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Abstract In this paper we introduce a new perturbed proximal-projection algorithm for finding
the common element of the set of fixed points of non-expansive mappings and the set of solu-
tions of nonlinear mixed variational-like inequalities. The convergence criteria of the iterative
sequences generated by the new iterative algorithm is also given. Our approach and results
generalize many known results in this field.
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1. Introduction

In recent years, variational inequality theory has become very effective and powerful tools for
studying a wide class of nonlinear problems arising in many diverse fields of pure mathematics
and applied sciences, such as mathematical programming, optimization theory etc [1-10].

Recently, Noor and Huang [3] considered the problem of finding the common element of the
set of the fixed points of the nonexpansive mappings and the set of the solutions of variational
inequalities. Noor [4] studied the problem of finding the common element of two different sets of
the fixed points of the nonexpansive mappings and the set of solutions of the general variational
inequalities. However, the methods of [3,4] are limited to the study of variational inequalities
and general variational inequalities. Furthermore, Algorithm 2.1 of [4] is not strict.

Motivated and inspired by the research work going on in this field, in this paper, we introduce
a new perturbed proximal-projection algorithm for studing the problem of finding the common
element of the set of the solutions of generalized mixed variational-like inequalities and the set of
the fixed points of the nonexpansive mappings. By applying the novel method, we generalize the
problem of [3]-[4] from variational inequalities and general variational inequalities to nonlinear
mixed variational-like inequalities. Moreover, we take into account a possible inexact compu-

tation of the proximal-projection algorithm by using the perturbed errors. At the same time,
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our method modifies and complements Algorithm 2.1 of [4]. The convergence of the iterative
sequences generated by the new algorithm is also discussed. Our result and method are new and

different from those in the known literature.

2. Preliminaries

Let H be a Hilbert space, whose inner product and norm are denoted by (-,-) and || - ||,
respectively. Let K be a nonempty closed and convex set in H. Let n : H x H — H and
T,A,g: H— H be single-valued operators. Let S : K — K be a non-expansive operator and
¢: H— RU{+00} be a proper function. Let Pk be the projection of H onto the convex set K.

We now consider the problem of finding « € domy such that

(T'(x) = A(x), n(y, 9(x))) + ¢(y) — ¢(g(x)) 20, Vye H, (2.1)
where domyp := {z € H : ¢(z) < oo} # @. The inequality (2.1) is called the nonlinear mixed

variational-like inequality.

Special cases
(I) If n(xz,y) =z —y, for all z,y € H, then problem (2.1) is equivalent to finding = € domgp
such that

(T(z) — Alz),y — g(x)) + »(y) — p(g(z)) >0, Vye€ H. (2.2)

Problem (2.2) is called the mixed variational inequality.
(I) If n(z,y) =z —y, A(x) =0, for all z,y € H, then problem (2.1) reduces the problem of
finding € domg such that

(T(z),y — g9(z)) + ¢(y) — (g(x)) >0, Vye€ H. (2.3)

(IIT) If A(z) = 0, n(y,g9(x)) = g(y) — g(x), for all x,y € H, and ¢ is the indicator of the

closed convex set K, that is,

o ] 0 z e K,
w(w)zfx(fl?)—{ oo, 2K,

then problem (2.1) is equivalent to the one considered in [4]: To find x € H, g(z) € K such that
(T'(x),9(y) —g(x)) 20, Vg(y) € K. (2.4)

(IV) If A(z) =0, n(x,y) =z —y, for all z,y € H, g = I, the identity operator, and ¢ is the
indicator of the closed convex set K, then problem (2.1) becomes to find z € K such that

(T(z),y—2z) >0, Vy€eK. (2.5)

The problem was studied in [3].
In brief, for appropriate and suitable choices of n(-,-),T, A, g, we can obtain many known

and new classes of generalized variational inequalities as special cases of the problem (2.1).

Definition 2.1 ([6]) Letn: Hx H — H and ¢ : H — RU{+0o0}. A vector w € H is called an



Almost fized point, fized point and quasi-variational inequality on gemeralized convex spaces 129
n-subgradient of ¢ at x € domy if

(w,n(y,z)) < p(y) — ¢(z), forally € H.

We can associate with each ¢ the n-subdifferential map Opp(z) defined by

) {w e H:(w,n(y,r)) < p(y) — w(x),Vy € H}, z € domep,
Onple) = & x & domep.

