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Abstract In the present paper a class of extended close-to-convex functions Qg (v, 3, p) defined
by making use of Ruscheweyh derivatives is introduced and studied. We provide integral rep-
resentations, distortion theorem, radius of close-to-convexity and Hadamard product properties
for this class.
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1. Introduction

Suppose that the parameters A\, o, 8, p satisfy A > -1, >0,0< <1, 0<p < 1. Let
Hi (k=1,2,...) be the class of functions of the form

o0
f(z)=z+ Z Ao 2™
n=1

which are analytic in the unit disk U = {z : |z| < 1}. Let P(8) denote the class of functions of
the form p(z) = 1+ prz* + - -+ which are analytic in U and satisfy Rep(z) > 3. Let S; () and
K(B) stand for 8 class starlike function and 3 class convex function in Hy, respectively.

A function f(z) € Hy is said to be in the class C (5, p) if and only if there exists g(z) € S;(8)
such that

From [9], we know that
f(z) € Ki(B) & 2f'(2) € Si(B).

For fixed real number A\ > —1, the operator D* is defined by

DA f(2) = *f(2), f(2) € H, (1.1)

z
(1—2) 1
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where the operation * stands for Hadamard product. The operator D* is the Ruscheweyh

derivative introduced in [1,10] and is of the following properties:

A+ A+ Ek+n—1 .
D)‘f(z):z—l—; ( )( —iEn—l)! )CLIchnZkJr ; (1.2)
(D f(2)) = A+ 1)D M f(2) = ADA f(2). (1.3)

Next we introduce new functions class.

Definition 1.1 If a function f(z) € Hj, satisfies condition

Mz
Re{(l - a)%() + a(D’\f(z))'} >8, zel, (1.4)
then we denote f(z) € Vi x(a, 5).

Definition 1.2 Suppose f(z) € Hy. If there exists a function g(z) € Vi a (o, B) such that

2 (DM (2))

Re—p%e0)

>p, z€eU, (1.5)

then we denote f(z) € Qg (v, B, p).
In [2], the functions class Q1,0(0, 1,

and rotation theorem were obtained, but Hadamard product has not been solved. We will study

0) was studied and distortion theorem, univalent radius

the close-to-convex function class Qi x(c, 8, p) introduced above which is a great extension of

[2].

As in [3], we introduce linear operator L(a,c) which is more general than D*. Let

¢dla,c;z) = HZ_O%Z"H, zeU, ¢#0,—-1,—-2,...

L(a,c)f(z) = ¢(a,c;2) = f(2), [f(2) € Hy (1.6)
where (¢),, = F(FC(JCF)"). From [4], we know that L(a, c) is continuous mapping from Hy to Hy. It
is easy to see that

z
(21— a),1;2) = (DR (L.7)
and for ¢ > a > 0, we have
1
L(a,c)f(z) = / w1 f(uz)dn(a, c — a)(u), (1.8)
0
where 7 is B distribution
ua—l(l _ u)c—a—l
dn(a,c—a)(u) = Bla.c—a) du. (1.9)
If a #£0,-1,—2,..., then L(c,a) is the inverse mapping of L(a,c), so L(a,c) is one-to-one

mapping from Hy to Hy. It is obvious that
L(a,c¢) = L(a,b)L(b,c) = L(b,c)L(a,b), byc# —1,-2,... .

If g(2) = 2f'(2), then g(2) = L(2,1)f(2), f(2) = L(1,2)g(2).
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By (1.6) and (1.7), we have
L\ +1,1)f(z) = D f(2). (1.10)
In view of the operator L(a,c) and (1.10), we may write (1.5) as:
L2 DL+ 1))
L+ 1, Dg(2) P

In the present paper, we deduce integral representations of function in Qg x (e, 8, p). Distor-

zeU. (1.11)

tion theorems, radius of close-to-convexity and Hadamard product properties are obtained for

functions belonging to this class. Then we solve the closeness of Hadamard product in [2].

2. Integral representations

If g(2) € Vix(a, B), then it is not difficult to verify that there exists p(z) = 1 +pp2* +--- €
Pi.(B) such that

9(2) € Ve, B) & zp(z) = L( + DL+ 1,1)g(2) & L(1, A+ 1)g(z)

1
1
= L(; 2 + 1)(en(2))

In view of the Herglotz formulal® of positive real part and the property of L(\ +1,1), we prove

QI |-

the following result:

Theorem 2.1 If g(z) € Vi a(a, B)(a > 0), then there exists left continuous probability measure
n(xz) on X = {x : |x| = 1} such that
1 P 14+ (1-208)t
oo = La+n{— [ [ U ead e
Qza« 0 lz|=1 -

or there exists p(z) € P (83) such that

g(z) = LA+ 1){% /0 £ p(t)dt ).

