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Abstract This paper deals with the asymptotic behavior of global classical solutions to quasi-

linear hyperbolic systems of diagonal form with weakly linearly degenerate characteristic fields.

On the basis of global existence and uniqueness of C
1 solution, we prove that the solution to the

Cauchy problem approaches a combination of C
1 traveling wave solutions when t tends to the

infinity.
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1. Introduction and main result

In this paper, we consider the following Cauchy problem for quasilinear hyperbolic systems

of diagonal form:
{

∂ui

∂t
+ λi(u)

∂ui

∂x
= 0, i = 1, . . . , n,

t = 0 : u = f(x),
(1)

where u = (u1, . . . , un)T is the unknown vector-valued function of (t, x), λi(u) (i = 1, . . . , n) are

supposed to be suitably smooth and f(x) = (f1(x), . . . , fn(x))T ∈ (C1
b (R) ∩W 1,1(R))n, C1

b (R)

is the space of C1 functions with bounded C1(R) norm. We suppose that system (1) is strictly

hyperbolic such that

λi+1(u) − λi(v) > δ0, i = 1, . . . , n− 1 (2)

for any given u and v on the domain under consideration, where δ0 is a positive constant. We

suppose furthermore that for each i = 1, . . . , n, the i-th characteristic λi(u) is weakly linearly

degenerate, i.e.,

λi(0, . . . , 0, ui, 0, . . . , 0) = λi(0). (3)

Received April 7, 2008; Accepted April 16, 2008

Supported by the Doctoral Programme Foundation of the Ministry of Education of China (Grant No. 20070246
-173).

E-mail address: 052018041@fudan.edu.cn



30 Q. ZHENG

We say that system (1) is rich, if there exist n positive functions Ni(u) > 0 (i = 1, . . . , n)

such that on the domain under consideration we have

(λj(u) − λi(u))
∂Ni(u)

∂uj

= Ni(u)
∂λi(u)

∂uj

, ∀j 6= i.

The notion of rich system was introduced by Serre [1]. If system (1) possesses a form of

conservation laws, then it must be rich. There are many results about the existence of global

classical solutions to the Cauchy problem for quasilinear hyperbolic systems [2–6]. Based on

these results, the asymptotic behavior of global classical solutions was studied in [7]–[9].

On the basis of [5], we prove the following theorem.

Theorem 1 Let f(x) ∈ (C1
b (R)∩W 1,1(R))n. Assume that λi(u) (i = 1, . . . , n) are C2 functions,

system (1) is weakly linearly degenerate and (2) holds. Then there exists a constant δ > 0

depending only on ‖f‖C0(R) and ‖f ′‖L1(R), such that if

‖f ′‖C0(R)‖f‖L1(R) 6 δ, (4)

then Cauchy problem (1) admits a unique global classical solution u = u(t, x) for all t ∈ R.

Moreover, there is a unique C1 vector-valued function φ(x) = (φ1(x), . . . , φn(x))T, such that

u(t, x) converges uniformly to
∑n

i=1 φi(x−λi(0)t)ei as t→ ∞, where ei = (0, . . . , 0,
i

1, 0, . . . , 0)T.

φ(x) is global Lipschitz continuous, i.e., there exists a positive constant K depending only on

‖f‖C1(R) and ‖f‖W 1,1(R) such that

|φ(α) − φ(β)| 6 K|α− β|, ∀α, β ∈ R.

Furthermore, if system (1) is rich, lim|x|→+∞ f ′(x) = 0 and f ′(x) is global ρ-Hölder continuous

(0 < ρ 6 1), i.e.,

|f ′(α) − f ′(β)| 6 κ|α− β|ρ, ∀α, β ∈ R, (5)

where κ is a positive constant, then φ′(x) satisfies

|φ′(α) − φ′(β)| 6 K1|α− β|ρ +K2|α− β|,

where K1, K2 are positive constants depending on κ, ‖f‖C1(R) and ‖f‖W 1,1(R).

