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1. Introduction

Recently, there has been a growing interest in the study of impulsive systems since they pro-

vide a natural framework for mathematical modeling of many real world phenomena. Significant

progress on impulsive system has been made during the past 20 years, see [1–5] and references

therein.

To unify a variety of stability concepts and to offer a general framework for investigation of

stability theory, introducing the concept of stability in terms of two measures has been proven

to be very useful [6,7].

In the study of nonlinear systems, the method of variation of parameters is an effective

technique in the case that unperturbed terms are linear ones or of certain smoothness, though

they might be nonlinear. On the other hand, Lyapunov second method is an indispensable tool

in the theory of stability. By combining the two methods, the so-called variational Lyapunov

method has been developed, see [8–12] and references therein. However, as for using variational

Lyapunov method to investigate the stability for impulsive delay differential system, we only see

the paper [13].
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In this paper, we discuss stability in terms of two measures for impulsive delay differential

systems by employing the variational Lyapunov method and Razumikhin technique. Several

stability criteria are obtained for impulsive delay differential systems with fixed moments of

impulsive effects. Our results improve and generalize some of the ones in [13]. The rest of this

paper is organized as follows. In Section 2, we introduce some notations and definitions. In

Section 3, we first give two Razumikhin type comparison lemmas. Then we establish several

criteria on stability for impulsive delay differential systems. At last, an example is worked out

to illustrate our results.

2. Preliminaries

Consider the impulsive delay differential system










x′(t) = f(t, xt), t 6= τk,

x(τk) = x(τ−k ) + Ik(x(τ−k )), k ∈ N ,

x(t0) = ϕ

(2.1)

and the ordinary differential system
{

y′(t) = g(t, y), t 6= τk,

y(t0) = x0,
(2.2)

where N is the set of all positive integers, f : R+×PCτ → Rn, g : R+×Rn → Rn, Ik : Rn → Rn

for each k ∈ N , R+ = [0,∞), PCτ = PC([−τ, 0], Rn), where τ > 0 and PC([−τ, 0], Rn) =

{ϕ : [−τ, 0] → Rn, ϕ(t) is continuous everywhere except at a finite number of points t at which

ϕ(t
+
) and ϕ(t

−
) exist and ϕ(t

+
) = ϕ(t) }. 0 = τ0 < τ1 < τ2 < · · · < τk < τk+1 < · · · with

τk → ∞ as k → ∞ and x′(t), y′(t) denote the right-hand derivatives of x(t), y(t), respectively.

For each t ∈ R+, xt ∈ PCτ is defined by xt(θ) = x(t + θ), −τ ≤ θ ≤ 0. We assume that

f(t, 0) = g(t, 0) = Ik(t, 0) = 0 for all t ∈ R+ and k ∈ N so that systems (2.1) and (2.2) admit

trivial solutions.

Throughout this paper, we always assume f, g and Ik satisfy certain conditions to ensure the

global existence and uniqueness of solutions of (2.1) and (2.2). Moreover, we assume that the

solution y(t) = y(t, t0, x0) is locally Lipschitzian in x0 and depends continuously on initial data.

Definition 2.1 ([1]) The function V (t, x) : R+ ×Rn → R+ belongs to class v0 if

(A1) The function V is continuous in each of the sets [τk−1, τk) × Rn, k ∈ N and for each

x ∈ Rn, k ∈ N , lim(t,y)→(τ−

k
,x) V (t, y) = V (τ−k , x) exists.

(A2) V (t, x) is locally Lipschitzian in x ∈ Rn and V (t, 0) ≡ 0.