For fixed parameters A\, «, 3, Vi, x(a, ) and left continuous probability measure points {n(z)} on

X are one-to-one correspondence through the relation expressed by (2.1).

Theorem 2.2 A function f(z) € Qi («a, 3, p)(a > 0) if and only if there exists left continuous
probability measures n(x), u(x) on X = {x : |x| = 1} such that

£(2) :L(l,)\+1)L(1,2)H+ /zté’l(/ Mdﬁ(m))dt]x

042371 0 \z\:l 1—tx

[/z_l 1+(1- 2p)za:d‘u(x)} }, (2.2)

1—2zx

when A =0,
1) =L [ /Ozté—l(/w_l Mdn(x))dt]x

1—tx

[/z_l Mdu(m)} } (2.3)

1—zzx
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For fixed parameters A\, «,3,p, Qrx(a,0,p) and left continuous probability measure points
{(n(z), u(z))} on X x X are one-to-one correspondence through the relation expressed by (2.2).

Proof Let f(z) € Qga(a, 5, p). Then there exists g(z) € Vi x (e, ) such that
LA+ 1D

U.
IO+ Lg) 7 7€
By Theorem 2.1, we have
1 SR 1+(1—2ﬂ)t.’£
=L(,A+1) —— tat —d dt 24
B = N

where 7(x) is left continuous probability measure on X. By Herglots formulal®! for the functions

in P class, we get

L(A+1,1)g(2) 1—zz
where p(z) is left continuous probability measure on X. From (2.4) and (2.5), we deduce that

L)L+ 1,1 f(2) :{[# /Oztél(/z_lw&y(x))dt}x
[ S )}

By using the property of L(A + 1,1), we get (2.2). Conversely it is true too. When A\ = 0,
(2.2) reduce to (2.3). For fixed parameters A, a, 3, p, since {(n(x), u(x))} and Py (8) x Py(p) are

one-to-one correspondence, Py (3) x Pi(p) and Qi a(a, 8, p) are one-to-one correspondence too,

z@M+LUﬂ@V_[}1LiQZ&%ZM@% (2:5)

so the last result is true. This completes the proof of Theorem 2.2. O

3. Distortion theorems

Lemma 3.1 Let p(z) =1+ ppz* +--- € Py(0) (z € U,k > 1). Then for |z| = r < 1, we have

1—rk 147rF
< R < .
T SR < 15

The result is sharp.
If Rep(z) > B, then by setting ¢(z) = p(z) — B, we have Re(p(z) — 3) > 0. Hence it is easy

to get from Lemma 3.1 and integral representation of positive real part functions(® that

Lemma 3.2 Let q(2) =1+ qpz¥+--- € Pe(B) (2 € U,k >1). Then for |2| = r < 1, we have

1—(1-28)rk 1+ (1—28)rk
T < Req(z) <q(2)] < ik
The result is sharp.
Theorem 3.1 Let o >0, f(z) € Qk7,\( ,p). Then for |z| =r < 1, we have
1—(1—=2p)F [+ 1 —20)(rt)*
_ t= dt < |(L(A+1,1 !
C2 [ 2L g < e 1)

14 (1—2p)rk * 1 L1+ (1 =28)(rt)*
S—(l—rk) /Ot ot (3.1)
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The result is sharp.

Proof Let f(2) € Qia(a, 3, p). Then there exists g(z) € Vi a(av, B) such that

2(LIV+1,1) f(2))
L(A+1,1)g(2)

Re >p, ze€U.

Set %m = q(z), z € U. Then Req(z) > p. Firstly, we prove the distortion property of

|IL(A+1,1)g(2)|. By Lemma 3.2 and Since g(z) € Vi x(e, ), there exists Rep(z) > § such that
1 _(1_ k
[ttty
0

LA+ 1,1)g(=)| 2 Re(L(A+1,1)g(2)) = Re] !

aza—l 1+ (rt)k
4 [ .
L+ 1,1)g(2)| = }#/Olté—lp(t)dt\ < é/olt;_1|p(zt)|dt
S (33)

Since z(L(A+1,1)f(2)) = L(2,1)L(A+ 1,1) f(2) = q(2)L(A + 1,1)g(2), z € U. By (3.2), (3.3)

and Lemma 3.2, we have

1= (1 —2p)* /01 1= =20)(rt)" < |g(2) LA +1,1)g(2)]

a(l41k) 1+ (rt)*
L4+ (1 —2p)r% [P 1 14 (1 —28)(rt)"
el G e

We get (3.1). Equality in (3.1) is obtained by function

1+ (1—2p)2* / R (1—2p)tk
0

dt 3.4
a(l — zF)za—t 1 —tk 34

F(z)= L1, + 1)L(1,2)[

at z = re's.
4. Radius of close-to-convexity

Lemma 4.1 If q(2) = 1+ qu2* +--- € Pu(B) (2 € U,k > 1), then for |z| = r < 1, we have
2% (1 — 28)r*
T (1=rk)14(1-28)rF]"

2q'(2)
q(z)

The result is sharp.

