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Abstract In this paper, we construct a scattered Cantor set having the value 1

2
of log 2

log 3
-

dimensional Hausdorff measure. Combining a theorem of Lee and Baek, we can see the value 1

2

is the minimal Hausdorff measure of the scattered Cantor sets, and our result solves a conjecture

of Lee and Baek.
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1. Introduction

We start with the definition of the scattered Cantor sets. Let E0 be the interval [0, 1]. Take

two non-overlapping intervals of length 3−1 from E0 and let E1 be the union of these 2 intervals.

Take two non-overlapping intervals of length 3−2 from each fundamental interval of E1 and let

E2 be the union of these 22 intervals. We continue in this way, with Ek obtained by taking

two non-overlapping intervals of length 3−k from each fundamental interval of Ek−1. Thus Ek

consists of 2k intervals of length 3−k. Let

F =

∞⋂

k=0

Ek.

The set F is called a scattered Cantor set.

The middle-third Cantor set is clearly a scattered Cantor set. Varying the positions of the

fundamental intervals, one can easily construct many different scattered Cantor sets.

Let s = log 2/log 3. It is known that the scattered Cantor sets all have Hausdorff dimension

s, with s-dimensional Hausdorff measures at most 1. As the s-dimensional Hausdorff measure

of the middle-third Cantor set is 1, it is one of the biggest scattered Cantor sets in the sense of

Hausdorff measure. Lee and Baek[2] proved Hs(F ) ≥ 1
2 for all scattered Cantor sets F . They

conjectured that there are scattered Cantor sets of Hausdorff measure

Hs(F ) =
1

2
.

Received date: 2007-08-22; Accepted date: 2008-05-21
Foundation item: the National Natural Science Foundation of China (No. 10771164); the Education Committee

of Fujian Province (No. JA08155).



Minimal Hausdorff measure of the scattered Cantor sets 1115

In this paper, we shall construct a scattered Cantor set E and prove that its s-dimensional

Hausdorff measure is 1
2 .

We recall that[1] the s-dimensional Hausdorff measure of F is defined by

Hs(F ) = lim
δ→0

Hs
δ(F ),

where

Hs
δ(F ) = inf{

∞∑

n=1

|Un|
s : {Un}

∞

n=1is a δ-cover of F}

and the Hausdorff dimension of F is defined by

dimH(F ) = sup{s > 0 : Hs(F ) = ∞} = inf{s > 0 : Hs(F ) = 0}.

2. Construction of E

Let I=[0,1].

Step 1. Deleting the middle third open interval of I, we get two subintervals I0 and I1 of length

3−1. I0 and I1 are arranged from the left to the right. Move I0 6−1 to the right and I1 6−1 to

the left. For the sake of the convenience, we still denote the moved intervals by I0 and I1 and we

will all use this way to label the moved intervals in the sequel. Then I0 joins I1 non-overlapped

and form a interval, denoted by E1
1 , with length 2

3 .

Step 2. Deleting the middle third open intervals of I0 and I1, respectively, we get four subin-

tervals I00, I01, I10 and I11. They are arranged from the left to the right and their lengths are

same, namely, 3−2. Move I00 3−2 to the right and I11 3−2 to the left. After these processes, the

four subintervals join together non-overlapped and form an interval E2
1 with length 4 · 3−2.

Step 3. For every subinterval of the above interval, namely, I00 , I01, I10 and I11, we remove the

middle third open intervals of length 3−3, and get eight subintervals with length 3−3. They are

arranged from the left to the right and denoted by I000, I001, I010, I011, I100, I101, I110, and I111.

Move I000 3−3 to the right and I011 3−3 to the left. After these processes, the four subintervals,

I000, I001,I010 and I011, join together non-overlapped and form an interval with length 4 · 3−3;

In the same way, move I100 3−3 to the right and I111 3−3 to the left and we get another interval

with length 4 · 3−3. It is not difficult to see that the gap between the two intervals is 2 · 3−3.