2. Uniform a priori estimate

In the following sections, we consider the global C1 solutions for t > 0. The result for t 6 0

follows easily by changing the variable from t to −t in system (1). For convenience, we introduce

M = sup
x∈R

|f ′(x)| = ‖f ′(x)‖C0(R), M0 = sup
x∈R

|f(x)| = ‖f(x)‖C0(R),

N1 =

∫ +∞

−∞

|f(x)|dx = ‖f(x)‖L1(R), N2 =

∫ +∞

−∞

|f ′(x)| = ‖f ′(x)‖L1(R).

For any fixed T > 0, we introduce

wi(t, x) =
∂ui(t, x)

∂x
, i = 1, . . . , n, W1(T ) = sup

06t6T

∫ +∞

−∞

|w(t, x)|dx,
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W̃1(T ) = max
i6=j

sup
x∈R

∫

C̃j

|wi(t, x)|dt, Ũ1(T ) = max
i6=j

sup
x∈R

∫

C̃j

|ui(t, x)|dt,

W̄1(T ) = max
i6=j

sup
x∈R

∫

Lj

|wi(t, x)|dt, Ū1(T ) = max
i6=j

sup
x∈R

∫

Lj

|ui(t, x)|dt,

W∞(T ) = sup
06t6T

sup
x∈R

|w(t, x)|, U∞(T ) = sup
06t6T

sup
x∈R

|u(t, x)|,

where C̃j stands for any given j-th characteristic in the domain [0, T ]×R and Lj stands for the

segment of any given straight line with the slope λj(0) in the domain [0, T ]× R.

Lemma 1 Under the assumptions of Theorem 1, there exists a positive constant C depending

only on M0 and δ, such that the following estimates hold:

W̃1(T ), W̄1(T ),W1(T ) 6 CN2, Ũ1(T ), Ū1(T ) 6 CN1e
CN2 ,

W∞(T ) 6 CMeCN2, U∞(T ) 6 C.

Proof For any fixed α ∈ R and any i = 1, . . . , n, ui(t, xi(t, α)) is a constant fi(α) along the

i-th characteristic. So we can get

U∞(T ) 6 sup
α∈R

|f(α)| = M0 6 C. (6)

Differentiating system (1) with respect to x, we get

∂wi

∂t
+
∂(λi(u)wi)

∂x
= 0. (7)

Multiplying (7) by sgn(wi), we have

d(|wi(t, x)|(dx − λi(u)dt)) = 0. (8)

For any fixed α ∈ R, let C̃j : x = xj(t, α) stand for any given j-th characteristic passing through

any point A : (0, α) on the initial axis t = 0 and intersecting t = T at point P . We draw an i-th

characteristic C̃i : x = xi(t, β) from P downwards to the point B : (0, β) on t = 0. Without loss

of generality, we assume α < β and integrate (8) in the region APB to get
∫

C̃j

|wi(t, x)|(λj(u) − λi(u))dt =

∫ β

α

|wi(0, x)|dx. (9)

Noting (2), we get
∫

C̃j

|wi(t, x)|dt 6
1

δ0

∫ +∞

−∞

|f ′(x)|dx 6 CN2. (10)

Then

W̃1(T ) 6 CN2. (11)

Similarly, we can get

W̄1(T ) 6 CN2. (12)

To estimate W1(T ), we need only to estimate
∫ l

−l
|w(t, x)|dx for any given l > 0 and then let

l → +∞. From point M : (t, l), we draw an i-th characteristic downwards to the point P : (0, α1)
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on t = 0; From pointN : (t,−l), we draw an i-th characteristic downwards to the pointQ : (0, β1)

on t = 0. Integrating (8) in the region MNQP, we easily get
∫ l

−l

|w(t, x)|dx 6 CN2.

