||f|1 for the case p = 1.

For the case p = oo, by (4.7), we write

i <C||f||oozn% ank kol-2e —x)%)%x
=0

1

ank )2 (@) (1 +2) 7% < Cnl|flloo-

Fia <_ an+2 k / [n(n = 1)bp ik (t) — 2n(n — 1)bn k41 (8)+

n(n— Db k2] 1f ()|t < Cnl[f]]oo-

Thus, Fi < Cn||f||eo for the case p = co.
Using the Riesz-Thorin Theorem, we obtain Fy < Cnl|f||, for 1 < p < oo.
Next we will estimate o = ||z2BL(f,z)|l, < Cnl|fllp :
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For z € E¢, noticing that 2 <, then F, can be written as follows

Fy <||2? By (f, 0) | p(z.) + 12° By (f, 2) (e

o0

1'2
<l L tate) [ st o+

n

-
Hn—|— 1 ;bgk(l‘) /EC bn,k(t)f(t)dth(En) + Fio
i=F91 + Faa + Flio.

Again using the expression of B(f, )13 Lemma2.6] 4nq Lemma 4.1, we have

+2)
Fy <CH (n an+2k / b2 2 (OO 5

nin—1)

k+1 .,
<[> tnarate) [ S nbbsa (0~ OEL — - 0t
k=1

717]0

IS bl /zwbnkﬂ ()(“—f;%|f<t>|dt||p<m+
k=1

o n(n
> —1 2t i
1S boiea@) [ 0d b (0 N L Ol }
k=1 En i=0

:ZC{El + Fs + E3}.

y (4.8), one has

2 i — ; k+1 ;
Foy SOH ZTLE an711k+1(x)<p*1(:1:)| — / . brg1k—1(t) + bn,k(t)]f(t)dt"p(En)+

n

2 - o . €T .
OIS0t 3 b spna@e @) / b1 ea(®) + bu OV O]y +
i= k=1 "

n

2 o)
L —i 2.
ol 2”2 anfl,kJrl(I)‘P (I)(E) / [brt1-1(8) + bu s (O] f()dE]| (En)
i=0 k=1 ™
=F4 + F5 + E;.
Since the treatments for Fy ~ Eg are similar, we deal here only with Fj.

S k+1
El = H an,k+2 / anbn k-‘rl ( )|— - t| |f |dth(En)
k=1

En =0
By Holder inequality, we discuss two cases p =1 and p = oc.

First, we will consider the caes p = co.

2 0o
E TN i1 7
By <Cl e 33 Y busia@ [ b (09701 oy
=0 k=1 n

{ / b1 (DAL} < Cnllf]er
E’Vl
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Next, for p = 1, by [13, Lemma 2.1], and Hélder inequality, one has

/szbnm b1 (0 (| 47 (0)

"10

i . 1 k .1
<3 b (3 b (92 1) an e = o2 [l
1=0 k=1 n
< Cnllfl-

Therefore, we have 1 < p < oo, F» < Cn|| f]|p.

Proof of Theorem 1.3 We will prove 1° first.
By the definition of K-functional, we can choose g = B,,(f,x) such that

K2(£,2), < I£(2) = Balf 0)llp + 162 BL (2]l
The condition ||B,,(f,z) — f(z)|l, = O(n™%), Theorem 1.2 and Lemma 2.6 imply
Kf:(fa t2)p <Cn 2%+ t2{||902BZ(f = ¢:2)|lp + ”9023;;(9755)”1)}
(e} 1
<Cn=% +82{nlf = gllp + %" llp} < Cn™% + 2K (f, )y
By the well-known Berens-Lorentz Lemmal® P22l we have
K2(f.1%), < Ct°.

Combining the equivalence relation (1.2), one has w2 (f,t), = O(t*).

Next we will prove 2°. We introduce a new K-functional:

Ki(f.t)p = inf {|If —gllp +tllg'llp},

gED,
where D1 = {g| g,9' € L,[0,00)}.
By the definition of the new K-functional, for ¢t = %, we can choose g € D; such that
1, , 1
17 = gl + =1 lp < OS2y
On the other hand, by Lemmas 4.4 and 4.5, one has
Ei(f,t)p < If = Bufllp + tI B fllp
—_a —_a 1
<Cn2 +ifn|f = glp + 119} < Cn™2 + KL (f, =)y

Again using Berens-Lorentz Lemmal® Lemmao.3.4] we have K (f,1), < Ct5.

Finally we will estimate w1 (f,t), = O(t%). Write
1AL @)y < 1AL = 9llp + 1239l =T + T,

where T1 = [|(f = g)(z + 3) = (f = 9)(@ = 3)llp < 21 = gllp.
Using Holder inequality, one has

TQ—H/P (o +udul], _{/ |/§ (& + w)dulPda}

m\-*
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<[ e+ ) /  quykae}? < cil

2 3
Therefore, |A}f(x)], < 2[|f — gll, + Ctllg'|l, < CK1(f,t), < Ct%, which implies wy(f,t), =
O(t?). O
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