Definition 2.2 ([13]) Given V ∈ v0, x(t) = x(t, t0, ϕ) is the solution of (2.1) through (t0, ϕ). For

t0 ≤ s ≤ t, the upper right hand derivative of variational Lyapunov function V (s, y(t, s, x(s))) is

defined by

D+V (s, y(t, s, x(s))) = lim sup
h→0+

1

h
[V (s+ h, y(t, s+ h, x(s) + hf(s, xs))) − V (s, y(t, s, x(s)))],

where y(t) = y(t, s, x(s)) is any solution of (2.2) satisfying y(s, s, x(s)) = x(s).
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We introduce the following notations for later use

K = {a(u) ∈ C[R+, R+] : strictly increasing and a(0) = 0};

K1 = {a(u) ∈ K : a(u) ≥ u};

PC = {a : R+ → R+ : continuous on [τk−1, τk) and limt→τ−

k
a(t) = a(τ−k ) exists, k ∈ N};

PCC = {a : R+ ×R+ → R+ : ∀s ∈ R+, a(·, s) ∈ PC, ∀t ∈ R+, a(t, ·) ∈ C[R+, R+]};

Γ = {h : R+ ×Rn, ∀x ∈ Rn, h(·, x) ∈ PC, ∀t ∈ R+, h(t, ·) ∈ C[Rn, R+], and infx h(t, x) =

0};

Ω = {ψ(s) ∈ C[R+, R+], ψ(0) = 0, ψ(s) > 0 for s > 0};

S(h, ρ) = {(t, x) ∈ R+ ×Rn, h(t, x) < ρ, where h ∈ Γ, ρ > 0}.

Definition 2.3 ([7]) Let h0, h ∈ Γ. We say that h0 is uniformly finer than h if there exist a

δ > 0 and a function c ∈ K such that h0(t, x) < δ implies that h(t, x) ≤ c(h0(t, x)).

Definition 2.4 ([7]) Let V ∈ v0, h0, h ∈ Γ. V (t, x) is said to be

(i) h-positive definite if there exists a ρ > 0 and a function a ∈ K such that h(t, x) < ρ

implies a(h(t, x)) ≤ V (t, x);

(ii) h0-decrescent if there exist a δ > 0 and a function b ∈ K such that h0(t, x) < δ implies

V (t, x) ≤ b(h0(t, x)).

Definition 2.5 ([13]) Let h0 ∈ Γ. For ϕ ∈ PCτ , we define

h̃0(t, ϕ) = sup
−τ≤θ≤0

h0(t+ θ, ϕ(θ)).

Now, we introduce the definitions of stability in terms of two measures for system (2.1).

Definition 2.6 ([13]) The system (2.1) is said to be

(S1) (h̃0, h)-uniformly stable, if for any ε > 0 and t0 ∈ R+, there exists a δ = δ(ε) > 0 such

that h̃0(t0, ϕ) < δ implies h(t, x(t)) < ε, t ≥ t0, where x(t) = x(t, t0, ϕ) is any solution of (2.1).

(S2) (h̃0, h)-uniformly asymptotically stable, if (S1) holds and there exists a δ0 > 0 such

that for any ε > 0 and t0 ∈ R+, there exists a T = T (ε) > 0 such that h̃0(t0, ϕ) < δ0 implies

h(t, x(t)) < ε, t ≥ t0 + T, where x(t) = x(t, t0, ϕ) is any solution of (2.1).

3. Main Results

We shall state and prove our main results in this section. First, we give two Razumikhin

type comparison lemmas.

Lemma 3.1 Let m ∈ PC, ω ∈ PCC, ψk ∈ K1, satisfying

(1) D+m(t) ≤ ω(t,m(t)), whenever m(t+ θ) ≤ m(t), θ ∈ [−τ, 0];

(2) for all k ∈ N and x ∈ Rn, m(τk) ≤ ψk(m(τ−k )).

Then we have

m(t) ≤ γ(t, t0, u0) if sup
−τ≤θ≤0

m(t0 + θ) ≤ u0, (3.1)
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where γ(t) = γ(t, t0, u0) is the maximal solution of the impulsive differential system










u′ = ω(t, u), t 6= τk,

u(τk) = ψk(u(τ−k )),

u(t0) = u0 ≥ 0.

(3.2)

Proof Assume t0 ∈ [τm−1, τm), m ∈ N . First, we prove that (3.1) holds for t ∈ [t0, τm), that is

m(t) ≤ γ(t), t ∈ [t0, τm). (3.3)

If this is not true, there exist t0 ≤ t1 < t2 < τm such that

(a) m(t1) = γ(t1),

(b) m(t+ θ) ≤ m(t), θ ∈ [−τ, 0], t ∈ [t1, t2], and

(c) m(t2) > γ(t2).