We call Iε1
, Iε1ε2

and Iε1ε2ε3
the basic interval of level-1, the basic interval of level-2 and

the basic interval of level-3, respectively, where εi ∈ {0, 1}. Generally, we call Iε1ε2ε3···εk
basic

interval of level-k, where εi ∈ {0, 1}. Therefore, after Step 3, we get two intervals E3
1 , E3

2 , and

every interval is made up of four basic interval of level-3.

Continuing the above process, after step k (k ≥ 3), we get 2k−2 intervals and every interval

is made up of four basic intervals of level-k with length 3−k. The 2k−2 intervals are arranged

from the left to the right and denoted by Ek
i (i = 1, 2, 3, . . . , 2k−2). For the sake of convenience,

we only show how to get Ek+1
1 and Ek+1

2 from Ek
1 . The other intervals, Ek

i (i = 2, 3, . . . , 2k−2),
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are treated in the same way. For Ek
1 , recall that it contains four basic intervals of level-k. For

each one of the four basic intervals of level-k, we delete the middle third open interval and get

eight subintervals with length 3−(k+1). Then we treat the eight subintervals as in Step 3, and

get two new intervals, namely, Ek+1
1 and Ek+1

2 .

Let

E =

∞⋂

k=3

2k−2⋃

i=1

Ek
i .

Then E is exactly the scattered Cantor set which we need. By a simple calculation, we can see

that the diameter of E is 1
3 .

Theorem 1 Let E be defined as the above. Then Hs(E) ≤ 1
2 , where s = log 2

log 3 .

3. Proof of Theorem 1

Proof For any δ > 0, ε > 0. We can choose k ∈ N (k ≥ 3) such that 4 · 3−k < δ, then choose

n ∈ N such that 2−n−2 < ε. First, we note that every interval Ek
i (i = 1, 2, 3, . . . , 2k−2) is

decomposed into 2n intervals E(k+n) with length 4 · 3−(k+n) at step k + n. They are arranged

from the left to the right and denoted by Ek+n
i,1 , Ek+n

i,2 , . . . , Ek+n
i,2n (So, at step k+n, we get 2k+n−2

intervals with length 4 · 3−(k+n) in all). Let a(Ek+n
i,1 ) be the left endpoint of Ek+n

i,1 , b(Ek+n
i,2n ) be

the right endpoint of Ek+n
i,2n (i = 1, 2, 3, . . . , 2k−2). By a simple calculation, we have

b(Ek+n
i,2n ) − a(Ek+n

i,1 ) = 4 · 3−k − 2(3−(k+1) + · · · + 3−(k+n))

= 3−k+1 + 3−(n+k) < δ.

Obviously,

E ⊂

2k−2⋃

i=1

[a(Ek+n
i,1 ), b(Ek+n

i,2n )].

So we can regard {[a(Ek+n
i,1 ), b(Ek+n

i,2n )]}2k−2

i=1 as a δ-cover of E.

By the definition of Hs and note that (a + b)s ≤ as + bs when a ≥ 0, b ≥ 0 and 0 ≤ s ≤ 1, we

have

Hs
δ(E) ≤ 2(k−2)(3−k+1 + 3−(n+k))s ≤ 2(k−2)((3−k+1)s + (3−n−k)s)

≤ 2(k−2)(2−k+1 + 2−k−n) = 2−1 + 2−n−2 < 2−1 + ε.

Letting δ → 0, we have Hs(E) ≤ 1
2 + ǫ. By the arbitrariness of ε, we get Hs(E) ≤ 1

2 .

Remark By Theorem 1 and the result of Lee and Baek, we affirm the conjecture of Lee and

Baek.

References

[1] FALCONER K J. Fractal Geometry. Mathematical Foundations and Applications [M]. John Wiley & Sons,
Ltd., Chichester, 1990.

[2] LEE H H, BAEK I S. Hausdorff measure of the scattered Cantor sets [J]. Kyungpook Math. J., 1996, 35(3):

687–693.


