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1. Introduction

We first give some definitions and notations.

A generalized convex space or a G-convex space (X, D;T') consists of a topological space X
and a nonempty set D such that, for each A = {ag, a1, ..., an} € (D), there exist a subset
I'(A) of X and a continuous function ¢4 : A,, — I'(4) such that J C {0, 1, ..., n} implies
pa(Ay) CT({a; : j € J}), where, (D) denotes the set of all nonempty finite subset of D, A,, an
n-simplex with vertices vg, v1, ..., U, and Ay = co{v; : j € J}, the face of A,, corresponding
to J. Let 'y =T'(A) for each A € (D).

There are a lot of examples of G-convex spaces!!]. The typical example of G-convex space is
any nonempty convex subset of a topological vector space.

In this paper, we assume that D C X, and (X, D; T') will be denoted by (X; T') if D = X.

For a G-convex space (X, D; T'), asubset Y C X is said to be I'-convex if each N € (D), N C
Y implies 'y C Y.

Let X and Y be two topological spaces. A multimap (simply, a map) T : X — Y is a
function from X into the power set 2¥ of Y. Denote T'(A) = J{T'(z) : z € A} for A C X.

A map T : X —o Y is called upper [resp. lower] semicontinuous (simply, u.s.c. [resp. l.s.c.])
if for each closed[resp. open] subset C of Y, T7(C) = {z € X : T(z) N C # (0} is closed [resp.
open| in X; and T is called compact if T'(X) ={y € Y : y € T(x),z € X} is contained in a
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compact subset of Y'; T is said to be closed if the graph Gr(T) of T is closed in X x Y.

Definition 1 Let X be a nonempty set, (Y, D;T') a G-convex space, Z a topological space. If
S : X — D is a multimap such that S(z) € (D) foreachx € X, T:Y — Z and F : X —o Z are
two multimaps satisfying T(I's(n)) C F(N) for each N € (X), then F is called a gengeralized
S-KKM mapping with respect to T. If a multimap T : Y —o Z satisfies that for each generalized
S-KKM mapping F with respect to T the family {W : x € X} has the finite intersection
property, then T is said to have the S-KKM property. The set {T : Y — Z|T has the S-KKM
property} is denoted by the class S-KKM(X,Y,D,Z), and S-KKM(X,Y, D, Z) is denoted by S-
KKM(X,Y,Z)ifD =Y.

Definition 22 A locally G-convex uniform space is a G-convex space (X, D;T',U) satistying
the following conditions:

(i) X is a uniform space with the basis v for the uniform structure U;

(ii)) D is a dense subset of X;

(iii) For each’V € v and eachx € X, V]x] = {2/ € X : (z,2’) € V'} is I'-convex.

Definition 3 Let Y be a topological space, (X, D;T') a G-convex space. A map T :Y —o X is
called a ®-map if there exists a map S : Y —o D such that

(i) ForeachyeY, M € (S(y)) implies I'ns C T'(y);

(ii) Y = {IntS~(x) : « € D}.

Definition 4 G-convex space (X, D;T') is called a ®-space if X is a uniform space and for each
entourge V, there is a ®-map T : X — X such that Gr(T) C V.

Definition 5 Let (X, D;T) be a G-convex space and Y a topological space. We define the
better admissible class B of multimaps from X into Y as follows:
FeB(X,Y) < F:X —oY is a multimap such that for any N € (D) with [N| =n+1

and any continuous map p : F(I'y) — A,,, the composition
F
A 25Ty T Py A,

has a fixed point.

And we define the following two important multimaps:

F eV(X,Y) < F: X — Y is an acyclic map; that is, a u.s.c multimap with compact
acyclic values;

F eV (X,Y) <= F:X —Y is afinite composition of acyclic maps, where the intermediate

spaces are topological.
Remark It is known that V.(X,Y) C B(X,Y), and that any map in V.(X,Y) is closed®].

Definition 6 Let Y be a real Hausdorff topological vector space with a convex cone K such
that IntK # 0 and K # Y, and C' a nonempty subset of Y.
(1) A point § € C is called a vector minimal point of C' if for any y € C, y — 7 ¢ K\{0}.
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The set of all the vector minimal points of C' is denoted by MingC'.
(2) A pointy € C is called a weakly vector minimal point of C' if for any y € C, y—7 ¢ IntK.
The set of all the weakly vector minimal points of C' is denoted by WMingC'.

Definition 7 Let X and Y be two topological spaces, T : X — Y a multimap, f: X — Y
a single valued continuous map. If f(x) € T(z) for all x € X, then f is called a continuous

selection of T'.

Definition 8 Let X be a nonempty set, (Y, D;T) a G-convex space. The map S : X — D
is said to have I-invariable property, if for each x € X, S(z) € (D) and for each A € (X),
Csa) = T'{w,:acay for any w, € S(a).