Thus

W1(T ) 6 CN2. (13)

The estimates of W∞(T ) and Ũ1(T ) have been given by Li and Peng in [5]. We recite them

as follows for consistency.

We rewrite equation (7) and the corresponding initial data to get






∂wi

∂t
+ λi(u)

∂wi

∂x
= −

∂λi(u)
∂ui

w2
i −

∑

l 6=i

∂λi(u)
∂ul

wlwi,

t = 0 : wi = f ′
i(x).

(14)

By Hadamard’s formula, we get:

∂λi(u)

∂ui

=
∂λi(u)

∂ui

−
∂λi(0, . . . , 0, ui, 0, . . . , 0)

∂ui

=
∑

l 6=i

(

∫ 1

0

∂λ2
i (su1, . . . , sui−1, ui, sui+1, . . . , sun)

∂ul∂ui

ds)ul

def
=

∑

l 6=i

bil(u)ul,

where bil(u) (l 6= i) are continuous functions of u. Along the i-th characteristic x = xi(s, β), wi

can be expressed as

wi(t, xi(t, β)) =
f ′

i(β)e−Ai(t,β)

1 + f ′
i(β)

∫ t

0
(
∑

l 6=i bil(u)ul)(s, xi(s, β))e−Ai(s,β)ds
, (15)

where

Ai(s, β) =

∫ s

0

(
∑

l 6=i

∂λi(u)

∂ul

wl)(τ, xi(τ, β))dτ.

Noting (11) and λi(u) ∈ C2, we have

|Ai(s, β)| 6 CN2. (16)

For any given l 6= i, the l-th characteristic passing through point (t, xi(t, β)) on the i-th charac-

teristic must intersect t = 0 at a point denoted by (0, yil(t, β)). Let x = xl(t, yil(t, β)) be this

l-th characteristic. We have xi(t, β) = xl(t, yil(t, β)). Differentiating it with respect to t, we get

λi(u(t, xi(t, β))) = λl(u(t, xi(t, β))) +
∂xl(t, yil(t, β))

∂yil

∂yil(t, β)

∂t
. (17)

From (2), we know that ∂yil(t, β)/∂t is always different from zero for all l 6= i, so t→ yil(t, β) is

a strictly monotone function. Therefore, (17) can be rewritten as

1

(λi − λl)(u(t, xi(t, β)))

∂xl(t, yil(t, β))

∂yil

∂yil(t, β)

∂t
= 1. (18)
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Since ul is a constant along the l-th characteristic, we have

ul(t, xi(t, β)) = ul(t, xl(t, yil(t, β))) = fl(yil(t, β)). (19)

According to (18)–(19), we have

Ũil(t, β)
def
=

∫ t

0

|ul(s, xi(s, β))|ds

=

∫ t

0

|fl(yil(s, β))||
1

(λi − λl)(u(s, xi(s, β)))
||
∂xl(s, yil(s, β))

∂y
||
∂yil(s, β)

∂s
|ds. (20)

Differentiating ui(t, xi(t, β)) = fi(β) with respect to β gives

wi(t, xi(t, β))
∂xi(t, β)

∂β
= f ′

i(β). (21)

Comparing with (15), we get

|
∂xi(t, β)

∂β
| = |eAi(t,β)(1 + f ′

i(β)

∫ t

0

(
∑

l 6=i

bil(u)ul)(s, xi(s, β))e−Ai(s,β)ds)|

6 CeCN2(1 +M
∑

l 6=i

∫ t

0

|ul(s, xi(s, β))|ds). (22)

Therefore, for any given β ∈ R and i, l = 1, . . . , n (l 6= i), we get

Ũil(t, β) 6CeCN2

∫ t

0

|fl(yil(s, β))|·

(1 +M
∑

j 6=l

∫ s

0

|uj(τ, xl(τ, yil(s, β)))|dτ)|
∂yil(s, β)