By (1), (a) and (b), applying the classical comparison theorem, we have

m(t) ≤ γ(t), t ∈ [t1, t2],

which contradicts (c). So (3.3) holds. Using the facts that ψm ∈ K1 and (3.3), we obtain

m(τm) ≤ ψm(m(τ−m)) ≤ ψm(γ(τ−m)) = γ(τm),

sup
−τ≤θ≤0

m(τm + θ) ≤ γ(τm).

By the same proof as for t ∈ [t0, τm), we have m(t) ≤ γ(t), t ∈ [τm, τm+1). By induction, (3.1)

is correct. 2

Lemma 3.2 Assume there exist V ∈ v0, ω ∈ PCC and ψk ∈ K1, satisfying

(1) for t > t0, V (s+ θ, y(t, s+ θ, x(s+ θ))) ≤ V (s, y(t, s, x(s))), θ ∈ [−τ, 0], implies that

D+V (s, y(t, s, x(s))) ≤ ω(s, V (s, y(t, s, x(s)))), s ∈ [t0, t],

where x(t) = x(t, t0, ϕ) and y(t) = y(t, t0, x0) are solutions of (2.1) and (2.2), respectively.

(2) for all k ∈ N and x ∈ Rn,

V (τk, y(t, τk, x+ Ik(x))) ≤ ψk(V (τ−k , y(t, τ
−
k , x))).

Then we have

V (s, y(t, s, x(s))) ≤ γ(s, t0, u0), s ∈ [t0, t], if sup
−τ≤θ≤0

V (t0 + θ, y(t, t0 + θ, x(t0 + θ))) ≤ u0, (3.4)

where γ(s, t0, u0) is the maximal solution of system














du

ds
= ω(s, u),

u(τk) = ψk(u(τ−k )), k = N ,

u(t0) = u0 ≥ 0.

(3.5)

Moreover, when s = t, by (3.4) we have

V (t, x(t, t0, ϕ)) ≤ γ(t, t0, u0) if sup
−τ≤θ≤0

V (t0 + θ, y(t, t0 + θ, x(t0 + θ))) ≤ u0. (3.6)

Proof Set m(s) = V (s, y(t, x, x(s))). By assumptions (1) and (2), we have
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(1)∗ m(s+ θ) ≤ m(s), θ ∈ [−τ, 0], implies that D+m(s) ≤ ω(s,m(s)), s ∈ [t0, t];

(2)∗ For all k ∈ N and x ∈ Rn, m(τk) ≤ ψk(m(τ−k )).

Using Lemma 3.1, we can get

m(s) ≤ γ(s, t0, u0), s ∈ [t0, t], if sup
−τ≤θ≤0

m(t0 + θ) ≤ u0,

which implies that (3.4) holds. It is obvious (3.4) becomes (3.6) when s = t. The proof is

completed. 2

Next, we give several theorems on stability for system (2.1).

Theorem 3.1 Let h0, h
∗, h ∈ Γ, V ∈ v0, ω ∈ PCC and ψk ∈ K1, x(t), y(t) are any solutions

of (2.1) and (2.2), respectively. Suppose that

(1) h∗ is uniformly finer than h, h∗(t, x) is nondecreasing in t;

(2) V (t, x) is h-positive definite on S(h, ρ) and h∗-decrescent, where ρ > 0;

(3) For t > t0, V (s+ θ, y(t, s+ θ, x(s+ θ))) ≤ V (s, y(t, s, x(s))), θ ∈ [−τ, 0], implies that

D+V (s, y(t, s, x(s))) ≤ ω(s, V (s, y(t, s, x(s)))), s ∈ [t0, t];

also, for all k ∈ N and (τk, x) ∈ S(h, ρ),

V (τk, y(t, τk, x+ Ik(x))) ≤ ψk(V (τ−k , y(t, τ
−
k , x)));

(4) There exists a ρ0 ∈ (0, ρ) such that (τk, x) ∈ S(h, ρ0) implies h(τk, x+ Ik(x)) < ρ;

(5) (3.5) is uniformly stable.

