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Abstract Let (S, <) be a strictly totally ordered monoid which is also artinian, and R a right
noetherian ring. Assume that M is a finitely generated right R-module and N is a left R-
module. Denote by [[M®<]] and [N°'<] the module of generalized power series over M, and the
generalized Macaulay-Northcott module over N, respectively. Then we show that there exists
an isomorphism of Abelian groups:

Torll®™ =N ([ 55]], [NS5]) = @) Torf (M, N).
ses
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1. Introduction

Let R be a ring and (S, <) a strictly totally ordered monoid. Assume that [[R%<]] is the
ring of generalized power series with coefficients in R and exponents in S. The generalized
Macaulay-Northcott modules [M*°<] and the generalized power series modules [[AM*<]] play
an important role in the theory of category of [[R%<]]-modules. For polynomial rings R[],
it was shown in ([1], Theorems 1.2 and 2.1) that there are isomorphisms of Abelian groups
Ext%m (M[z~"], N[z~1]) = BExth(M,N)[[z]] for left Noetherian rings R and R-modules r M,
rN, and Torf-%[z] (M[z~'], N[z~']) = Tor® | (M, N)[z~'] for any rings R and R-modules Mg
and rN. It was shown in ([2], Lemma 2.3) and ([3], Lemma 3.3) that there exists a natural
isomorphism of Abelian groups Homgs,<))([M*=<], [N®=]) = [[Homp (M, N)*=]]. More gener-
ally, under some additional conditions, it was shown that there exist isomorphisms of Abelian
groups Extlps <y ((M5<], [NS<]) = J[, g Extip(M, N)B and Torl® “([[ar5-<]], [[N5<])) =
[[Torf(M, N)S<]J. In this paper we will consider the Tor-group determined by a generalized
power series module [[M*=]];gs.<) and a generalized Macaulay-Northcott module (ps,<) [N*<]

under some additional conditions.
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All rings considered here are associative with identity. Any concept and notation not defined
here can be found in [5]-[7].

Let (S, <) be an odered set. Recall that (5, <) is artinian if every strictly decreasing sequence
of elements of S is finite, and that (S, <) is narrow if every subset of pairwise order-incomparable
elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation
of S shall be denoted additively, and the neutral element by 0. The following definition is due
to [8].

Definition 1.1 Let (S, <) be a strictly ordered monoid (that is, (S, <) is an ordered monoid
satisfying the condition that, if s,s’;t € S and s < s', then s+t < s’ +t), and R a ring. Let
[[R®'=]] be the set of all maps f : S — R such that supp(f) = {s € S|f(s) # 0} is artinian and

narrow. With pointwise addition, and the operation of convolution

o))=Y fluglv),

(u,v)EXs(f,9)

where X,(f,g) = {(u,v) € S x S|s =u+wv, f(u) #0, g(v) # 0} is a finite set by [8, 4.1] for
every s € S and f,g € [[R®=]], [[R®=]] becomes a ring, which is called the ring of generalized
power series. The elements of [[RS<]] are called generalized power series with coefficients in R

and exponents in S.

Many examples and results of rings of generalized power series are given in [5]-[11].

2. Modules of generalized power series

Let M be a right R-module over a ring R and (5, <) a strictly ordered monoid. Denote by
[[M*=]] the set of all maps ¢ : S — M such that supp(¢) = {s € S|¢(s) # 0} is artinian and
narrow. With pointwise addition, [[M®<]] is an abelian additive group. For each f € [[R*=]],
each ¢ € [[M®=]], and s € S, denote

Xs(d, f) = {(u,v) € S x S|s = u+wv,6(u) #0, f(v) # 0}

Then, by [12, Lemma 1], Xs(¢, f) is finite. Now [[M*'=]] can be turned into a right [[R%<]]-

module by the scalar multiplication defined as follows

@)= > i

(u,0)€Xs(d,f)

for each f € [[RS=]] and each ¢ € [[MS=]]. [[M*=]] is called the module of generalized power
series over a right R-module M. The elements of [[M*°=]] are called generalized power series

with coefficients in M and exponents in S.

Similarly, if M is a left R-module, then [M*<]] is a left [[R%<]]-module. Examples and

results of modules of generalized power series are given in [12].

Let M, N be right R-modules and o : M — N an R-homomorphism. Define a mapping
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[@5<) : [[M5:5]] — [V5<]) via
[@*=])(g) : S—N
s — a(g(s))

for any g € [[M*=]]. Clearly supp([[a®=]](g)) C supp(g). Thus it follows that supp([[a*=]](g))
is artinian and narrow. Hence [[@®=]](g) € [[N*'=]]. This means that [[«®<]] is well-defined.

The following results appeared in [3].

Lemma 2.1 (1) [[a@®<]] is an [[R®'<]]-homomorphism.

