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1. Introduction

Varieties of commutative semigroups have been extensively studied not only because of their

natural continuation of the theory of commutative groups, but also, because of their applications

in language and automata theory. There are lots of good results on varieties of commutative

semigroups. Schwabauer [1, 2] proved that the lattice of varieties of commutative semigroups,

L(Com), is non-modular. Perkins [3, 4] showed that every variety of commutative semigroups

is finitely based, and so the lattice L(Com) is countable and has no infinite descending chains.

Kisielewicz [5] described varieties of commutative semigroups in terms of certain order filters,

integer parameters, and the so called remainders. But it is fairly complicated to completely

describe the lattice of varieties of commutative semigroups.

In this paper, we pay our main attention to the varieties Ak determined by the identities set

Ak = {xk+1 ≈ xk, xy ≈ yx}

for k ∈ N . Clearly, A1 ⊂ A2 ⊂ · · · ⊂ Ak and Ak is generated by aperiodic commutative

semigroups. In particular, A1 is the variety generated by semilattices. The description of

L(A2) is already known [2]. The main aims of this paper are to characterize the subvarieties

of Ak (k ∈ N) by determining sets of identities and to establish the structure of lattice of

subvarieties of Ak (k ∈ N).

The reader is referred to [4] and [6] for all notations and terminologies not defined in this

paper.
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Let X be a countably infinite alphabet ordered by <. Elements of X are referred to as

letters. Throughout this paper, x, y, z with or without indices stand for letters and u, v, w with

or without indices stand for words over X . We write u ≈ v to stand for a semigroup identity

and write u = v if u and v are identical words.

Let u be a word over X . The content of u is the set c(u) of letters occurring in u. The

multiplicity mu(x) of x is the number of occurrences of x in u. The length of u is the number

|u| of letters in u counting multiplicity.

Let Σ be a set of identities. The variety defined by Σ is denoted by [Σ]. Two words u, v are

called Σ-equivalent if u is derivable from v by invoking the identities in Σ, in this case we write

u
Σ
≈ v. If an identity σ is derivable from the identities in Σ, then we write Σ ⊢ σ. For a variety

V, we write V � σ if it satisfies σ.

Let U be a subvariety of a variety V. The set of all varieties W such that U ⊆ W ⊆ V

constitutes a complete lattice and is denoted by L(U,V). We write L(V) = L(T,V), where T

is the variety of trivial semigroups. In this paper, we use the Hasse diagram to represent the

lattice of varieties, where a line joining a lower positioned variety to a higher positioned variety

indicates containment, denoted by ⊆, and a bolded line indicates containment with covering,

denoted by ≺.

Recall A1 is the variety generated by semilattices. It is well known that A1 � u ≈ v if and

only if c(u) = c(v). A variety is semilattice-free if it does not contain A1.

Let N denote the set of all positive integers and let N0 = N ∪ {0}.

In this paper, maximal subvarieties of some varieties in L(Ak) (k ∈ N) will be shown in

Section 2. In particular, the unique maximal subvariety of Ak will be determined. In Section 3,

the relations of some subvarieties lattice will be described. The main result of this paper is the

structure of L(Ak) (Theorem 3.6).

2. Maximal subvarieties of some varieties in L(Ak)

A word u is said to be in canonical form if

u = xε1

1 xε2

2 · · ·xεn

n ,

where x1, x2, . . . , xn are distinct letters in X with x1 < x2 < · · · < xn and ε1, ε2, . . . , εn ∈

{1, . . . , k}.

Proposition 2.1 Each word is Ak-equivalent to a unique word in canonical form.

Proof This is straightforward.

It is well known that every variety of aperiodic commutative semigroups is finitely based.

Thus all subvarieties of Ak are finitely based. It follows from Proposition 2.1 that each proper

subvariety of Ak possesses a finite basis Ak ∪Σ, where each identity in Σ is formed by a pair of

words in canonical form.

For the rest of this paper, whenever u ≈ v is an identity that holds in a subvariety of Ak, we
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always assume that

u = xε1

1 xε2

2 · · ·xεn

n and v = xδ1

1 xδ2

2 · · ·xδn

n ,

where u, v satisfy the following conditions:

x1 < x2 < · · · < xn,

0 ≤ εi, δi ≤ k (i = 1, 2, . . . , n),

ε1 + · · · + εn > 0,

δ1 + · · · + δn > 0.

We define

m(u ≈ v) = min{εi, δi : εi 6= δi, i = 1, . . . , n}.