∂s
|ds

6CeCN2

∫ +∞

−∞

|fl(y)|(1 +M
∑

j 6=l

∫ gil(y,β)

0

|uj(τ, xl(τ, y))|dτ)dy

6CeCN2

∫ +∞

−∞

|fl(y)|(1 +M
∑

j 6=l

∫ t

0

|uj(τ, xl(τ, y))|dτ)dy

6CN1e
CN2 + C(n− 1)MN1e

CN2Ũ1(T ),

where s = gil(y, β) is the inverse function of y = yil(s, β). Thus

Ũ1(T ) 6 CN1e
CN2 + C(n− 1)MN1e

CN2Ũ1(T ).

Taking δ > 0 so small that 2C(n− 1)MN1e
CN2 6 1, we get

Ũ1(T ) 6 2CN1e
CN2. (23)

We can estimate Ū1(T ) in a similar way.

For any given l 6= i, the l-th characteristic passing through point (t, x̄i(t, β)) on the line

x̄i(t, β) = λi(0)t + β must intersect t = 0 at a point denoted by (0, αil(t, β)). So we have

x̄i(t, β) = xl(t, αil(t, β)). Differentiating it with respect to t, we get

λi(0) = λl(u(t, x̄i(t, β))) +
∂xl(t, αil(t, β))

∂αil

∂αil(t, β)

∂t
. (24)
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Noting (2), ∂αil(t, β)/∂t is always different from zero for any given l 6= i. Therefore, t→ αil(t, β)

is a strict monotone function and equation (24) can be rewritten as

1

λi(0) − λl(u(t, x̄i(t, β)))

∂xl(t, αil(t, β))

∂αil

∂αil(t, β)

∂t
= 1. (25)

Similarly to the estimate of Ũ1(T ), substituting (25) for (18), we easily get

Ū1(T ) 6 2CN1e
CN2. (26)

On the other hand, taking δ > 0 so small that 2CδeCN2 6 1, we get

1 + f ′
i(β)

∫ t

0

(
∑

l 6=i

bil(u)ul)(s, xi(s, β))e−Ai(s,β)ds > 1 − CMN1e
CN2 >

1

2
.

So, for any given 0 6 t 6 T and x ∈ R, we get

W∞(T ) 6 2MeCN2. (27)

The proof of Lemma 1 is completed. 2

We can get the existence and uniqueness of global classical solutions of system (1) according

to Lemma 1.

Lemma 2 Suppose that system (1) is rich. Then under the assumptions of Theorem 1, there

exists a constant C depending only on M0 and δ such that there holds

Ũ1(T ) 6 CN1, Ū1(T ) 6 CN1, W∞(T ) 6 CM.

Proof Since system (1) is rich, we introduce the Lax transformation

vi = N−1
i (u)

∂ui

∂x
, i = 1, . . . , n.

From the boundness of u, we have C1 6 Ni(u) 6 C2. Moreover, (14) can be rewritten as






∂vi

∂t
+ λi(u)

∂vi

∂x
= −

∂λi(u)
∂ui

Ni(u)v
2
i ,

t = 0 : vi = N−1
i (f(x))f ′

i(x).
(28)

Integrating vi along the i-th characteristic, we get

vi(t, xi(t, β)) =
vi(0, β)

1 + vi(0, β)
∫ t

0 (Ni(u)
∑

l 6=i bil(u)ul)(s, xi(s, β))ds
.