Theorem 4.1 Let a > 0, f(2) € Qi (c, 3,p). Then D*f(z) is close-to-convex in disk |z| < 71,

where 11 is the minimum positive root of the following equation:

1—2[m+ k(1 —m)r* — (1 —=2m)r** =0 (4.1)
and . .
1 _ _
m = —/ otz U220, (4.2)
« 0 1 +tk

Proof Let f(2) € Qr.x(, B, p). It suffices to prove that D*g(z) is starlike function. Let F(z) =
%. Then F(z) is analytic in U. By Theorem 2.1, Lemma 3.2 and since g(z) € Vi (o, 8),
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there exists p(z) € P(8) such that

LOA+1,1 1 ! 1 [t 1—(1—2B)tk
RO o f L onyga) s L [ 202200,
z azZo Jo o Jo 1+tk

Noticing the definition of F'(z) and by making use of Lemma 4.1, we have
R {Z(DAg(z))’ 2F'(2) .- 2F'(2) 1 —2[m+ k(1 —m)]r* — (1 —2m)r?*
¢ D*g(z) F(z) — F(z) (1 —rk)[1+ (1 —2m)rk
Let o(r) =1 —2[m + k(1 — m)]r* — (1 — 2m)r?*. Then ¢(r) is continuous on [0, 1] and ¢(0) =
1>0, (1) = =2k(1 —m) < 0. So (4.1) has minimum positive root in (0,1) denoted by r.
For |z| < 71, we have Re{%&(gy} > 0. So D*g(2) is starlike function, namely, D*f(z) is

close-to-convex function in disk |z] < 7.

}zl—i—Re

Corollary 4.1 Let o > 0, f(z) € Qro(a, 5,p). Then f(z) is close-to-convex in disk |z| < ry,

where ry is the minimum positive root of (4.1).

5. Hadamard product

Lemma 5.118] Let ¢(2) and h(z) be analytic in U and satisfy p(0) = h(0) = 0, ¢’(0) # 0,
h'(0) # 0 and suppose for all complex numbers o, T satisfying |o| = || = 1, there holds

1+ 710z
p(z)

1—-o0z
Let F(z) be analytic in U and satisfy ReF'(z) >0 (0 < |z| < 1). Then

(
p(2) * (F(2)h(2))
Re >0, 0<|z|<1.
Se=erren
Theorem 5.1 Let o, 7 satisfy |o] = |7] = 1, a > 0, f(2) € Qrrle,5,p), p(2) = z +
S ak+12"! be analytic in U and

p(2) *

h(z) #0 (0 < |z| < 1).

1+ 7102
1—o0z

z#0, 0<|z] <L
Then

f(z) x¢(2) € Quala, B, p).
Proof (i) Firstly, we prove that g x p(z) € Vi x(c, 3). Let

A z
) = (- ) 22 o)y -8, 0 ==

Then F(z) is analytic in U and ReF(z) > 0 and ¢ * h(z) = z. Since
p(2) % (F(2)h(2)) = ¢ * [(1 — a)D*g(2) + az(Dg(=)) — 5]
(1= a)px Dg(2) + ap * 2(Dg(2)) - Bz
(1= a)Dp* g)(2) + az(D*(p *g))'(2) - Bz, (5.1)
by Lemma 5.1, we get

p(2) * (F(2)h(2)) D> g)(2) )
Re{ o(2)  h(2) } = Re{(l — Oé)f + Oz(Dk(cp *q)) (z)} — B3>0, (5.2)
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that is,
D>\
Re{(1 - o) 25O A g)y ()} 5 8. 2w
So g+ ¢(z) € Viala, B). .
(i) Next we prove that f+¢(2) € Qra(a, 3, p). Let f(2) € Qra(a, B, p), p(z) = A5HEE —p
and h(z) = z. Then p(z) is analytic in U and Rep(z) >0 (z € U) and ¢ * h(z) = z. Since
p* D g(2) - p(2) = ¢ x 2(Df(2)) = pp* D g(2), (5.3)
noticing that
A _ DA . A r__ A /
@ Dg(z) =D xg)(2); ¢*xz(D"f(2)) =2(D(px[))(2),

by (5.3), we get

_ o f2DMex ) (2)
From (i), ¢ * g(z) € Via(a, ). So f*¢(z) € Qra(a, B, p). This completes the proof of Theorem
5.1. O

Remark 5.1 Setting A =0,aa =0,0 = % and p = 0 in Theorem 5.1, respectively, we get the
1
0).

corresponding product properties of functions in Q1,0(0, 3,
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