Lemma 2.2 Let u ≈ v be an identity such that Ak 2 u ≈ v (k ≥ 2) and A1 � u ≈ v. Then

Ak ∪ {u ≈ v} ⊢ xkyk ≈ xkyk−1.

Proof Since A1 � u ≈ v, we have c(u) = c(v). In this case, we may assume that εi, δi ∈

{1, . . . , k} for i = 1, 2, . . . , n and there exists a letter xi ∈ c(u) = c(v) with mu(xi) 6= mv(xi).

Suppose that mu(xi) = h > mv(xi) = l. Denote by ρ the substitution t 7→ xk for all t 6= xi and

t 7→ y for t = xi. Then

xkyk ≈ xkρ(u)yk−l−1 ≈ xkρ(v)yk−l−1 ≈ xkyk−1.

Hence Ak ∪ {u ≈ v} ⊢ xkyk ≈ xkyk−1. 2

Lemma 2.3 Let u ≈ v be an identity such that Ak 2 u ≈ v (k ∈ N) and A1 2 u ≈ v. Then

Ak ∪ {u ≈ v} ⊢ xkyk ≈ xk ⊢ xky ≈ xk.

Proof Without loss of generality, we may assume y ∈ c(u) \ c(v). Denote by ρ the substitution

t 7→ xk for all t 6= y and t 7→ yk for t = y. Then V satisfies

xk Ak

≈ xkρ(v)≈xkρ(u) ≈ xk · · · yk · · ·
Ak

≈ xkyk

and so Ak ∪ {xk ≈ xkyk} ⊢ xky
xk

≈xkyk

≈ xkyky
Ak

≈ xkyk ≈ xk. 2

Theorem 2.4 The identity xkyk ≈ xkyk−1 is satisfied by every proper subvariety of Ak (k ∈ N).

In particular, the unique maximal subvariety of Ak is defined within Ak by xkyk ≈ xkyk−1.

Proof It suffices to show that xkyk ≈ xkyk−1 is derivable within Ak from any identity not

satisfied by Ak. Let u ≈ v be an identity with Ak 2 u ≈ v. Suppose that k = 1. Then by

Lemma 2.3, Ak ∪ {u ≈ v} ⊢ xkyk ≈ xkyk−1. Suppose that k ≥ 2. If c(u) 6= c(v), then u ≈ v is

not satisfied by any semilattice, and so by Lemma 2.3,

Ak ∪ {u ≈ v} ⊢ xk ≈ xky ⊢ xkyk−1 ≈ xkyk.

Therefore assume that c(u) = c(v). By Lemma 2.2, xkyk ≈ xkyk−1 is derivable within Ak from

any identity not satisfied by Ak. Hence Ak ∪ {u ≈ v} ⊢ xkyk ≈ xkyk−1, and so the variety

defined by Ak ∪ {xkyk ≈ xkyk−1} is the unique maximal subvariety of Ak.
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Let

Ak,m = Ak ∪ {xkyk ≈ xkym}

for m ∈ N0, k ∈ N and 0 ≤ m ≤ k − 1 and let Ak,m be the variety defined by Ak,m. It is

obvious that Ak,k−1 is the unique maximal subvariety of Ak and Ak,0 is the unique maximal

semilattice-free subvariety of Ak.

Theorem 2.5 Ak,m−1 is a maximal subvariety of Ak,m for 1 ≤ m ≤ k − 1 and k ≥ 2.

Proof Let V be a proper subvariety of Ak,m. Then V satisfies some identity u ≈ v which is

not satisfied by Ak,m. Suppose that 2 ≤ m ≤ k − 1. There are two cases.

Case 1 c(u) = c(v). In this case, we may assume that εi, δi ∈ {1, . . . , k}.

(1.1) m(u ≈ v) < m. Without loss of generality, we may assume that m(u ≈ v) = εi and

εi < δi for some i = 1, . . . , n. Denote by ρ the substitution t 7→ xk for all t 6= xi and t 7→ y for

t = xi. Then xkyεi ≈ xkρ(u) ≈ xkρ(v) ≈ xkyδi . Hence

Ak,m ∪ {u ≈ v} ⊢ xkyεi ≈ xkyδi

⊢ xkyεi ≈ xkyεiyδi−εi ≈ xkyεiy2(δi−εi) ≈ · · · ≈ xkyk

⊢ xkym−1 ≈ xkyk.

(1.2) m(u ≈ v) ≥ m. If max{εi : i = 1, . . . , n} = max{δi : i = 1, . . . , n} = k, then u
Ak,m

≈ v

and so we may assume that max{εi : i = 1, . . . , n} ≤ k − 1 and εi < δi for some i = 1, . . . , n.