Then the (h0, h
∗)-uniformly asymptotic stability of (2.2) implies (h̃0, h)-uniformly asymptotic

stability of (2.1).

Proof Since V (t, x) is h-positive definite on S(h, ρ), there exists a function a ∈ K such that

a(h(t, x)) ≤ V (t, x), (t, x) ∈ S(h, ρ). (3.7)

Because V (t, x) is h∗-decrescent, there exist δ0 > 0 and b ∈ K such that

V (t, x) ≤ b(h∗(t, x)), (t, x) ∈ S(h∗, δ0). (3.8)

Also, since h∗ is uniformly finer than h, there exist δ1 > 0 and c ∈ K (c(δ1) < ρ) such that

h(t, x) ≤ c(h∗(t, x)), (t, x) ∈ S(h∗, δ1). (3.9)

Let ε ∈ (0, ρ0) and t0 ∈ [τm−1, τm), m ∈ N . From the uniform stability of (3.5), there exists

δ2 = δ2(ε) > 0 (δ2 ≤ a(ε)) such that 0 < u0 < δ2 implies

u(s) < a(ε), (3.10)

where u(s) = u(s, t0, u0) is any solution of (3.5). By the property of b, we can choose 0 < η =

η(ε) < min{δ0, δ1} such that

b(η) ≤ u0. (3.11)

Assume (2.2) is (h0, h
∗)-uniformly stable. Then, for this η, there exists a δ = δ(η) > 0 such
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that h0(t0, x0) < δ implies

h∗(t, y(t, t0, x0)) < η, t ≥ t0. (3.12)

Assume that x(t) = x(t, t0, ϕ) is any solution of system (2.1) with h̃0(t0, ϕ) < δ. It follows from

(3.7)–(3.12) that

a(h(t0 + θ, x(t0 + θ))) ≤ V (t0 + θ, x(t0 + θ)) ≤ b(h∗(t0 + θ, x(t0 + θ))) < a(ε), θ ∈ [−τ, 0].

Thus, h(t0 + θ, x(t0 + θ)) < ε. We claim that h(t, x(t)) < ε, t ≥ t0. Otherwise, there exists a

solution x(t) with h̃0(t0, ϕ) < δ and a t1 > t0 such that t1 ∈ [τk, τk+1) for some k ∈ N , satisfying

ε ≤ h(t1, x(t1)) and h(t, x(t)) < ε for t ∈ [t0, τk). Since 0 < ε < ρ0, it follows from assumption

(4) that h(τk, x(τk)) < ρ. Hence, we can find a t∗ ∈ [τk, t1] such that

ε ≤ h(t∗, x(t∗)) < ρ and h(t, x(t)) < ρ for t ∈ [t0, t
∗]. (3.13)

Note that (3.8), (3.11) and (3.12) imply that, for t ≥ t0,

V (t0 + θ, y(t, t0 + θ, x(t0 + θ))) ≤ b(h∗(t0 + θ, y(t, t0 + θ, x(t0 + θ))))

≤ b(h∗(t, y(t, t0 + θ, x(t0 + θ)))) ≤ u0, θ ∈ [−τ, 0].

By assumption (3), together with Lemma 2, we have

V (s, y(t∗, s, x(s))) ≤ u(s, t0, u0), s ∈ [t0, t
∗]. (3.14)

Together with (3.7) and (3.10), we have

a(h(t∗, x(t∗))) ≤ V (t∗, x(t∗)) ≤ u(t∗) < a(ε)

by choosing s = t∗ in (3.14). It contradicts (3.13). So (2.1) is (h̃0, h)-uniformly stable.