(2 IftM %N S Lisa complex, then so is

([«™=]] (%=1

(s L vs < [LS<]].

(3) The functor [[(—)*=]] : Mod-R — Mod-[[R®'<]] is exact.
Let M be a right R-module. Define a mapping o : M ®@g [RSS]] — [[M =] via

oY (mi® f))(s) =Y mifi(s), Vm; € M, Vf; € [R¥=]), Vs € S.

Lemma 2.2 If M is a finitely presented right R-module, then « is an isomorphism of right
[[R<]]-modules.

Proof The conclusion follows from [4, Lemma 5]. O

Example 2.3 The converse of Lemma 2.2 is not true in general. Let R be a ring. Suppose
that the monoid S is trivially ordered. Then the artinian and narrow subsets are the finite
subsets. Thus for every right R-module M, there exists an isomorphism of right R-modules
[[M%=]] 2 ®sesM. Similarly, there exists an isomorphism of left R-modules [[R%<]] = @eesR.
Thus there exists an isomorphism of Abelian groups 8 : M ®g [[R¥<]] 2 M ®g (DsesR) =
@ses(M @p R) = ®gesM = [[M¥=]]. Tt is easy to see that o = 3. Thus, by Lemma 1 of [4],
« is an isomorphism of right [[R%<]]-modules. But we can take M such that it is not finitely
presented.

The following result appeared in [4, Lemma 7].

Lemma 2.4 If Pg is finitely generated projective, then [[P%<]] is a projective right [[RS<]]-

module.

3. Generalized Macaulay-Northcott modules

If M is a left R-module, we let [M*<] be the set of all maps ¢ : S — M such that the
set supp(¢) = {s € S|#(s) # 0} is finite. Now [M*=] can be turned into a left [[R%=]]-module
under some additional conditions. The addition in [M*®<] is componentwise and the scalar

multiplication is defined as follows

(fo)(s) = Zf(t)¢(s +t), forevery seS,

tesS
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where f € [[R%=]], and ¢ € [M®=]. Since the set supp(¢) is finite, this multiplication is well-
defined. If (S, <) is a strictly totally ordered monoid which is also artinian, then, from [2], [M <]
becomes a left [[R%<]]-module, which we call the generalized Macaulay-Northcott module.

For example, if S = N and < is the usual order, then [M™=] = M[z~!], the usual left
R][x]]-module introduced in [13] and [4], which is called the Macaulay-Northcott module in [14]
and [1].

We shall henceforth assume that (5, <) is a strictly totally ordered monoid which is also
artinian. Then it is easy to see that (S, <) satisfies the condition that 0 < s for every s € S[1%,

For any abelian additive group G, we denote by [[G®<]] the set of all maps h : S — G.
With pointwise addition, [[G*<]] is an abelian additive group.

For any R-homomorphism o : M — N, define f € [[Hompg(M,N)%=]] via f(0)
and f(z) = 0 for all 0 # = € S. By ([2], Lemma 2.3) and its proof, there exists [a>
Hom(gs.<y([M =], [N®'<]) such that for any ¢ € [M>=] and any s € S,

[ =](9)(s) = D f(w)(d(s +u)) = al9(s)).

uesS

«
€

IN

]

The following result appeared in [3, Lemma 3.2].

Lemma 3.1 The functor [(—)%<] : R-Mod — [[R*'=]]-Mod defined as [(—)%<)(M) = [M*=]

[(=)%=](a) = [a¥=], is exact.

?

Lemma 3.2 Let N < M be left R-modules. Then
(MSS)/[NSS] = [(M/N)*S]
as left [[R®<]]-modules.

Proof The conclusion follows from Lemma 3.1. O

Lemma 3.3 Let M be a finitely presented right R-module and N a left R-module. Then there
is a natural isomorphism [[M*<]] ®gs.<y [N®<] = [(M @r N)*<].

Proof It is easy to see that there exists an isomorphism of left R-modules [N°'<] =2 @, cgN. By
Lemma 2.2, there exists a natural isomorphism of right [[R%<]]-modules M @ g [[R%<]] = [[M*=]]
since M is finitely presented. Now, we have
([M%=]] ®s.<) IN9=] 2 (M @ [[R¥=]]) @ps.<)) [N*=]

= M @ ([R*=]] @as.<)) [NF=))

>~ M @p [NSS] 2 M ®p (BsesN)

= 69SES(Jw ®R N)

> [(M ®@r N)®=].