For z € domy, O,¢(x) is called the n-subdifferential of ¢ at x.

Definition 2.2 ([6]) Letn: H x H — H be a given map. Then a multivalued map Q : H — 24
is called n-monotone, if for all x,y € H,

(u—v,n(z,y)) 20, YueQx), veQ(y).

Q is called maximal n-monotone if and only if it is n-monotone and there is no other n-monotone

multivalued map whose graph strictly contains the Graph(Q), where

Graph(Q) = {(z,y) € H x H : y € Q(x)}.

Definition 2.3 An operatorn: H x H — H is called:
(i) Monotone, if
( —y,n(z,y)) 20, Vo,yeH. (2.6)

(ii) Strictly monotone, if the equality holds in (2.6) only when x = y.
(iii) Stongly monotone, if there exists a constant ¢ > 0 such that

(@ —yn(z.y) zolle—yl?, VoyeH
(iv) Lipschitz continuous, if there exists a constant § > 0 such that
In(z, y)|| <dllz—yll, Va,yeH.

Remark 2.1 From (iii) and (iv) of Definition 2.3, we have o < 4.

Definition 2.4 An operator g : H — H is called:

(i) p-Lipschitz continuous, if there exists a constant u > 0 such that
lg(x) =gl < pllz—yl, Yo,y H.
(ii) a-stongly monotone, if there exists a constant o > 0 such that
<g($) - g(y),:lc - y> Z CYHCE - yH27 Vx,y €H.

Definition 2.5 ([7]) An operator g : H — H is called relaxed (v, r)-cocoercive, if there exist
constants v > 0, r > 0 such that

(9(x) — g(w),x —y) = —7llg(x) — gW)|I> + rllz — yl|*, Va,y € H.

Assumption 2.1

(1) n(z,y) +nly,z) =0,Vz,y € H,
(ii) n: H x H — H is strictly monotone,
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(iii) the range of (I + pd,), R(I + pOnp) = H, where p > 0 and I is the identity operator.

Lemma 2.1 ([6]) Letn: H x H — H satisfy n(z,y) + n(y,x) =0, Vz,y € H, and ¢ : H —
RU{+o00}. Then the multivalued map Oy, : H — 2" is n-monotone.

Lemma 2.2 ([6]) Let n: H x H — H be strictly monotone and Q : H — 2% be an n-monotone
multivalued map. If the range of (I + pQ), R(I + pQ) = H, for p > 0 where I is the identity
operator, then @ is maximal n-monotone. Furthermore, the inverse operator (I+pQ)~' : H — H

is single-valued.

Lemma 2.3 Let n: Hx H — H and ¢ : H — RU {400} satisfy Assumption 1. Then the
mapping

JP(x) == (I + pOyp) (z), forallx € H
is single-valued.
Proof From Lemmas 2.1 and 2.2, we know that the conclusion of Lemma 2.3 is correct. O
Lemma 2.4 z € domy is a solution of (2.1) if and only if it satisfies the relation

9(x) = J7(g9(x) = p((T(x) — A(2))), (2.7)

where p > 0 is a constant, J¢ := (I 4+ pdyp)~" is the so-called proximal map and I stands for

identity operator on H.
Proof From the definition of Jg,
g9(x) = JF (g(x) — p(T(z) — A(x)))
if and only if
9(x) = p(T(x) — A(z)) € g(x) + pOyp(g(x))
if and only if
Az) = T(x) € 0yp(g(x))
if and only if
(A(x) = T(2),n(y,9(x))) < (y) — ¢lg(x)), Vy € H,
by using the definition of the n-subdifferential. This implies that z is a solution of (2.1). O

Lemma 2.5 ([6]) Let n: H x H — H be strongly monotone and Lipschitz continuous with
constants o > 0 and § > 0, respectively, which satisfies n(z,y) + n(y,x) =0, Vz,y € H. Then

175 () = I W) < 7llz —yll, Va,y € H,
where T = 0 /0.

Remark 2.2 From Remrk 2.1, we have 7 > 1.
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Let ¢ be a proper convex lower semicontinuous function on H. The subdifferential of ¢ at

x € domep is the set

Op(x) ={£ € H:¢(y) —p(x) > ({,y —x), forall y € H}.