Thus

xk−1
1 · · ·xk−1

i · · ·xk−1
n ≈ uxk−1−ε1

1 · · ·xk−1−εi

i · · ·xk−1−εn

n

≈ vxk−1−ε1

1 · · ·xk−1−εi

i · · ·xk−1−εn

n

≈ xk−1−ε1+δ1

1 · · ·xk−1−εi+δi

i · · ·xk−1−εn+δn
n

(a)
≈ xk

1 · · ·x
k
i · · ·x

k
n,

where (a) holds by: if j = i, then k − 1− εi + δi ≥ k; if j 6= i and δj ≥ εj , then k − 1− εj + δj ≥

k − 1 ≥ m; if j 6= i and δj < εj , then

k − 1 − εj + δj ≥ k − 1 − (k − 1) + m(u ≈ v) = m(u ≈ v) ≥ m

by δj ≥ m(u ≈ v) and εj ≤ k − 1. Hence Ak,m ∪ {u ≈ v} ⊢ xk−1
1 · · ·xk−1

n ≈ xk
1 · · ·x

k
n.

Case 2 c(u) 6= c(v). By Lemma 2.3, V ⊆ [Ak,m, xkyk ≈ xk]. Clearly, Ak,m ∪ {xkyk ≈ xk} ⊢

xkym−1 ≈ xkykym−1 ≈ xkyk.

It is obvious that [Ak,m, xkyk ≈ xkym−1] and [Ak,m, xk
1 · · ·x

k
n ≈ xk−1

1 · · ·xk−1
n ] are incompa-

rable. Hence Ak,m−1 is a maximal subvariety of Ak,m.

Suppose that m = 1. If A1 ⊆ V, then m(u ≈ v) ≥ 1. By subcase (1.2), Ak,1 ∪ {u ≈ v} ⊢

xk−1
1 · · ·xk−1

n ≈ xk
1 · · ·x

k
n. If A1 * V, then V ⊆ [Ak,1, x

kyk ≈ xk] by Lemma 2.3. Clearly,

[Ak,1, x
kyk ≈ xk] and [Ak,1, x

k
1 · · ·x

k
n ≈ xk−1

1 · · ·xk−1
n ] are incomparable. Hence [Ak, xkyk ≈

xk] = Ak,0 is a maximal subvariety of Ak,1.
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Corollary 2.6 Let u ≈ v be an identity such that Ak,m 2 u ≈ v and max{mu(xi) : xi ∈ c(u)} =

max{mv(xi) : xi ∈ c(v)} = k. Then [Ak,m, u ≈ v] = Ak,m(u≈v).

Proof It follows from subcase (1.1) of Theorem 2.5 that Ak,1 ∪ {u ≈ v} ⊢ xkym(u≈v) ≈ xkyk.

It is easy to show that Ak,1 ∪ {xkym(u≈v) ≈ xkyk} ⊢ u ≈ v, and so [Ak,m, u ≈ v] = Ak,m(u≈v).

Corollary 2.7 Let u ≈ v be an identity such that Ak,m−1 2 u ≈ v. Then [Ak,m−1, u ≈ v] is a

maximal subvariety of [Ak,m, u ≈ v].

Proof It is similar to the arguments of Theorem 2.5.

3. The structure of lattice L(Ak)

In order to explore the structure of lattice L(Ak), we first define the following identities

(k; n) : xk
1xk−1

2 · · ·xk−1
n ≈ xk−1

1 xk−1
2 · · ·xk−1

n

for k, n ∈ N and k ≥ 2. Let

Ak,m,n = Ak,m ∪ {(k; n)}

and Ak,m,n be the variety defined by Ak,m,n. Then by Corollary 2.7,

Ak,m = Ak+1,m,1, Ak = Ak+1,k,1,

Ak,m,1 ⊆ Ak,m,2 ⊆ · · · ⊆ Ak,m,n ⊆ · · · ,

Ak,0,n ≺ Ak,1,n ≺ · · · ≺ Ak,i,n ≺ · · · ≺ Ak,k−1,n

for k ≥ 2, 0 ≤ m ≤ k − 1 and n ∈ N .

Lemma 3.1 Let V be a variety in the lattice L(Ak−1,m,Ak,m) for k ≥ 2 and 0 ≤ m ≤ k − 1.

Then V is defined within Ak,m by finitely many identities of the form either

σ1 : xk
1xε2

2 · · ·xεn

n = xk−1
1 xε2

2 · · ·xεn

n

with ε2, . . . , εn ∈ {1, . . . , k − 1} or

σ2 : xε1

1 · · ·xεn

n = xδ1

1 · · ·xδn

n

with max{εi : i = 1, . . . , n} = max{δi : i = 1, . . . , n} = k − 1 and m(σ2) ≥ m.