Next, assume (2.2) is (h0, h
∗)-uniformly asymptotically stable. We prove (2.1) is (h̃0, h)-

uniformly asymptotically stable. By (h̃0, h)-uniform stability of (2.1), for ρ > 0, there exists

δ2 > 0 such that h̃0(t0, ϕ) < δ2 implies h(t, x(t)) < ρ. Also, since (3.5) is uniformly stable, for

any ε > 0, there exists δ = δ(ε) ∈ (0, b(δ0)) such that 0 ≤ u0 < δ implies that

u(s) < a(ǫ), (3.15)

where u(s) = u(s, t0, u0) is any solution of (3.5).

Because (2.2) is (h0, h
∗)-uniformly asymptotically stable, there exists a δ3 > 0 satisfying for

the above u0 and t0 ∈ R+, there exists T = T (u0) > 0 such that

h∗(t, y(t, t0, x0)) ≤ b−1(u0), t ≥ t0 + T, (3.16)

where y(t, t0, x0) is any solution of (2.2) with h0(t0, x0) < δ3. Choose δ̄0 = min{δ2, δ3}. Then by

(3.8) and (3.16), we have

V (t0 + θ, y(t, t0 + θ, x(t0 + θ))) ≤ b(h∗(t0 + θ, y(t, t0 + θ, x(t0 + θ))))

≤ b(h∗(t, y(t, t0 + θ, x(t0 + θ)))) ≤ u0, t ≥ t0 + T,

where x(t) = x(t, t0, ϕ) is any solution of (2.1) with h̃0(t0, ϕ) < δ̄0. From Lemma 3.2, V (s, y(t, x(s))) ≤
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u(s), s ∈ [t0, t], t ≥ t0 + T. Choosing s = t, together with (3.7) and (3.15), we have

a(h(t, x(t)) ≤ V (t, x(t)) ≤ u(t) < a(ε).

Hence, h(t, x(t)) < ε, t ≥ t0 + T . This shows that (2.1) is (h̃0, h)-uniformly asymptotically

stable. 2

Remark 3.1 From the proof of Theorem 3.1, we can see if V (t, x) is nondecreasing in t, the

demand on monotone property for h∗(t, x) in t is not necessary.

Corollary 3.1 In Theorem 3.1, suppose ω(s, u) = g(s)u, ψk(u) = (1 + dk)u for u ≥ 0, where

g ∈ C[R+, R+],
∫ ∞

0 g(s)ds < ∞, dk ≥ 0 and
∑∞

k=1 dk < ∞. Then the conclusion of Theorem

3.1 holds.

Proof For any ε > 0, by
∫ ∞

0
g(s)ds <∞ and

∑∞

k=1 dk <∞, there exists δ = δ(ε) > 0 such that

∫ ∞

0

g(s)ds+

∞
∑

k=1

dk ≤

∫ ε

δ

du

u
.

Suppose that u(s) is any solution of (3.5) through (t0, u0), where u0 > 0. Let t0 ∈ [τm−1, τm), m ∈

N . Then if u0 < δ, we have

∫ u(s)

u0

du

u
=

∫ u(τ−

m)

u0

du

u
+

∫ u(τm)

u(τ−

m)

du

u
+ · · · +

∫ u(τ−

k
)

u(τk−1)

du

u
+

∫ u(τk)

u(τ−

k
)

du

u
+

∫ u(s)

u(τk)

du

u

=

∫ τm

t0

dξ

g(ξ)
+ ln(1 + dm) + · · · +

∫ τk

τk−1

dξ

g(ξ)
+ ln(1 + dk) +

∫ s

τk

dξ

g(ξ)

≤

∫ s

t0

dξ

g(ξ)
+

k
∑

i=m

ln(1 + di) ≤

∫ ∞

t0

ds

g(s)
+

∞
∑

i=m

di ≤

∫ ε

δ

du

u
<

∫ ε

u0

du

u
.

Hence, u(s) < ε. This completes the proof. 2

A much more easily usable conclusion which can be deduced from Theorem 3.1 is the next

corollary.

Corollary 3.2 In Theorem 3.1, suppose ω(t, u) ≡ 0, ψk(u) = (1+ dk)u for u ≥ 0, where dk ≥ 0

and
∑∞

k=1 dk <∞. Then the conclusion of Theorem 3.1 holds.