It is known that d¢(-) is a maximal monotone mapping [8], and for each p > 0, the mapping
(I + pdp)~1t is a single-valued mapping defined on the whole space H, where I denotes the
identity mapping.

Lemma 2.6 ([8]) For a given z € H, x € H satisfies the inequality

(x— 2,y —x) + po(y) — po(x) >0, Vye H,

if and only if
T = J%’ (Z)a

where J, := (I + pdp)~! is the proximal map and I stands for identity operator on H. Further-

more, J, is nonexpansive, that is,
1Jo(x) = Jo ()| < llz—yll, Vo,y e H.
Lemma 2.7 For a given z € H, x € K satisfies the inequality
(x —z,y—x) >0, Vy€eK,
if and only if
x = Pk (z2),

where Py is the projection of H onto the convex set K. Furthermore, Pk is nonexpansive, that
is,

1Pk (x) = P ()l < llz =y, Va,ye H.
Lemma 2.8 ([9]) Assume {§,}22, is a sequence of nonnegative real numbers such that

Ont1 < (1= Aoy +0pn, n>0,

where {\,}is a sequence in (0,1) and {0} is a sequence in R such that

() >opzy An = 00
(i) Hmsup, . 0n/An <0 o0r Y 07 | o] < oo
Then lim,, .~ 6,, = 0.

3. Algorithms

Lemma 2.4 enables us to reformulate (2.1) as the fixed point problem of solving z = F(x),

where
F(z) =2 —g(z) + J7 (9(x) — p(T(x) — A(x)). (3.1)

Let S be a nonexpansive mapping. We denote the set of the fixed points of S by F(S5)
and the set of the solutions of the variational inequalities (2.1) by NMVI(T, A,n,¢). If z* €
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F(S)NNMVI(T, A,n,¢), then z* € F(S) and «* € NMVI(T, A,n,¢). Thus it follows from
Lemma 2.4 that

¥ =8Sx"=a"—g

(%) + J7(g(«") — p(T (") — A(z7)))
= Prlz” —g(z%) + J7(9(27) — p(T(27) — A(")))]

= SPxz" —g(x") + J7 (9(z7) — p(T(z7) — A(z")))];

(
)

where p > 0 is a constant.
The fixed point formulation is used to suggest the following perturbed proximal-projection
methods for finding a common element of two different sets of the fixed points of the nonexpansive

mappings and of solutions of the variational inequalities.

Algorithm 3.1 For a given zg € H, compute the approximate solution x,, of (2.1) by the

iterative schemes

zn = (1= cn)Tn + cnSPr[rn — g(zn) + Jf(g(xn) = p(T(zn) — A(zn)))] + fo (3.2)
Yn = (1 = bn)wy + bnSPr[2n — g(2n) + J;f(g(zn) = p(T(2n) — A(zn)))] + €n, (3.3)
Tpt+1 = (1 - an)xn + anSPK[yn - g(yn) + J;)p(g(yn) - p(T(yn) - A(yn)))] +dn, (3'4)

where ap,bn,c, € [0,1] for all n > 0, dy, en, fn € H (n = 0,1,2,...) are errors, S is the
nonexpansive operator, Pk is the projection of H onto the convex set K, and J¢ := (I4pdyp)~t
is the proximal map.

If n(z,y) =z —y, for all z,y € H and ¢ is the proper convex lower semicontinuous function

on H, Algorithm 3.1 reduces to the following method of solving (2.2).

Algorithm 3.2 For a given 2y € H, compute the approximate solution z,, of (2.2) by the

iterative schemes
zn = (1 —cn)on + cnSPx[zn — g(an) + Jo(g(wn) — p(T(zn) — Azn)))] + fn,
Yn = (1 = bn)an + 0nSPx[2n — g(zn) + Jo(9(2n) — p(T(2n) — A(zn)))] + €n,
Tnt1 = (1 = an)on + anSPxlyn — 9(yn) + Jo(9(yn) — p(T'(yn) — Alyn)))] + dn,

where a,,,b,,c, € [0,1] for all n > 0, dy, en, fn € H (n = 0,1,2,...) are errors, S is the
nonexpansive operator, P is the projection of H onto the convex set K, and J, := (I + pOp)~1
is the proximal map.

If n(z,y) =x—y, A(x) =0, for all z,y € H, and ¢ is the proper convex lower semicontinuous

function on H, Algorithm 3.1 reduces to the following method of solving (2.3).