So

wi(t, xi(t, β)) =
Ni(u(t, xi(t, β)))N−1

i (f(β))f ′
i(β)

1 +N−1
i (f(β))f ′

i(β)
∫ t

0
(Ni(u)

∑

l 6=i bil(u)ul)(s, xi(s, β))ds
. (29)

Noting (21), (29) and the boundness of Ni(u), we get

|
∂xi(t, β)

∂β
| = |

Ni(f(β)) + f ′
i(β)

∫ t

0 (Ni(u)
∑

l 6=i bil(u)ul)(s, xi(s, β))ds)

Ni(u(t, xi(t, β)))
|

6 C(1 +M
∑

l 6=i

∫ t

0

|ui(s, x(s, β))|ds). (30)
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Similarly to the estimate of Ũ1(T ) in Lemma 1, we get

Ũ1(T ) 6 2CN1, Ū1(T ) 6 CN1. (31)

So, taking δ > 0 so small that 2Cδ 6 1, we get the following estimate on the denominator in

(29)

1 +N−1
i (f(β))f ′

i(β)

∫ t

0

(Ni(u)
∑

l 6=i

bil(u)ul)(s, xi(s, β))ds > 1 − CMN1 >
1

2
. (32)

Thus, it is easy to get that

W∞(T ) 6 CM. (33)

This ends the proof of Lemma 2. 2

The i-th characteristic passing through point (t, α + λi(0)t) must intersect t=0 at a point

denoted by (0, θi(t, α)).

Lemma 3 Under the assumptions of Theorem 1, for any fixed α, there exists a unique ϑi(α)

such that

θi(t, α) → ϑi(α), as t→ +∞.

Moveover, ϑi(α) is global Lipschitz continuous with respect to α, i.e., for any given α, β ∈ R, we

have

|ϑi(α) − α| 6 CN1e
CN2, |ϑi(α) − ϑi(β)| 6 eC(N2+1)|α− β|.

Proof First we prove θi(t, α) converges uniformly when t→ +∞. Noting that the i-th charac-

teristic passes through (t, α+ λi(0)t), we get

α+ λi(0)t = xi(t, θi(t, α)) = θi(t, α) +

∫ t

0

λi(u(s, xi(s, θi(t, α))))ds.

Therefore

θi(t, α) − α =

∫ t

0

(λi(0) − λi(u(s, xi(s, θi(t, α)))))ds

= −

∫ t

0

∑

j 6=i

Λijuj(s, xi(s, θ(t, α)))ds, (34)

where

Λij(u)
def
=

∫ 1

0

∂λi(τu1, . . . , τui−1, ui, τui+1, . . . , τun)

∂uj

dτ. (35)

By Lemma 1, we get

|

∫ t

0

∑

j 6=i

Λijuj(s, xi(s, θi(t, α)))ds| 6

∫ t

0

|
∑

j 6=i

Λijuj(s, xi(s, θi(t, α)))|ds

6 C

∫ t

0

∑

j 6=i

|uj(s, xi(s, θi(t, α)))|ds 6 CŨ1(t) 6 CN1e
CN2 . (36)

This implies that
∫ t

0

∑

j 6=i Λijuj(s, xi(s, θi(t, α)))ds converges uniformly for any given α ∈ R

when t→ +∞. Therefore, there exists a unique ϑi(α) such that

lim
t→+∞

θi(t, α) = ϑi(α). (37)
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Noting (34)–(37), we get

|ϑi(α) − α| 6 CN1e
CN2. (38)

In what follows, we prove that ϑi(α) is Lipschitz continuous. For any given α, β ∈ R, we have

ϑi(α) − ϑi(β) = lim
t→+∞

(θi(t, α) − θi(t, β)). (39)

There exists an α∗ such that

|θi(t, α) − θi(t, β)| 6 |
∂θi(t, α

∗)

∂α
||α− β|. (40)

By the definition of characteristic, we have






dxi(s, θi)
ds

= λi(u(s, xi(s, θi))),

s = 0, xi = θi.

Differentiating it with respect to θi, we get














d∂xi(s,θi))
∂θi

ds
=

∑

l

∂λi(u(s, xi(s, θi)))
∂ul

∂ul(s, xi(s, θi))
∂x

∂xi(s, θi)
∂θi

,

s = 0, ∂xi

∂θi
= 1.