Obviously, if S : X — D is a single valued map, then S has I'-invariable property.

2. Almost fixed point theorem and fixed point theorems

Theorem 1 Let (X, D;T',U) be a locally G-convex uniform space, v a basis of the uniform struc-
ture U, I a nonempty set, and S : I —o D have I'-invariable property. If T € S-KKM(I, X, D, X)
is a compact map and T'(X) C TI), then T : X — X has the almost fixed point property; that
is, for each V' € v, there exists an xy € X such that V]zy] (T (xzv) # 0.

Proof We may assume that each V' € v is an open symmetric element. Define a map F : [ — X
by F(z) = T(X)\ Uwes(z) VIw] for each z € 1.

For each y € T(X), since T(X) C S(I), y € S(I) and V[y] is open neighborhood of y,
V0y] N S(I) # (0, which implies that there exist a z € I and x € S(z) such that z € V[y|. Hence

y € Vlz] C Uzes(») V2], and therefore T(X)C U.er Uses) Vizl.
Since T is compact, of course, T'(X) is compact. Therefore there exist N = {21, 29,...,2,} €

(I) and {w; ; € S(zi) : j =1,2,...,k;}_, such that

ks
U [wi ;] C U U Vw]

z€EN weS(z)

HC:

Note that F'(z) is closed for each z € I and

N FE=TEN\J | Vil cTO\T(X) =0,

zEN 2EN weS(2)
hence {F(z)}.er does not have the finite intersection property. Since T' € S-KKM(I, X, D, X),
there exists M € (I) such that T(T'g(ar)) € F(M). Hence there exist zy € Lgary and p € T'(2v)
such that p ¢ F(M) = U,.cpy F(m) = U,eur (W\ Uwes(m)V[w]). But p € T(zy) C
T'(X) C T(X), hence p € U, e g(m) Vw] for all m € M, which implies that for any m € M there
exists wy, € S(m) such that p € Viwy,], that is, wy, € V[p|, hence {wy,, € S(m) : m € M} C
D\ VI[p]. By Definitions 2 and 8, we have that xv € I'sar) = I'qw,.eS(m):memy C Vp], and
hence p € V[zy]. This implies that T'(xy ) (| V]zy] # 0.

Remarks 1) Note that D is assumed to be a dense subset of X in Definition 2. But from the
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proof of Theorem 1, we can find that this condition is superfluous in Theorem 1.

2) S having T-invariable property can be replaced by S being a single valued map.

3) The condition T'(X) C S(I) can be replaced by one of the following conditions: (i) T(X) C
S(I); (i) T(X) C S(I); (iii) there exists a subset Xo C S(I) such that T'(X) C Xj.

4) The compactness of T can be replaced by the following weaker condition: there exists
an N € (I) such that T(X) C S(N). In fact, it is easy to prove that for each V € v, T(X) C

Uzen UweS(z) Vw].
From Theorem 1, we can obtain the following fixed point theorem for multimap having the

S-KKM property on Hausdorff locally G-convex uniform space.

Theorem 2 Let (X, D;I',U) be a Hausdorff locally G-convex uniform space, v a basis of the
uniform structure U, I a nonempty set, and S : I — D have I'-invariable property. If T € S-
KKM(I, X, D, X) is a compact closed map and T(X) C S(I), then T : X —o X has a fixed point.

Proof For each V € v, there exists an xy € X such that T(zv)(V][zv] # 0 by Theorem 1.
Take yy € T(xy)(V]zy], then (xv,yy) € Gr(T) and (zv,yv) € V. Obviously, {yv}ve, is a
net in the compact set T'(X), so {yv }ve, has a convergent subnet. We may assume that {yy }ve,
itself converges and {yy} — xo € T(X). On the other hand, X is Hausdorff and (zv,yy) € V
for all V € v, hence xy — x¢. But Gr(T) is closed in X x X, therefore (zg,x0) € Gr(T'). This

implies that zo € T'(zo). 0

Remarks 1) S : X — D having I'-invariable property can be replaced by S being a single

valued map.

2) The condition T'(X) C S(I) can be replaced by one of the following conditions: (i) T'(X) C
S(I); (i) T(X) C S(I); (iii) there exists a subset Xo C S(I) such that T'(X) C Xj.

3) The compactness of T can be replaced by the compactness of X.

4) The closedness of T' can be replaced by the upper semi-continuity of T with closed values.