Algorithm 3.3 For a given 2y € H, compute the approximate solution z,, of (2.3) by the

iterative schemes
Zn = (1 - Cn)xn + CnSPK[xn - g(xn) + Jga(g(xn) - pT(xn))] + fn7

Yn = (1 = bp)zn + bnSPr[2n — g(2n) + J@(g(zn) = pT(2n))] + €n,
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Tnt1 = (1 = an)n + anSPx[yn — 9(yn) + Jo(9(yn) — pT (yn))] + dn,

where ay,, by, ¢, € [0,1] for all n > 0, d,, en, fn € H (n = 0,1,2,...) are errors, S is the
nonexpansive operator, P is the projection of H onto the convex set K, J, := (I + pdp)~! is
the proximal map.

If A(z) =0, n(y,g9(z)) = g(y) — g(z), for all z,y € H, and ¢ is the indicator of the closed

convex set K, Algorithm 3.1 reduces to the following method of solving (2.4).

Algorithm 3.4 For a given 2y € H, compute the approximate solution z,, of (2.4) by the

iterative schemes

Zn = (1 - Cn)xn + CnSPK[‘Tn - g(xn) + PK(Q(xn) - pT(xn))] + fn7 (35)
Yn = (1 — bp)xn + b SPx[2n — 9(2n) + Pr(g(2n) — pT(20))] + €n, (3.6)
Tpy1 = (1 —an)ry + anSPK[yn —9(yn) + PK(Q(yn) - pT(yn))] + dn, (3'7)

where ay,, by, ¢, € [0,1] for all n > 0, d,,, epn, fn € H (n = 0,1,2,...) are errors, S is the

nonexpansive operator, and Pk is the projection of H onto the convex set K.

Remark 3.1 In Algorithm 2.1 of [4], for example, (2.10) of Algorithm 2.1 the domain of the map
S is the nonempty closed and convex set K, but the value of x,, —g(xy, )+ Px (9(xn) —pT(x)) (n =
0,1,2,...) does not always belong to the closed and convex set K. It follows that Algorithm 2.1
of [4] is not rigorous. Algorithm 3.4 modifies and generalizes Algorithm 2.1 of [4].
Example 3.1 Let H = R?, K = {(z1,22) : 22 + 23 < 1, 21, 3 € R} C R?, T(z) = —%x,
g(z) = %x, where © = (z1,22) € K, p > 0 is a constant. Then K is the nonempty closed and
convex set on R?, T : K — R* g: K — K. Let 29 = (2,2). Then zg € K, T () = —%(%, 2),
g(z0) = (3 3), hence zo — g(zo) + Pxg(z0) — pT(z0)] = (3,3) = (3,3) + Pxl(1,1)] = (3,3) +
(R R (82 25 ¢ k.

If A(z) =0, n(z,y) =x —y, for all z,y € H, g = I, the identity operator, d,, = e, = f, =
0 (n=0,1,2,...) and ¢ is the indicator of the closed convex set K, Algorithm 3.1 reduces to
the following method of solving (2.5), which is basically as in [3].

Algorithm 3.5 For a given zg € K, compute the approximate solution x,, of (2.5) by the

iterative schemes

zn = (1 = ¢p)xn + enSPx[x, — pT(xy)],
Yn = (1 = bp)xpn + b SPr [z — pT(20)],

Tpy1 = (1 — an)Tpn + anSPxyn — pT(yn)],

where ay,, by, ¢, € [0,1] for all n > 0, S is the nonexpansive operator, and Pk is the projection

of H onto the convex set K.

4. Main results
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In this section, we investigate the strong convergence of Algorithms 3.1, 3.4 and 3.5 in finding

the common element of two sets of solutions of the variational inequalities and F'(S).