Then
∂xi(s, θi)

∂θi

= exp{

∫ s

0

∑

l

∂λi(u(τ, xi(τ, θi)))

∂ul

∂ul(τ, xi(τ, θi))

∂x
dτ}.

Differentiating xi(t, θi(t, α)) = λi(0)t+ α with respect to α, we get ∂xi

∂θi

∂θi

∂α
= 1. Then

∂θi(t, α)

∂α
= (

∂xi

∂θi

)−1 = exp{−

∫ t

0

∑

l

∂λi(u(s, xi(s, θi)))

∂ul

∂ul(s, xi(s, θi))

∂x
ds}.

When l 6= i, we have
∫ t

0

|
∂ul(s, xi(s, θi(t, α)))

∂x
|ds 6 CN2;

while, when l = i, it follows from Hadamard’s formula
∫ t

0

|
∂λi(u)

∂ui

∂ui(s, xi(s, θi(t, α)))

∂x
|ds =

∫ t

0

|
∑

l 6=i

bilulwi|ds

6 CW∞(T )Ũ1(T ) 6 C.

Thus, we get

|
∂θi(t, α)

∂α
| = exp{−

∫ t

0

(
∑

l 6=i

∂λi

∂ul

∂ul(s, xi(s, θi))

∂x
+

∑

l 6=i

bilulwi)ds} 6 eC(N2+1). (41)

According to (39)–(41), we have

|ϑi(α) − ϑi(β)| 6 eC(N2+1)|α− β|. (42)

3. Asymptotic behaviour of global classical solutions
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Theorem 2 The limit

lim
t→∞

ui(t, x) = φi(α) = φi(x− λi(0)t)

exists and satisfies the following estimates

|φi(α)| 6 C, |φi(α) − φi(β)| 6 CMeCN2|α− β|.

Proof We have

Dui

Dit

def
=

∂ui

∂t
+ λi(0)

∂ui

∂x
=

dui

dit
+ (λi(0) − λi(u))

∂ui

∂x

= (λi(0) − λi(u))
∂ui

∂x
= −

∑

j 6=i

{Λijujwi}.

Integrating it along x = α+ λi(0)t gives

ui(t, x) = ui(t, α+ λi(0)t) = fi(α) −

∫ t

0

∑

j 6=i

(Λijujwi)(s, α + λi(0)s)ds, (43)

where

|

∫ t

0

∑

j 6=i

(Λijujwi)(s, α+ λi(0)s)ds| 6

∫ t

0

∑

j 6=i

|(Λijujwi)(s, α + λi(0)s)|ds

6 C

∫ t

0

∑

j 6=i

|(ujwi)(s, α+ λi(0)s)|ds 6 CW∞(t)Ū1(t) 6 C. (44)

Hence,
∫ t

0

∑

j 6=i(Λijujwi)(s, α + λi(0)s)ds converges uniformly for any given α ∈ R when t →

+∞. Noting (43)–(44), we get

lim
t→∞

ui(t, x) = φi(α). (45)

According to (26) and (43)–(45), we have

|φi(α)| 6 |fi(α)| + CMN1e
CN2 6 C, (46)

|φi(α) − φi(β)| = lim
t→∞

|(ui(t, α+ λi(0)t) − ui(t, β + λi(0)t))|

= lim
t→∞

|wi(t, α
∗ + λi(0)t)||α − β| 6 CMeCN2|α− β|. (47)

This completes the proof of Theorem 2. 2

Theorem 3 Under the assumptions of Theorem 1, for any given i ∈ {1, . . . , n} and α ∈ R, the

limit

lim
t→∞

wi(t, xi(t, α)) = ψi(α)

exists. ψi(α) is continuous with respect to α ∈ R and satisfies

|ψi(α)| 6 CMeCN2.

