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Abstract In this paper, a modified formula for βPRP

k is proposed for the conjugate gradient

method of solving unconstrained optimization problems. The value of βPRP

k keeps nonnegative

independent of the line search. Under mild conditions, the global convergence of modified PRP

method with the strong Wolfe-Powell line search is established. Preliminary numerical results

show that the modified method is efficient.
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1. Introduction

The conjugate gradient (CG) methods are greatly efficient methods for unconstrained opti-

mization problems, especially large-scale problems. Consider the following unconstrained opti-

mization problem

min{f(x)|x ∈ ℜn}, (1.1)

where f : ℜn → ℜ is a continuously differentiable function whose gradient is denoted by g. The

conjugate gradient method can be described by the iterative scheme:

xk+1 = xk + tkdk, (1.2)

where the positive step-size tk is obtained by some line search, and the direction dk is generated

by the rule:

dk =

{

−gk, if k = 1,

−gk + βkdk−1, if k ≥ 2,
(1.3)

where βk is a scalar, and gk denotes g(xk). Some well-known formulas for βk are given by

βFR
k =

‖gk‖
2

‖gk−1‖2
(see [4]); (1.4)

βHS
k =

gT
k (gk − gk−1)

(gk − gk−1)Tdk−1

(see [6]); (1.5)
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βPRP
k =

gT
k (gk − gk−1)

‖gk−1‖2
(see [8, 9]), (1.6)

where ‖ · ‖ denotes the l2-norm. The corresponding conjugate gradient methods are abbreviated

as FR, HS and PRP methods. Number experience indicates that the HS method is similar to

the PRP method; both two methods tend to be more robust and efficient than the FR method.

In the FR method, if a bad direction and a tinny step from xk−1 to xk are generated, the next

direction dk and the next step sk are also likely to be poor unless a restart along the gradient

direction is performed. In spite of such defeat, the FR method with the exact line search is proved

to be globally convergent on the general function by Zoutendijk [16]. However, the PRP and HS

methods are not globally convergent even for the exact line search since Powell [7] showed that

both two methods can cycle infinitely without approaching a solution. Gibert and Nocedal [5]

firstly proved that the PRP conjugate gradient method converges globally when the sufficiently

decreasing condition and the so-called Property (∗) are satisfied. Dai and Yuan [2, 3] gave further

study of the convergence of the PRP method when βk is defined by βk = max{0, βPRP
k }. Global

convergence studies of related PRP methods are also made by Wei [13–15]. Other modified PRP

methods via adding some strong assumptions or using complicated line searches are proved to

be globally convergent.

Birgin and Mart́ınez [1] proposed a spectral conjugate gradient method by combing conjugate

gradient method and spectral gradient method [10] in the following way:

dk = −θkgk + βkdk−1, (1.7)

where θk is a parameter and

βk =
(θkyk−1 − sk−1)

Tgk

dT
k−1

yk−1

. (1.8)

The reported numerical results show that the above method performs very well if θk is taken

to be the spectral gradient:

θk =
sT

k−1
sk−1

sT
k−1

yk−1

, (1.9)

where sk−1 = xk − xk−1.

In this paper, a modified formula for βPRP
k is used to calculate the research directions. Under

some mild conditions, the global convergence of modified PRP method with the strong Wolfe-

Powell line search is established.

The paper is organized as follows. In next section, we will provide the modified PRP method

and some basic results for the conjugate gradient methods. In Section 3, we will establish global

convergence results with the strong Wolfe-Powell line search. The preliminary numerical results

are reported in the last section.

2. The modified PRP method and some basic results

Motivated by Wei [15] and the convergence analysis for the PRP method by Gilbert and
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Noceda [5], we propose a modified formula for βk, which is defined by

βnew
k =

gT
k (gk −

gT
k gk−1

‖gk−1‖2 gk−1)

‖gk−1‖2
. (2.1)

It is easy to see that βnew
k keeps nonnegative. This property is independent of the line

search. Throughout this section, we assume that every research direction dk satisfies the descent

condition

gT
k dk < 0, (2.2)

for all k ≥ 1.

Now, we state another property which will play important roles in our later analysis. We say

that dk satisfies sufficient descent condition if

gT
k dk < −c‖gk‖

2, (2.3)

where c is a positive constant.

In order to prove the global convergence, we use the strong Wolfe-Powell line search, which

requires tk to satisfy

f(xk + tkdk) − f(xk) ≤ δtkgT
k dk, (2.4)

and

|g(xk + tkdk)Tdk| ≤ σ|gT
k dk|, (2.5)

where 0 < δ < σ < 1. Another important line search that is often used to prove convergence of

nonlinear conjugate gradient methods is strong Wolfe-Powell line search (SWP): Finding tk to

satisfy (2.4) and

g(xk + tkdk)Tdk ≥ σgT
k dk. (2.6)

Now we can state the algorithm of the modified PRP method.

Algorithm 2.1 (A modified PRP method under SWP)

Step 0. Given x1 ∈ ℜn, set d1 = −g1, k = 1. If g1 = 0, then stop.

Step 1. Find a tk > 0 satisfying SWP.

Step 2. Let xk+1 = xk + tkdk and gk+1 = g(xk+1). If gk+1 = 0, then stop.

Step 3. Compute βk by the formula (2.1) and generate dk+1 by (1.3).

Step 4. Set k:=k+1, go to Step 1.

Generally, the following basic assumptions for the objective function are always used to

analyze the global convergence.

Assumption A The level set

Ω = {x ∈ Rn | f(x) ≤ f(x1)}

is bounded, where x1 is given by Algorithm 2.1.