Theorem 4.1 Let K be a nonempty closed convex subset of a real Hilbert space H. Let the
operator T : H — H be relaxed (v, r)-cocoercive and u-Lipschitz continuous. Let the operator
A : H — H be Lipschitz continuous with constant k > 0. Let the operator g : H — H be relaxed
(71, 71)-cocoercive and py-Lipschitz continuous. Let ¢ : H — RU {+oo} be a proper function
and the operator 1)(-,-) be strongly monotone and Lipschitz continuous with constants ¢ > 0 and
0 > 0, respectively, which satisfy Assumption 1. Let S : K — K be a nonexpansive mapping
such that F(S) NNMVI(T, A, n, o) # @. If

anybn,cn €0,1] (n=0,1,2,...), Zan = 00, Z lldn |l < oo, Z llen]] < oo, Z | frll < o0,
n=0 n=0 n=0 n=0

and the following conditions are satisfied:

1
2r < 2y + Dl +1, €= \/1—1—271/@—27“1 +ud, T=6/0, £< == >k, (4.1)
2 k(1 —(1 2 k)2 -(1-(1 2
i e i) Gl Ut (213 AU S P
my < p < mg, (43)
where
a—+va?—b .
my = W, mo = mln{wl,’l,l}2},
a++va?—>b 1—(1+7)¢
W= "5 o W2=—"7—"—",
T(u? — k?2) kt

a =17 =yt — k[l = (L+7)¢], b= (p* —k*){r* = [1 = (1 + 1)},
then x,, obtained from Algorithm 3.1 converges strongly to z* € F(S) NNMVI(T, A, n, ).

Proof Let 2* € K be the solution of F(S)NNMVI(T, A,n, ). Then

2" = (1—cn)z" +cnSPxlz™ — g(2") + J7 (g(z") — p(T(2") — A(z"))] (4.4)
= (1 =bn)a" + b, SPk([z™ — g(z") + I (9(2") — p(T(2") — A(z"))] 4.5
= (1 —an)r* + anSPx(z" — g(z*) + JZ (g(z") — p(T(2") — A(z"))] (4.6)

where a,,, b,, ¢, € [0,1] (n =0,1,2,...) are some constants. To prove the result, we need first
to evaluate ||x,+1 — a*|| for all n > 0. From (3.4) and (4.6), the nonexpansive property of the

projection Pk, the nonexpansive mapping S and Lemma 2.5, we have
[@n1 — 2"
= [[(1 = an)(zn — ") + an(SPx[yn — 9(yn) + J7 (9(yn) — p(T'(yn) — Ayn))]—
SPile” —g(z") + J7 (g9(z") — p(T(«") — A(z"))DIl + [|dnll
< (A =an)lzn — 2% + anllyn — g(yn) + I35 (9(yn) — p(T(yn) — Ayn))) — 2" + g(z")—
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J3(g(™) = p(T(z") — A(z™)))[| + || dn|
< (I =an)llzn — 2| + anllyn — 2% = g(yn) + g(") | + anl|JF (9(yn)—
p(T(yn) — Ayn))) — 7 (g(z") — p(T'(z") — A(z™)))[| + [l dn |
< (I =an)llzn — 2| + anllyn — 2% = g(yn) + g(") || + an7llg(yn)—
P(T(yn) — Alyn)) — 9(a") + p(T'(2") — A(z"))|| + || dn|
< (I =an)llen — 2% + an(1+ 7)[[(yn — 27) = (9(yn) — 9(=")) I+
anTllyn — 2" = p(T(yn) = T(z"))I| + anp7l|A(yn) — A(z)[| + [[dn]- (4.7)

From the relaxed (71, 71)-cocoercive and pq-Lipschitzian definition on g,

lyn — 2" = (g(yn) — 9(=*))II?
= llyn — 2™ 1* = 2(9(yn) — 9(z"), yn — 2*) + llg(yn) — 9(=") |
< lyn = 2*11* = 2[=mllg(yn) — 9@ +r1llyn — 2" 1*] + llg(yn) — 9(=)|
< lyn = %117 + 2m1pllyn — 2" = 271llyn — 21> + 1 lyn — 27|12
= [1+2mpf = 2r1 + plllyn — 2% (4.8)
From the relaxed (v, r)-cocoercive and p-Lipschitzian definition on 7,

[yn — 2 = p(T(yn) — T(z*))||”
= [lyn = =*[I* = 20(T(yn) — T(@"),yn — 2*) + p*| T (yn) — T(z")|?
< llyn = 2™ = 20[=A T (yn) = T(@)* +7llyn — 2|1 + p*| T (yn) — T (a*)|”
< llyn = 2|1 + 2902 pllyn — &*(1* = 2rpllyn — 21 + 12 p?||yn — 2”1
= [+ 2yp°p = 2rp + 12 p*) |y — =*||*. (4.9)
By the Lipschitz continuity of A and (4.7)—(4.9), we obtain
[2n41 = 2% < (1= an)llzn — 2*|| + anfllyn — ™[ + [|dn]] (4.10)

where

0=(1+ 7')\/1 4 2y1p2 = 2r + 2 + T 1+ 2yu2p — 2rp + p2p? + kTp. (4.11)
It follows from (4.1)—(4.3) that 6 < 1.