Moreover, denoting w̃∗
α,β(∞)

def
= maxi=1,...,n supt∈[0,+∞) |wi(t, xi(t, α)) − wi(t, xi(t, β))|, we have

w̃∗
α,β(∞) 6 Cκ|α− β|ρ + CM2(N2 + 1)|α− β|.
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Proof First we prove that wi(t, xi(t, α)) converges uniformly with respect to α when t→ +∞.

Denote

h(t, β)
def
=

∫ t

0

(
∑

l 6=i

bil(u)ul)(s, xi(s, β))e−Ai(s,β)ds.

According to (15), we have

|wi(t1, xi(t1, β)) − wi(t2, xi(t2, β))|

6 |
f ′

i(β)(e−Ai(t1,β) − e−Ai(t2,β)) + f ′
i(β)2h(t2, β)(e−Ai(t1,β) − e−Ai(t2,β))

(1 + f ′
i(β)h(t1, β))(1 + f ′

i(β)h(t2, β))
|+

|
f ′

i(β)2e−Ai(t2,β)(h(t2, β) − h(t1, β))

(1 + f ′
i(β)h(t1, β))(1 + f ′

i(β)h(t2, β))
|. (48)

Since f ∈ (C1
b (R) ∩W 1,1(R))n and lim

|x|→+∞
f ′(x) = 0, there exists an M1 such that

sup
|x|>M1

|f(x)| 6 ε, sup
|x|>M1

|f ′(x)| 6 ε,

∫

|x|>M1

|f(x)| 6 ε,

∫

|x|>M1

|f ′(x)| 6 ε.

The l-th characteristic passing through point (t1, xi(t1, β)) intersects t = 0 at a point denoted

by α1, and the l-th characteristic passing through point (t2, xi(t2, β)) intersects t = 0 at a point

denoted by α2. Without loss of generality, we assume l < i (the case l > i can be proved

similarly). When β > −M1, taking T1 >
2M1

δ0

and t2 > t1 > T1, we get M1 < α1 < α2. Similarly

to (9)–(10), we get
∫ t2

t1

|wl(τ, xi(τ, β))|dτ 6
1

δ0

∫ α2

α1

|f ′
l (x)|dx 6 C

∫

|x|>M1

|f ′
l (x)|dx 6 Cε.

Therefore, we can make estimates as follows

| exp(−Ai(t1, β)) − exp(−Ai(t2, β))|

= | exp(−Ai(t2, β))|| exp(

∫ t2

t1

(
∑

l 6=i

∂λi(u)

∂ul

wl)(τ, xi(τ, β))dτ) − 1|

6 eCN2 |eCε − 1| 6 CeCN2ε, (49)

|h(t2, β) − h(t1, β)| = |

∫ t2

t1

(
∑

l 6=i

bil(u)ul)(s, xi(s, β))e−Ai(s,β)ds|

6 CeCN2

∫ t2

t1

|ul(s, xi(s, β))|ds 6 CeCN2

∫

|x|>M1

|fl(x)|dx 6 CeCN2ε. (50)

According to (48)–(50), we have

|wi(t1, xi(t1, β)) − wi(t2, xi(t2, β))| 6 Cε. (51)

When β 6 −M1, noting (15), we have |wi(t, xi(t, β))| 6 C|f ′
i(β)| 6 Cε. So, for any given β ∈ R,

we get

|wi(t1, xi(t1, β)) − wi(t2, xi(t2, β))| 6 Cε. (52)

So, we conclude that wi(t, xi(t, α)) converges uniformly, i.e.,

lim
t→∞

wi(t, xi(t, α)) = ψi(α). (53)
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In what follows, we estimate w̃∗
α,β(∞).

If the system is rich, we apply Lax transformation and get (28)–(29). Denote

g1(t, β)
def
= Ni(u(t, xi(t, β)))N−1

i (f(β)),

g2(t, β)
def
= N−1

i (f(β))f ′
i(β)

∫ t

0

(Ni(u)
∑

l 6=i

bil(u)ul)(s, xi(s, β))ds.