Remark 3.2 The assumptions of Corollary 3.2 are just the same as those of Theorem 3.2 in

[13]. But the later only concludes that (h0, h
∗)-uniform stability of (2.2) implies (h̃0, h)-uniform

stability of (2.1). So our result is superior to the later.

Theorem 3.2 Let h0, h
∗, h ∈ Γ, V ∈ v0, a, b ∈ K, ω,H ∈ Ω, x(t), y(t) are any solutions of

(2.1) and (2.2), respectively. Assume that

(1) a(h(t, x)) ≤ V (t, x), (t, x) ∈ S(h, ρ), V (t, x) ≤ b(h∗(t, x)), (t, x) ∈ S(h∗, ρ);

(2) h∗ is uniformly finer than h, h∗(t, x) is nondecreasing in t;

(3) For all k ∈ N and (τk, x) ∈ S(h, ρ),

V (τk, y(t, τk, x+ Ik(x))) ≤ (1 + dk)V (τ−k , y(t, τ
−
k , x)),
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where dk ≥ 0,
∑∞

k=1 dk <∞;

(4) For t > t0, V (s+ θ, y(t, s+ θ, x(s+ θ))) < P (V (s, y(t, s, x(s)))), θ ∈ [−τ, 0], implies that

D+V (s, y(t, s, x(s))) ≤ −ψ(s)ω(V (s, y(t, s, x(s)))) + g(s)H(V (s, y(t, x, x(s)))), s ∈ [t0, t],

where P, ψ, g : R+ → R+ are continuous, P (s) > Ms for s > 0, where M =
∏∞

k=1(1 + dk), given

β > 0, there exists T̃ = T̃ (β) > 0 such that
∫ T+T̃

T ψ(s)ds > (M ′ + 1)β for any T ∈ R+, where

M ′ =
∑∞

k=1 dk,
∫ ∞

0
g(s)ds <∞;

(5) There exists a ρ0 ∈ (0, ρ) such that (τk, x) ∈ S(h, ρ0) implies h(τk, x+ Ik(x)) < ρ;

(6) The following system














du

ds
= g(s)H(u),

u(τk) = (1 + dk)u(τ−k ), k ∈ N ,

u(t0) = u0 ≥ 0

is uniformly stable.

Then the (h0, h
∗)-uniform stability of (2.2) implies (h̃0, h)-uniformly asymptotic stability of (2.1).

Proof Assume that (2.2) is (h0, h
∗)-uniformly stable. Since V (s + θ, y(t, s + θ, x(s + θ))) ≤

V (s, y(t, s, x(s))), θ ∈ [−τ, 0], implies that V (s+θ, y(t, s+θ, x(s+θ))) < P (V (s, y(t, s, x(s)))), θ ∈

[−τ, 0], it is evident that (2.1) is (h̃0, h)-uniformly stable by Theorem 3.1.

For given ε0 = ρ0, we can find the corresponding δ0 > 0 such that h̃0(t0, ϕ) < δ0 implies

that h(t, x(t)) < ε0, V (s, y(t, s, x(s))) < A , a(ε0), t ≥ t0, by the proof of Theorem 3.1, where

x(t) = x(t, t0, ϕ) is any solution of (2.1).

Given ε > 0 with ε < ε0, let B = minM−1ε∗≤V ≤A ω(V ), C = max0≤V ≤AH(V ), ε∗ ,

a(ε), 0 < d < minM−1ε∗≤s≤A{P (s) −Ms}. Let N = N(ε) be the smallest positive integer such

that A ≤ ε∗ +Nd. Since
∫ ∞

0
g(s)ds <∞, there exists T > 0 such that C

∫ ∞

T
g(ξ)dξ < M−1d/6.

Next, we prove that there exists T1 ≥ T such that

V (T1, y(t, T1, x(T1))) < M−1[ε∗ + (N − 1)d], T1 ≤ t,

where x(t) = x(t, t0, ϕ) is any solution of (2.1) with h̃0(t0, ϕ) < δ0. Otherwise, for s ≥ T ,

V (s, y(t, s, x(s))) ≥M−1[ε∗ + (N − 1)d], s ≤ t.