From (3.3) and (4.5), the nonexpansive property of the projection Pk, the nonexpansive
mapping S and Lemma 2.5, we obtain
g~ °]

= 11 = ba) (0 = 2°) + bu(SPx[zn — 9(zn) + J§(gzn) — p(T(zn) = Alen))]=
SPrle* —g(a") + J7(9(x") = p(T(z") — A(z"))DI| + llen]]

< (L =bn)llwn — 2"+ bnllzn — g(zn) + JF(9(20) — p(T(2n) — A(zn))) — 2" + g(2")—
J5(g(") = p(T(z") = A@)Il + llenll

< (U =bn)llen = 2" + ballzn — 2" = g(zn) + g(@*) | + bn [T (9(zn) -
p(T(zn) = A(zn))) =I5 (9(z") — p(T'(z7) — A(z"))) || + [lenl
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< (L =bn)llwn — 2" + bnllzn — 2" = g(zn) + g(z7) | + bu7llg(20) -
p(T(zn) = A(zn)) — 9(z7) + p(T(z7) = A(z"))]| + [lenl]
S (L =b)llzn — 2"+ bu (L +7)[[ (20 — %) = (9(2n) — g(2")) |1+
butllzn — 2% = p(T(2n) = T(2"))[| + anpr|[A(z0) = A(@")]| + [lenl]- (4.12)

From the relaxed (1, 71)-cocoercive and p1-Lipschitzian definition on g,

20 = 2" = (9(2n) = g(@)II* = ll2n — " [I* = 2{g(2n) = 9(2™), 20 — 2*) + g(20) — g(a")II?
<l = 271 = 2[=mllg(zn) — g(@")I* + rillzn — 2 [P] + llg(zn) — g(=™)]1?
< llzn = 2|7 + 2mipillzn — 2|7 = 2r1fl2n — 2" + pf )20 — 272
[t 2900 — 20 4 2] — 2P (4.13)
From the relaxed (v, r)-cocoercive and p-Lipschitzian definition on 7,
2 = & = p(T(2n) = T("))II?
= llzn — 2" |1* = 20(T(2n) = T(2"), 20 — 2*) + p*| T (20) — T(")]?
< lzn — &1 = 20[-A|T (z0) = T(@)|* + rllzn — 2*[] + P T (20) — T(2")II?
<lzn = &1 + 29%pllzn — ¥ |1 = 2rpllzn — 2*(|* + 1?0?20 — 2*|I?
= [+ 2vp%p = 2rp + 129”20 — 2" (4.14)
By the Lipschitz continuity of A and (4.11)—(4.14), we obtain
[y — 27| < (1 = bn)l[an — 2" + bubl|zn — 27(| + [len]]. (4.15)
In a similar way, from (3.2) and (4.4), it follows that

llzn = 2" < (L= cn)llen — ™[ + cnbllzn — 2™ + [ ful
=[1=cn(@=0)llzn — 2| + [ full < llzn — 2] + [ £nll. (4.16)
From (4.15) and (4.16),
[yn — 2% < (1 = bn)llzn — ™[ + bnbl|zn — ™[ + bnb| full + [lenl]
= [ =bn(1 = O)llzn — 2| + bnbl[ full + lleall < [lon — ™[ + bubl| full + [len]].  (4.17)
Then from (4.10) and (4.17), we obtain that
[en1 — ™[] < (1 = an)len — 27| + anfllyn — 2| + [|dn]|
< (1= an)l|on — 2" + andllzn — 2| + anbnb?|[ full + anbllenll + ldnll
= [1 = an(1 = O)llzn — 27| + anbnd?|| full + anbllen|l + lldal
<[ = an(X = O)llzn — 2" + [[full + llenll + lIdnll (4.18)

By (4.18) and Lemma 2.8, we have lim,,_.« ||z, — *|| = 0. This completes the proof. O

Example 4.1 Let n(z,y) =z —y, T(z) = 2a, A(z) = 3=, g(x) = x, for all z,y € H. Then we

have
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i ; : : _ 1 _ 35
(i) T is relaxed (v,r)-cocoercive with v = 47, 7 = %,

21’ and p-Lipschitz continuous with

w=4.
(ii) A is Lipschitz continuous with k = 1.
(iii) n(-,-) is Lipschitz continuous with 7 = 1.
(iv) g is relaxed (y1,r1)-cocoercive with 41 = =, 71 = 1, and py-Lipschitz continuous with

p1 = 1. Hence & = %.