By Lemma 2, we get

|g1(t, β)| 6 C, |g2(t, β)| 6
1

2
, |

∂g1(t, β)

∂β
| 6 CM.

Thus

|g1(t, β)f ′
i(β) − g1(t, α)f ′

i(α)| 6 |g1(t, β)(f ′
i(β) − f ′

i(α))| + |g1(t, β) − g1(t, α)||f ′
i(α)|

6 C|f ′
i(β) − f ′

i(α)| + |
∂g1(t, α

∗)

∂α
||f ′

i(α)||α − β|

6 C|f ′
i(β) − f ′

i(α)| + CM2|α− β|,

|g1(t, β)g2(t, α)f ′
i(β) − g1(t, α)g2(t, β)f ′

i(α)|

6 |g1(t, α)g2(t, β)(f ′
i(β) − f ′

i(α))| + |g1(t, α)||f ′
i(β)||g2(t, α) − g2(t, β)|+

|g2(t, β)||f ′
i(β)||g1(t, α) − g1(t, β)|

6 C|f ′
i(β) − f ′

i(α)| + CM2(N2 + 1)|α− β|.

Therefore

|wi(t, xi(t, β)) − wi(t, xi(t, α))|

= |
g1(t, β)f ′

i(β) − g1(t, α)f ′
i(α) + g1(t, β)g2(t, α)f ′

i(β) − g1(t, α)g2(t, β)f ′
i(α)

(1 + g2(t, α))(1 + g2(t, β))
|

6 C|f ′
i(α) − f ′

i(β)| + CM2(N2 + 1)|α− β|.

So, we conclude that

w̃∗
α,β(∞) 6 C|f ′

i(α) − f ′
i(β)| + CM2(N2 + 1)|α− β|.

When the initial data satisfies (5), we get

w̃∗
α,β 6 Cκ|α− β|ρ + CM2(N2 + 1)|α− β|. (54)

Moreover, we can get the continuity of ψi(α) from the continuity of wi with respect to α and the

following estimate

|ψi(α)| = lim
t→∞

|wi(t, xi(t, α))| 6 CMeCN2. (55)

This completes the proof of Theorem 3. 2

Theorem 4 The limit

lim
t→∞

wi(t, α+ λi(0)t) = ψi(ϑi(α)) = φ′i(α)

exists and φ′i(α) is continuous with respect to α ∈ R. Moreover, for any given α, β ∈ R, we have
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the following estimate

|φ′i(α) − φ′i(β)| 6 CκeCρ(N2+1)|α− β|ρ + CM2(N2 + 1)eC(N2+1)|α− β|.

Proof By Theorem 3, we have

lim
t→∞

wi(t, α+ λi(0)t) = lim
t→∞

wi(t, xi(t, θi(t, α))) = lim
t→∞

wi(t, xi(t, ϑi(α))) = ψi(ϑ(α)).

Therefore

dφi(α)

dα
= lim

△α→0

φi(α+ △α) − φi(α)

△α

= lim
△α→0

lim
t→∞

ui(t, α+ λi(0)t+ △α) − ui(t, α+ λi(0)t)

△α

= lim
t→∞

wi(t, α+ λi(0)t) = ψi(ϑi(α)).

We obtain the continuity of ψi(ϑi(α)) from the continuity of ψi(x) and ϑi(α) as well as the

following estimate

|φ′i(α) − φ′i(β)| = |ψi(ϑi(α)) − ψi(ϑi(β))|

= lim
t→∞

|wi(t, xi(t, ϑi(α))) − wi(t, xi(t, ϑi(β)))|

6 C|f ′
i(ϑi(α)) − f ′

i(ϑi(β))| + CM2(N2 + 1)|ϑi(α) − ϑi(β)|

6 CκeCρ(N2+1)|α− β|ρ + CM2(N2 + 1)eC(N2+1)|α− β|.

Finally, according to Theorems 2–4, we get Theorem 1. 2
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