Clearly all isomorphisms mentioned above are natural. O
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4. Tor-groups

Theorem 4.1 Let S be a strictly totally ordered monoid which is also artinian and R a right
noetherian ring. If M is a finitely generated right R-module and N is a left R-module, then

there exist isomorphisms of Abelian groups:

Torll™ N ([Ar5<]), [N5]) = [Torf (M, N)S<] = @B Tor (M, N).
ses

Proof Since R is right noetherian, there exists a projective resolution
.._,P25—2>P15—1>P06—°>M—>0
of M such that Py, Py, ... are finitely generated and projective. Then, by Lemmas 2.1 and 2.4,
— (=] — [[PP=]] — [Py =] — ([M%<]) — 0

S <]]

is a projective resolution of right [[R%<]]-module [[M*<=]]. Consider the deleted projective

resolution

[[65°=1] [[65°=1]
_— —_—

[[P7=]] [125"=]] — 0.

We have the complex

165 =11(*)
_

- — [P =])) ®grs.<y INF5] [P =] ®(rs.<p) [N<]

(165" =11(x)

185 =11 (%) 5,< 8,<
——— [[By "] ®qgs.<p) [N7=] ——— 0,

where [[67°=]](x) = [[6<]] ®irs.<]) lins.<) for every i = 0,1,.... On the other hand, we have

the complex

—Per N2 oy N2 pay N 2,

where §;(x) = 0; @ 1n for every i = 0,1,.... Thus, by Lemma 3.1, we have the complex
s,<q [62(:)5] S,<
—>[(P2®RN) ]—)[(P1®RN) ]
)5 < S <
{51( ) ] [(PO ®R N)SS] [50( ) ] O
Clearly Py, Py, ... are finitely presented. Thus by Lemma 3.3, there exists a natural isomorphism

[[Pis,g]] ®[[Rs,§“ [NSS] o~ [(Pl ®nr N)S,S]_

Consider the following commutative diagram:

. <1 80P =]
0 —— Ker([6:(+)*=]) —— [(P;@r N)*S] ———

(
0 —— Ker([0;(+)>=]) —— [(P; @r N)>=]
It follows that Ker([5;(*)>=]) ~ [Ker(é.

i
T ([841 (%) ¥=]) = [m(di41 (+))5=].

[(Pio1 ®@r N)®<]

8i(%)5=
10:()™ =1 (P ®p N)S<]

)%<)] by Five Lemma. Similarly, we have
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Thus, by Lammas 3.1, 3.2 and 3.3, we have

Torl S ([Ar5=), [N9=]) = Ker

(
= [(Ker(8;(%))/Im(8i11 (%)) 7]
= [Tor® (M, N)%=].

The isomorphism [Tor (M, N)%=] = @,csTorf (M, N) is clear. O

Corollary 4.2 If R is a right noetherian ring, M is a finitely generated right R-module and N

is a left R-module, then there exist isomorphisms of Abelian groups

Tor, (M [[2]), N[z~1)) = @ Torf (M, N) = Torf (M, N)[z~Y].
n=0
Corollary 4.3 Let S be a torsion-free and cancellative monoid, and (S,<) be artinian and
narrow. If R is a right noetherian ring, M is a finitely generated right R-module and N is a left
R-module, then

Torl® N ([[MS <)), [N9<]) = ) Torf (M, N).
S

Proof If (5, <) is torsion-free and cancellative, then by [5, 3.3], there exists a compatible strict
total order <’ on S, which is finer than <, that is, for any s,t € S, s < ¢t implies s <’ £. Since
(S, <) is artinian and narrow, by [5, 2.5] it follows that (S, <’) is artinian and narrow. Thus, by
Theorem 4.1, Torl 2™ = I([A15<], [NS<]) = @ gTor (M, N).

On the other hand, since (S, <) is narrow, by [5, 4.4], [[RS<]] = [[RS<"]]. Clearly [[M5<]] =
([M3=']] and [N5=] = [N5=']. Now the result follows. O

Any submonoid of the additive monoid N U {0} is called a numerical monoid. We have

Corollary 4.4 Let S be a numerical monoid and < the usual natural order of NU {0}. If R is
a right noetherian ring, M is a finitely generated right R-module and Nis a left R-module, then

Torl®™ V(M5 <)), [N5<]) = ) Tor (M, N).
S

Corollary 4.5 Suppose that (S1,<1),...,(Sn, <) are strictly totally ordered monoids which
are artinian. Denote by (lex <) and (rev lex <) the lexicographic order, the reverse lexicographic
order, respectively, on the monoid Sy x --- x S,. If R is a right noetherian ring, M is a finitely
generated right R-module and N is a left R-module, then there exist isomorphisms of Abelian
groups

[[RS1X % Sn,(lex2)))

for (([pg xS e[S Sn (e

%
[[RSIX---XSn,(rcv 1cx§)]]

=~ Tor ([[M51 ><---><Sn,(1revlex§)]]7 [NSl ><~»><Sn,(revlex§)])

~ P Tof(MN).
Sl><~~~><Sn
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Proof It is easy to see that (S1 x -+ x Sy, (lex <)) and (S1 X -+ x Sp, (revlex <)) are strictly

totally ordered monoids which are artinian. Thus the result follows from Theorem 4.1. O
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