After simple calculations, we have that a = 29—8, b = %, my = 28% V5109, wy = 28% V5109,
wy = 2, my = 2449 and hence condition (4.3) reduces to

28 — V109 28 + V109
35 7S 13
which implies that 6 € (0,1).
If A(z) =0, n(y,9(z)) = g(y) — g(z), for all z,y € H, and ¢ is the indicator of the closed

convex set K, we obtain the following convergence proof of Algorithm 3.4.

Theorem 4.2 Let K be a nonempty closed convex subset of a real Hilbert space H. Let the
operator T : K — H be relaxed (v, r)-cocoercive and u-Lipschitz continuous. Let the operator
g : H — K be relaxed (y1,r1)-cocoercive and pi-Lipschitz continuous. Let S : K — K be a
nonexpansive mapping such that F(S) N GVI(K, T, g) # &, where GVI(K, T, g) denotes the set
of solutions of (2.4). If

anubnucn E [071] (TL = 071727' ”)7 Za”ﬂ = 007 Z ||dn|| < OO? Z He’ﬂ” < OO? Z Hf’ﬂ” < OO’
n=0 n=0 n=0 n=0

and the following conditions are satisfied:

2 < Cm 4D+ 1, E<1, P+ pu/ER—&) <r <y’ +p, (4.19)
2 2\2 2
=Y (r—yu?)? — p2(2 - §)
|p_ ,LLQ |< \/ ILL2 ) (420)

where

€ =2y/1+ 29 — 21 + 41
Then x,, obtained from Algorithm 3.4 converges strongly to z* € F(S)NGVI(K, T, g).
Proof Let 2* € K be the solution of F(S) N GVI(K,T,g). Then
2" = (1= cn)a” + cnSPr[z” — g(a7) + Pr(g9(2") — pT'(z7))] (
= (1 =bn)a" +bnSPxla” — g(z%) + P (g9(x") — pT'(27))] (4.22)
= (1= an)z" + anSPxz" — g(z") + Px (9(z") — pT'(z7))] (
)

where an, by, ¢, € [0,1] (n = 0,1,2,...) are some constants. From (3.7) and (4.23), the

nonexpansive property of the projection Px and the nonexpansive mapping S, we have

[€nt1 — 27|

= [I(1 = an)(@n — 27) + an(SPxyn — 9(yn) + P (9(yn) — pT (yn))]—
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SPklz" — g(z") + P (9(z") — pT ("))l + || dn]|
< (A =ap)lzn — 27| + anllyn — 2" — g(yn) + g(z") + (Px (9(yn) — T (yn))]—
P (g(z") = pT(z"))DIl + [ldull
< (A —an)lzn — 27| + anllyn — 2" — g(yn) + g(z")[|+
anllg(yn) = g(z™) = p(T(yn) — T(z"))|| + [ldn|
< (L =an)llzn — 2| + 2an/lyn — 2" = (9(yn) — 9(=")) |1+
anllyn — 2" = p(T(yn) — T(@"))]| + lldnl- (4.24)

From the relaxed (71, 71)-cocoercive and p1-Lipschitzian definition on g,

[yn = 2" = (9(yn) = 9@ DI = lyn — "1 = 2(g(yn) — 9(2"), yn — 27) + llg(yn) — g(=*)|?
<y =21 = 2[=71ll9(yn) — 9@ + r1llyn — 2*[1°] + [lg(yn) — g(™)]?
< lyn =211 + 27163 lyn — 2™||* = 2r1llyn — 21 + 3 llyn — 2|12
= [1+2mip3 — 21 + pflym — =*)1*. (4.25)
From the relaxed (7, r)-cocoercive and p-Lipschitzian definition on T', we have