Therefore,

P (V (s, y(t, s, x(s)))) > MV (s, y(t, s, x(s))) + d ≥ ε∗ +Nd

≥ A ≥ V (s+ θ, y(t, s+ θ, x(s+ θ))), −τ ≤ θ ≤ 0.

Then, by assumption (4) we have

D+V (s, y(t, s, x(s))) ≤ −ψ(s)B + g(s)C, T ≤ s ≤ t.

From assumptions (3) and (4), there exists T̃ > 0 such that

V (T + T̃ , y(t, T + T̃ , x(T + T̃ ))) ≤ V (T, y(t, T, x(T ))) −B

∫ T+T̃

T

ψ(s)ds+ C

∫ T+T̃

T

g(s)ds+
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∑

T<τj≤T+T̃

[V (τj) − V (τ−j )] ≤ A(1 +M ′) −B

∫ T+T̃

T

ψ(s)ds+M−1d/6 < 0.

This contradicts V (s, y(t, s, x(s))) ≥ 0. So we can choose T1 = T + T̃ .

Next, we claim that

V (s, y(t, s, x(s) < [ε∗ + (N − 1)d] + d/2 for T1 ≤ s ≤ t,

where t ≥ T + 2NT̂ and T̂ = max{T̃ , τ}. Suppose T1 ∈ [τj−1, τj). We first prove that

V (s, y(t, s, x(s))) < M−1[ε∗ + (N − 1)d] +M−1d/6 for s ∈ [T1, τj). (3.17)

If (3.17) is not true, there must exist T1 < t1 < t2 < τj such that

V (t1, y(t, t1, x(t1))) = M−1[ε∗ + (N − 1)d], (3.18)

V (t2, y(t, t2, x(t2))) = M−1[ε∗ + (N − 1)d] +M−1d/6 (3.19)

and

V (t1, y(t, t1, x(t1))) ≤ V (s, y(t, s, x(s))) ≤ V (t2, y(t, t2, x(t2))), s ∈ [t1, t2]. (3.20)

From (3.18) and (3.20),

P (V (s, y(t, s, x(s)))) > MV (s, y(t, s, x(s))) + d ≥MV (t1, y(t, t1, x(t1))) + d = ε∗ +Nd

≥ A ≥ V (s+ θ, y(t, s+ θ, x(s + θ))),−τ ≤ s ≤ 0, t1 ≤ t ≤ t2.

Together with assumption (4), it follows that

V (t2, y(t, t2, x(t2))) ≤ V (t1, y(t, t1, x(t1))) + C

∫ t2

t1

g(s)ds < M−1[ε∗ + (N − 1)d] +M−1d/6,

which contradicts (3.19). Then we have

V (τj , y(t, τj , x(τj))) ≤ (1 + dj)V (τ−j , y(t, τ
−
j , x(τ

−
j )))

≤ (1 + dj){M
−1[ε∗ + (N − 1)d] +M−1d/6}.

Denote µm =
∫ τm+1

τm
g(s)ds,m ≥ j. Then µm ≥ 0, C

∑∞

m=j µm < M−1d/6. Let {νm},m ≥ j, be

a sequence, satisfying νm > 0,
∑∞

m=j νm < M−1d/6. In a similar way as in the proof of (3.17),

we can prove that

V (s, y(t, s, x(s))) < (1 + dj){M
−1[ε∗ + (N − 1)d] +M−1d/6} + Cµj + νj , s ∈ [τj , τj+1).

By induction, we arrive at

V (s, y(t, s, x(s))) <
l

∏

k=j

(1 + dk){M−1[ε∗ + (N − 1)d] +M−1d/6} +
l

∏

k=j+1

(1 + dk)(Cµj + νj)+

l
∏

k=j+2

(1 + dk)(Cµj+1 + νj+1) + · · · + (Cµl + νl), s ∈ [τl, τl+1) ∩ [T1, t], l ≥ j.
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Hence, by the definition of M ,

V (s, y(t, s, x(s))) < ε∗ + (N − 1)d+ d/6 +M

∞
∑

k=j

(Cµk + νk) < ε∗ + (N − 1)d+ d/2, s ∈ [T1, t].