Proof Since every subvariety of Ak is finitely based, V is defined within Ak,m by a finite set Σ

of identities. It is easy to see that Ak−1,m � {σ1, σ2} and Ak,m 2 {σ1, σ2}. It remains to show

that any identity u ≈ v ∈ Σ in V which satisfies Ak−1,m � u ≈ v and Ak,m 2 u ≈ v can be

transformed into the form either σ1 or σ2.

First we note that m(u ≈ v) ≥ m by the proof of Theorem 2.5. Let

ε = max{εi : i = 1, . . . , n}, δ = max{δi : i = 1, . . . , n}.

Without loss of generality, we may assume that ε ≥ δ.

Case 1 m ≥ 1. In this case A1 ⊆ Ak−1,m and so c(u) = c(v).



124 W. T. ZHANG

(1.1) ε = δ = k. This subcase is impossible since Ak,m � u ≈ v.

(1.2) ε ≤ k − 1. If δ = k − 1, then u ≈ v is of the form σ2. If δ < k − 1, then it is impossible

since Ak−1,m 2 u ≈ v.

(1.3) ε = k and δ ≤ k−1. If δ < k−1, then Ak−1,m 2 u ≈ v. If δ = k−1. Let δi = δ = k−1

for some i = 1, . . . , n. Then

Ak,m ∪ {u ≈ v} ⊢ u′ ≈ v,

where u′
Ak,m

≈ u, mu′(xi) = k and mu′(xj) = mv(xj) for i 6= j. Clearly, Ak,m ∪ {u′ ≈ v} ⊢ u ≈ v

and so [Ak,m, u ≈ v] = [Ak,m, u′ ≈ v], where u′ ≈ v is of the form σ1.

Case 2 m = 0. If c(u) = c(v), then by Case 1, u ≈ v is of the form either σ1 or σ2. If

c(u) 6= c(v), say {y1, . . . , yl} ∈ c(u) \ c(v) and {z1, . . . , zm} ∈ c(v) \ c(u), then, by using the

identity xkyk ≈ xk, we have u ≈ uzk
1 · · · zk

m = u′ and v ≈ vyk
1 · · · yk

l = v′ with c(u′) = c(v′) and

so [Ak,m, u ≈ v] = [Ak,m, u′ ≈ v′]. Hence by Case 1, any identity u ≈ v ∈ Σ can be transformed

into the form either σ1 or σ2.

Corollary 3.2 Let V be a variety in the lattice L(Ak,m,l,Ak,m,l+1) for k ≥ 2, 0 ≤ m ≤ k − 1

and l ∈ N . Then V is defined within Ak,m,l+1 by finitely many identities of the form either

σ3 : xk
1xk−1

2 · · ·xk−1
l xε1

l+1 · · ·x
εn−l
n = xk−1

1 xk−1
2 · · ·xk−1

l xε1

l+1 · · ·x
εn−l
n

with ε1, . . . , εn−1 ∈ {1, 2, . . . , k − 2} or

σ4 : xε1

1 · · ·xεn

n = xδ1

1 · · ·xδn

n

with max{εi : i = 1, . . . , n} = max{δi : i = 1, . . . , n} = k − 1, m(σ4) ≥ m and |{εi = k − 1 : i =

1, . . . , n}| = |{δi = k − 1 : i = 1, . . . , n}| = l.

Proof It is obvious that L(Ak,m,l,Ak,m,l+1) is a sublattice of L(Ak−1,m,Ak,m). Assume that

V is defined within Ak,m,l+1 by a finite set Σ of identities, where any identity u ≈ v ∈ Σ satisfies

Ak,m,l � u ≈ v and Ak,m,l+1 2 u ≈ v. Then u ≈ v is of the form either σ1 or σ2 by Lemma 3.1.

Suppose that u ≈ v is of the form σ1. It is easy to show that u ≈ v can be reduced to the identity

of the form σ3. Suppose that u ≈ v is of the form σ2. Let |{εi = k − 1 : i = 1, . . . , n}| = a and

|{δi = k − 1 : i = 1, . . . , n}| = b.

If a < l or b < l, then this case is impossible since Ak,m,l 2 u ≈ v.