[yn —2* = p(T(yn) — T(a"))|?
= [lyn — "I = 20(T (yn) — T(z*), yn — &) + p?| T (yn) — T(a")]|?
<lyn = 21> = 20[=AIT (yn) = T(@)* + rllyn — *1*] + p* T (yn) — T(*)|1?
< lyn — (1 + 2071% lyn — ¥ = 2p7llyn — =*[I* + p?1®|lyn — *|?
= [1+ 2pvu® = 2pr + %] lyn — 2*|%. (4.26)
By (4.24)(4.26), we obtain
[znt1 — 2| < (1 = ap)llzn — 27| + anbllyn — 2| + [[dn], (4.27)

where

0 = \/1+2pyp? — 2pr + p2u2 + 2\/1 + 2y1u3 — 2ry + pd. (4.28)

It follows from (4.19) and (4.20) that 6 < 1.
From (3.6) and (4.22), the nonexpansive property of the projection Pk and the nonexpansive

mapping S, we obtain
[yn — 27|
= [[(1 = bn)(@n — ") 4+ bn(SPr[2n — g(2n) + Pr(9(2n) — pT(2n))]—
SPglz* —g(x") + Pr(9(z*) = pT ("))l + [[enl
< (U =bn)llzn — 2% 4 2bnllzn — 27 = (9(2n) — g(=7)) I+
bullzn — 2" = p(T(2n) = T(«"))] + llenl- (4.29)
From the relaxed (1, 71)-cocoercive and p1-Lipschitzian definition on g,

l2n = 2" = (g(z) = g(z")|I?
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= llzn — 2*[1* = 2{g(zn) — 9(&"), 20 — 2") + l|g(2n) — g(=")|?
< llzn = &)1 = 2[=mllg(zn) — 9@ + rillzn — 2" 1] + llg(za) — g(=")II?
= [1+2mpi — 2r1 + pd]flzn — 2%
From the relaxed (v, r)-cocoercive and p-Lipschitzian definition on T', we have
l2n = 2% = p(T(zn) — T™)|I?
= llzn = @*[1* = 20(T(20) — T2*, 20 — %) + P?| T (20) — Tz"||?
< llzn = &*)1? = 20[-AIT (20) = T2*||* + 7l — 2*|*] + p?||T (2n) — T"||?
= [1+ 2pv® = 2pr + 1% 20 — 2|
By (4.28)-(4.31), we obtain
lyn — 2" < (1= bn)l[zn — 27| + bubllzn — 27| + [[en]]-
In a similar way, from (3.5) and (4.21), it follows that
ln =1l < (1= en)llen — a1 + eallzn — 21+ ol
= [1= all = O)lllzn — 2% + I full < lm — 27l + [ full
From (4.32) and (4.33),

[yn — 2" < (L= bn)llzn — 2% + bubllzn — 27| + b0 full + [lenl|

= [ =0n(1 = O)llzn — 27| + babl full + llenll < llzn — 2" + 0nb| frull + [lenll-

Then from (4.27) and (4.34), we obtain that

[en1 — "] < (1= an)llen — 27| + anfllyn — 2| + [|dn]]
< (1= an)l|on — 2" + andllzn — 2| + anbnb?|[ full + anbllenll + lldull
= [1 = an(l = O)llzn — 27| + anbn&?|| full + anbllen|l + lldal
<[ =an(X=O)llzn — 2" + [ fall + llenll + [1dnl-

By (4.35) and Lemma 2.8, we have lim,,_.« ||z, — *|| = 0. This completes the proof. O

Remark 4.1 Theorem 4.2 generalizes and complements Theorem 3.1 of [4].
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(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

If A(z) =0, n(z,y) =x —y, for all z,y € H, g = I, the identity operator, d,, = e, = f, =

0 (n =0,1,2,...) and ¢ is the indicator of the closed convex set K, we obtain the following

convergence proof of Algorithm 3.5 which is Theorem 3.1 of [3].

Theorem 4.3 Let K be a nonempty closed convex subset of a real Hilbert space H. Let the

operator T : K — H be relaxed (v, r)-cocoercive and p-Lipschitz continuous. Let S : K — K
be a nonexpansive mapping such that F'(S)NVI(T,K) # @, where VI(T, K) denotes the set of

solutions of (2.5). If

Ap,bn,cn €[0,1] (n=0,1,2,...), Zan =00
n=0



140 C. J. FANG

and the following conditions are satisfied:

0<p<20r—yp?)/p?, <

Then x,, obtained from Algorithm 3.5 converges strongly to * € F(S) N VI(T, K).
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