5) If I = X = D is anonempty convex subset of a topological vector space, S is a single valued

map and T'(X) C S(X) instead of T(X) C S(X), then Theorem 2 becomes the corresponding

result in [4]; If I = X = D is an H-space, S is a single valued map and T'(X) C S(X) instead

of T(X) C S(X), then Theorem 2 becomes the corresponding result in [5]; If I = X = D is

a G-convex space, S is a single valued map and T(X) C S(X) instead of T(X) C S(X), then
Theorem 2 becomes the corresponding result in [6]. And the method of our proof is completely
different from those in [4], [5] and [6]. Using their method, there must be T'(X) C S(X) instead

of T(X)C S(X)evenif I =D =X and S is a single valued map.

From now on, we only consider the case that S : X —o D is a single valued map, and S is

denoted by s.

Theorem 3 Let X be a nonempty set, (Y,I') a G-convex space, Z and W two topological
spaces, s : X — 'Y a single valued map. If T € s-KKM(X,Y,Z) and f € C(Z,W), then T € s-
KKK(X,Y,W).
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Proof Let F: X — W be a generalized s-KKM map with respect to f7', and assume that
for each 2 € X, F(x) is closed. If each N € (X) satisfies fT'(I'yn)) C F(NN), then T(I'y(n)) C
fIF(N) = Usen f~1F(z), which implies that f~1F is a generalized s-KKM map with respect
to T and for each z € X, f~1F(z) is closed. Since T € s-KKM(X,Y, Z), {f'F(z) : z € X}
has the finite intersection property, and so does the family {F(z) : « € X}, we have fT € s-
KKK(X,Y,W). O

Remark Theorem 3 improves the corresponding result in [4] and [6].

Lemma 11"} Let Y be a Hausdorff space, (X, D;T) a G-convex space, and T : Y — X a ®-map.
Then for any nonempty compact subset K of Y, T|k has a continuous selection f : K — X
such that F(K) C 'y for some N € (D). More precisely, there exist two continuous functions
p: K — A, and ¢y : A,, — Ty such that f = ¢y o p for some N € (D) with |[N| =n+ 1.
From Theorem 2, Theorem 3 and Lemma 1, we can obtain a coincident point theorem for

two multimaps or a fixed point theorem for composition of two multimaps.

Theorem 4 Let (X,T,U) be a Hausdorff locally G-convex uniform space, v a basis of the
uniform structure U, Y a compact Hausdorff space, and s : X — X a map such that s(X) is
dense in X. If T € s-KKM(X, X,Y) is a closed map, then for any ®-map F : Y — X, FT and
TF have a fixed point in X and Y, respectively.

Proof In view of Lemma 1, F' has a continuous selection f : Y — X; and by Theorem 3,
fT € s-KKK(X, X, X). Since f is continuous and Y is compact, f7T is a compact map. And
since T is a closed map and f is continuous, f7T is also a closed map. On the other hand,
fT(X) C X = s(X), then by Theorem 2 with I = D = X, fT has a fixed point 2o € X, that
is, o € fT(x0). So there exists a yo € T'(zo) such that g = f(yo) € F(yo), which implies that
xo € FT(x0) and yo € TF(yo)- O

From Theorem 4, we can obtain the following three fixed point corollaries:
Corollary 1 Let (X,T',U) be a Hausdorff locally G-convex uniform space, v a basis of the

uniform structure U, Y a compact Hausdorff space. If T € idx-KKM(X, X,Y) is a closed map,
then for any ®-map F : Y — X, FT and TF have a fixed point in X and Y, respectively.

Proof Put s =idx : X — X to be an identity map in Theorem 4. O

Corollary 2 Let (X,T',U) be a compact Hausdorfl locally G-convex uniform space, v a basis
of the uniform structure U, s : X — X a surjective map. If idx € s-KKM(X, X, X), then any
®-map F : X — X has a fixed point in X.

Proof Put T =idx : X — X to be an identity map and let ¥ = X in Theorem 4. O

Corollary 3 Let (X,T',U) be a compact Hausdorff locally G-convex uniform space, v a basis of
the uniform structure U. Ifidx € idx-KKM(X, X, X), then any ®-map F : X — X has a fixed
point in X.
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Proof Put s=T =idx : X — X to be an identity map and let ¥ = X in Theorem 4. O

3. Quasi-variational inequality on ®-spaces

In this part, we use the well-known fixed point theorem for acyclic map on ®-space to establish

quasi-variational inequality theorem. First, we introduce some well-known results.

Lemma 28 Let C' be a nonempty compact subset of a real Hausdorff topological vector space
Y with a closed convex cone K such that K # Y, then MingC # ().

Lemma 3B Let (X, D;T) be a Hausdorff ®-space and F' € B(X,X). If F is closed and
compact, then F has a fixed point.

In view of Lemma 3 and Remark after Definition 5, we have the following lemma.

Lemma 4 Let (X, D;T") be a Hausdorff ®-space. Then any compact map F € V (X, X) has a
fixed point.