If a = l, b > l or a > l, b = l. By symmetry, it suffices to assume a = l, b > l. Then

Ak,m,l+1 ∪ {u ≈ v} ⊢ u ≈ v′,

where v′
Ak,m,l+1

≈ v and max(mv′ (x)) = k for x ∈ c(v′). Clearly, Ak,m,l ∪ {u ≈ v′} ⊢ u ≈ v and so

[Ak,m,l, u ≈ v] = [Ak,m, u ≈ v′], where u ≈ v′ is of the form σ3.

If a = b = l, then u ≈ v is just the identity of the form σ4.

Theorem 3.3 For k ≥ 2 and 0 ≤ j < i ≤ k − 1, the lattice L(Ak−1,i,Ak,i) can be embedded

into the lattice L(Ak−1,j ,Ak,j).
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Proof By Lemma 3.1, any variety V ∈ L(Ak−1,i,Ak,i) can be defined by [Ak,i, Σ], where any

identity u ≈ v ∈ Σ is of the form either σ1 or σ2. Let V′ = [Ak,j , Σ]. Then it is easy to see that

V′ ∈ L(Ak−1,j ,Ak,j) and V′ forms a sublattice L′ of L(Ak−1,j ,Ak,j).

We define the mapping α from L(Ak−1,i,Ak,i) to L′ by

[Ak,i, Σ] 7→ [Ak,j , Σ].

If [Ak,i, Σ1] = [Ak,i, Σ2], then Ak,i ∪ Σ1 ⊢ Σ2. Since Ak,j ⊢ Ak,i, we have Ak,j ∪ Σ1 ⊢ Σ2 and so

[Ak,j , Σ1] ⊆ [Ak,j , Σ2]. Similarly, we may show that [Ak,j , Σ2] ⊆ [Ak,j , Σ1]. Hence [Ak,j , Σ1] =

[Ak,j , Σ2] and the definition of α is reasonable. If [Ak,j , Σ1] = [Ak,j , Σ2], then Ak,j ∪ Σ1 ⊢ Σ2

and Ak,j ⊢ Ak,i. For any identity u ≈ v ∈ Σ2, if mu(x) 6= mv(x) for some x ∈ c(u) = c(v), then

min{mu(x), mv(x)} ≥ m(u ≈ v) ≥ i and so Σ2 can be derived only by identities set Ak,i ∪ Σ1.

Hence [Ak,i, Σ1] ⊆ [Ak,i, Σ2]. Similarly, we may show that [Ak,i, Σ2] ⊆ [Ak,i, Σ1]. Hence α is

injective. It is trivial that α is surjective.

Clearly, [Ak,i, Σ1] ⊆ [Ak,i, Σ2] if and only if [Ak,j , Σ1] ⊆ [Ak,j , Σ2]. Hence α is an embedding

of the lattice L(Ak−1,i,Ak,i) into the lattice L(Ak−1,j ,Ak,j). 2

Corollary 3.4 For k ≥ 2 and 0 ≤ j < i ≤ k−1, the lattice L(Ak,i,n,Ak,i,n+1) can be embedded

into the lattice L(Ak,j,n,Ak,j,n+1).

Proof The conclusion follows from Corollary 3.2 and Theorem 3.3.

Theorem 3.5 For k ≥ 2 and 0 ≤ m ≤ k − 1, the lattice L(Ak−1,m,Ak,m) can be embedded

into the lattice L(Ak,m,Ak+1,m).

Proof By Lemma 3.1 any variety V ∈ L(Ak−1,m,Ak,m) can be defined by [Ak,m, Σ], where

any identity u ≈ v ∈ Σ is of the form either σ1 or σ2. Then c(u) = c(v), say c(u) = c(v) =

{x1, . . . , xn}. Let u′ = ux1 · · ·xn and v′ = vx1 · · ·xn and u′ ≈ v′ ∈ Σ′. Let V′ = [Ak+1,m, Σ′]. It

is easy to see that V′ ∈ L(Ak,m,Ak+1,m) and V′ forms a sublattice L′ of L(Ak,m,Ak+1,m).

We define the mapping β from L(Ak−1,m,Ak,m) to L′ by

[Ak,m, Σ] 7→ [Ak+1,m, Σ′].

By an argument similar to that of Theorem 3.3, we may show that β is an embedding of the

lattice L(Ak−1,m,Ak,m) into the lattice L(Ak,m,Ak+1,m). 2

Now we have the required results for a description of the structure of L(Ak).

Theorem 3.6 The structure of lattice L(Ak) is as shown in the following Figure 1.

Proof This is a consequence of Theorems 2.4, 2.5, 3.3 and 3.5 and Corollaries 2.7 and 3.4. 2
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Figure 1 The structure of lattice L(Ak)
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