Similarly, we can prove there exists T2 = T1 + T̂ such that

V (T2, y(t, T2, x(T2))) < M−1[ε∗ + (N − 2)d+ d/2],

V (s, y(t, s, x(s))) < ε∗ + (N − 1)d, T2 ≤ s ≤ t.

By induction, we obtain

V (s, y(t, s, x(s))) < ε∗, T + 2NT̂ ≤ s ≤ t,

which, together with assumption (1) and the definition of ε∗, yields

h(t, x(t)) < ε, t ≥ T + 2NT̂ .

Thus h(t, x(t)) < ε, t ≥ t0 + T + 2NT̂ . This completes the proof. 2

Remark 3.3 If ψ(s) ≡ 1, g(s) ≡ 0, Theorem 3.2 is just the same as Theorem 3.4 in [13].

Moreover, we omit the assumption that h is uniformly finer than h0.

Finally, to illustrate the above results, we consider an example.

Example Consider the impulsive delay differential system


















x′(t) = a(t)x(t) + b(t)

∫ t

t−τ

c(ξ)x(ξ)dξ, t 6= τk,

x(τk) = (1 + dk)1/2x(τ−k ), k ∈ N ,

xt0 = ϕ

(3.21)

and the ordinary differential system
{

y′(t) = a(t)y(t),

y(t0) = x0,
(3.22)

where a(t) ∈ C[R+, R+] and
∫ ∞

0
a(t)dt <∞, b(t), c(t) ∈ C[R+, R],

∫ ∞

0
|b(t)|dt <∞ and |c(t)| ≤

K, K > 0, dk ≥ 0 and
∑∞

k=1 dk < ∞. Denote by x(t) = x(t, t0, ϕ) and y(t) = y(t, t0, x0) the

solutions of (3.21) and (3.22), respectively. It is easy to see that y(t) = x0 exp{
∫ t

t0
a(η)dη} and

y(t, s, x(s)) = x(s) exp{
∫ t

s a(η)dη}. Let V (t, x) = (1/2)x2 and h0(t, x) = h∗(t, x) = h(t, x) = |x|

for any t ∈ R+ and x ∈ R. Then it is evident that V is h-positive definite and h∗-decrescent.

Also, it is easy to see that (3.22) is (h0, h
∗)-uniformly stable. By direct calculation, we can get

D+V (s, y(t, s, x(s))) = x(s) exp{2

∫ t

s

a(η)dη}[x′(s) − a(s)x(s)]

= b(s)x(s)

∫ s

s−τ

c(ξ)x(ξ)dξ · exp{2

∫ t

s

a(η)},

V (τk, y(t, τk, x(τk))) = (1 + dk)V (τ−k , y(t, τ
−
k , x(τ

−
k ))).

If V (s+θ, y(t, s+θ, x(s+θ))) ≤ V (s, y(t, s, x(s))), −τ ≤ θ ≤ 0, then x2(s+θ) exp{2
∫ t

s+θ
a(η)dη} ≤

x2(s) exp{2
∫ t

s a(η)dη}, and thus |x(s)x(s+ θ)| ≤ x2(s) exp{
∫ s+θ

s a(η)dη} for −τ ≤ θ ≤ 0. In this
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case, we have

D+V (s, y(t, s, x(s))) ≤ |b(s)|

∫ s

s−τ

|c(ξ)||x(s)||x(ξ)|dξ · exp{2

∫ t

s

a(η)}

≤ K|b(s)|

∫ s

s−τ

x2(s) exp{

∫ ξ

s

a(η)dη}dξ · exp{2

∫ t

s

a(η)}

= 2K|b(s)|V (s, y(t, s, x(s)))

∫ s

s−τ

exp{

∫ ξ

s

a(η)dη}dξ ≤ 2Kτ |b(s)|V (s, y(t, s, x(s))).

Then it follows from Corollary 3.1 that (3.21) is (h̃0, h)-uniformly stable.
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