Lemma 5 Let (X,D;T) be a G-convex space, Y a T-convex subset of X with Y (D # 0.
Then (Y,Y (1 D,T) is also a G-convex space.

Now, we give a quasi-variational inequality theorem on ®-space.

Theorem 5 Let (Z,D;T'1) be a G-convex space, (X,T's) a Hausdorff ®-space, Y a Hausdorff
topological vector space with a closed convex cone K such that K # Y and IntK # (). Let
S : X —o X be a continuous compact multimap with nonempty compact values such that S(—X)
is a I'-convex subset of X, T : X — Z a ®-map, C a subset of Z such that T(X) Cc C. If
U : X xCxX — Y is a continuous mapping such that for each (x,z) € X x C, the set
G(z,z) = {u € S(z) : U(z,z,u) € WMing¥(z,z,S(x))} is acyclic, then there exist T € S(T)
and Z € T(T) such that V(Z,z,z) — V(T,Z,T) ¢-IntK for all z € S(T).

Proof Since S: X —o X is a compact map, S(X) : = X; is compact. By Lemma 1, T|x, has a
continuous selection f, that is, there exists a continuous map f : Xo — X such that f(z) € T(x)
for all z € Xy C X. Obviously, S|x, : Xo — Xo and U|x,xcxx, : Xo X C x Xo — Y are still
continuous maps.

Define two multimaps as follows

H: Xy — Xoby Hz) = {u € S(x) : U(x, f(z),u) € WMing¥ (z, f(x),S(x))} for each
z € Xp; and

M: Xy —Y by M(z) =WMingV (x, f(z),S(z)) for each x € X.

Since S is a continuous map with nonempty compact values, and ¥ and f are both continuous,
U(z, f(x),S(x)) is a nonempty compact subset of Y. It follows from Lemma 2 that M (x) # 0
for all z € Xj.

First, we prove that M is a closed map.

Let {(x},y;)}jes be anet in Gr(M) C Xo x Y such that (x;,y,;) — (20,y0) € Xo X Y. Then
y; € M(z;) for each j € J, hence there exists an s; € S(z;) such that y; = U(x;, f(z;),s;).
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Since S is continuous, and Xy and S(x) are both compact for each x € X, S(Xj) is a compact
subset of X and S is closed map on Xy. And since s; € S(z;) C S(Xp) for each j € J, we
assume that s; — so for some sg € s(Xy). Since s; € S(z;) and S is closed map, so € S(z).
Hence yo = ¥(xo, f(z0), o) by the continuty of ¥ and f. Of course, yo € ¥(xo, f(z0), S(x0)).

Suppose that yo ¢ M (xo), then by the definition of WMing, there exists s* € S(x) such that
U(xo, f(x0),s*) —yo €-IntK. Let y* = W(xo, f(20),s*). Then y* —yo €-IntK. Since z; — zo,
s* € S(wo), S is lower semicontinuous on Xy, there exists a net {s}} such that s; € S(z;) and
st — s*. Let y; = V(xy, f(x;),s}). Then yi — ¥(xo, f(20),s") = y* and y; —y; — y* — yo by
the continuty of ¥ and f. But y* — yo €-IntK, hence for j large enough, y; — y; €-IntK, which
contradicts y; € M(z;). Thus yo € M(zo), which means that M is a closed map.

Next, we prove that H : Xg — Xy is a closed valued map.

Let {(z;,u;)}jcs be a net in Gr(H) C Xo x Xo such that (z;,u;) — (zo,u0) € Xo x Xp.
Then u; € H(x;) for all j € J, which implies that u; € S(z;) and U(x;, f(z;),u;) € M(x;)
for all j € J. Since S is closed, ug € S(xp). On the other hand, since f and ¥ are continuous,
and M is a closed map, ¥(z;, f(x;),u;) — ¥(zo, f(z0),u0) € M(zo), so that uy € H(zo), that
is, (zo,up) € Gr(H). This means that H is a closed map on Xy. And since X, is compact, H
is upper semicontinuous map. Notice that X is Haudorff space, therefore H is a closed valued
map.

Since (X,T's) is a Hausdorff ®-space and Xy is a I'-convex subset of X, (Xo,I'2) is also
a Hausdorff ®-space by Lemma 5 and the definition of ®-space. In view of given condition,
H(z) = G(z, f(x)) is acyclic, therefore H : Xy — X satisfies all conditions in Lemma 4, so
that there exists an T € Xy such that T € H(T), that is, T € {u € S@) : ¥(T, f(T),u) €
WMing ¥ (T, f(T),S(T))}. Let 2= f(T) € T(T). Thenz € S(T) C X,z € T(Z) and ¥(7,%,T) €
W MingV(z,z,5(Z)). Therefore, ¥(Z,z,x) — Y(T,z,T) ¢-IntK for all z € S(T). O
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