Assumption B In some neighborhood N of Ω, f is continuously differentiable, and its gradient
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is Lipschitz continuously differentiable, that is, there exists a constant L > 0 such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, (2.7)

for all x, y ∈ Ω.

Lemma 2.1 Suppose that Assumptions A and B hold. Consider the method of the form (1.2)–

(1.3), where dk satisfies (2.2) for all k, and tk satisfies the Wolfe-Powell line search (2.4) and

(2.6). Then,
∑

k≥1

(gT
k dk)2

‖dk‖2
< +∞. (2.8)

This result was essentially proved by Zoutendijk [16] and Wolfe [11, 12]. We shall call (2.8)

the Zoutendijk condition. The following Lemma is a general and positive result for conjugate

gradient methods with the strong Wolfe-Powell line search.

Lemma 2.2 Suppose that Assumptions A and B hold. Consider any method of the form (1.2)–

(1.3), where dk is a descent direction (2.2) for all k, and tk satisfies the Wolfe-Powell line search

(2.4) and (2.5). Then either

lim inf
k→∞

‖gk‖ = 0, (2.9)

or
∑

k≥1

‖gk‖
4

‖dk‖2
< +∞. (2.10)

3. Global convergence results

In this section we discuss convergence properties of the MPRP method under strong Wolfe-

Powell line search. The following result gives conditions on the line search that guarantee that

all search directions are all descent directions.

Lemma 3.1 Suppose that Assumptions A and B hold. Consider any method of the form

(1.2)–(1.3), where βk satisfies (2.1), and where the step-size tk satisfies (2.4) and (2.5) with

0 < σ < 1/2. Then, the method generates descent direction dk satisfying

−
1

1 − σ
≤

gT
k dk

‖gk‖2
≤

2σ − 1

1 − σ
, k = 1, 2, . . . . (3.1)

Proof The proof is by induction. The result clearly holds for k = 1 since the middle term equals

−1 and 0 < σ < 1/2. Assume that (3.1) holds for some k ≥ 1. This implies that (2.2) holds,

since 2σ−1

1−σ
< 0, by the condition 0 < σ < 1/2. From (1.3) and (2.1), we have

gT
k+1dk+1

‖gk+1‖2
= −1 + βPRP∗

k+1

(gT
k+1dk)

‖gk+1‖2
= −1 +

gT
k+1

(gk+1 −
gT

k+1gk

‖gk‖2 gk)

‖gk‖2

(gT
k+1dk)

‖gk+1‖2
(3.2)

= −1 +
gT

k+1
dk

‖gk‖2
−

(gT
k+1

gk)2(gT
k+1

dk)

(‖gk‖2)2(‖gk+1‖2)
(3.3)
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= −1 +
gT

k+1dk

‖gk‖2
− cos2 ϑk+1

gT
k+1dk

‖gk‖2
(3.4)

= −1 + sin2 ϑk+1

gT
k+1dk

‖gk‖2
, (3.5)

where ϑk+1 is the angle between gk+1 and gk. Using the line search conditions (2.5), we have

−σ | gT
k+1dk |< gT

k+1dk < σ | gT
k+1dk |,

which, together with (3.5), gives

−1 − σ sin2 ϑk+1

| gT
k dk |

‖gk‖2
≤

gT
k+1dk+1

‖gk+1‖2
≤ −1 + σ sin2 ϑk+1

| gT
k dk |

‖gk‖2
. (3.6)

Since 0 ≤ sin2 ϑk+1 ≤ 1, we obtain from (2.2),

−1 + σ
gT

k dk

‖gk‖2
≤

gT
k+1dk+1

‖gk+1‖2
≤ −1 − σ

gT
k dk

‖gk‖2
. (3.7)

By the induction hypothesis (3.1), we have

−
1

1 − σ
≤

gT
k+1

dk+1

‖gk+1‖2
≤

2σ − 1

1 − σ
. (3.8)

We conclude that (3.1) holds for k + 1. 2

Lemma 3.1 achieves the objective: it shows that all search directions are descent directions,

and the upper bound in (3.1) shows that the sufficient condition (2.3) holds.

Theorem 3.1 Suppose that Assumptions A and B hold. Consider the method of the form

(1.2)–(1.3), where βk is obtained by (2.1) and the direction dk satisfies (2.3) with c = 1−2σ
1−σ

.

Then

lim inf
k+∞

‖gk‖ = 0. (3.9)

Proof Squaring the both sides of the definition of dk, we obtain

‖dk‖
2 = −‖‖gk‖

2 − 2βk(gT
k dk−1) + β2

k‖dk−1‖
2. (3.10)

From (2.1), (3.1) and the above inequality, we have

‖dk‖
2

‖gk‖4
=

1

‖gk‖2
− 2

βnew
k gT

k dk−1

‖gk‖4
+ (βnew

k )2
‖dk−1‖

2

‖gk‖4

≤
1

‖gk‖2
+ 2σ

βnew
k | gT

k−1
dk−1 |

‖gk‖4
+ (βnew

k )2
‖dk−1‖

2

‖gk‖4

≤
1

‖gk‖2
+ 2σM(1 − cos2 ϑk)

‖gk‖
2

‖gk−1‖2

‖gk−1‖
2

‖gk‖4
+

[

(1 − cos2 ϑk)
‖gk‖

2

‖gk−1‖2

]2 ‖dk−1‖
2

‖gk‖4

≤
1 + 2σM

‖gk‖2
+

‖dk−1‖
2

‖gk−1‖4
,

where M = max{ 1

1−σ
, 1−2σ

1−σ
}.

Denoting tk = ‖dk‖
2

‖gk‖4 , we have from the above inequality,

tk ≤ tk−1 +
1 + 2σM

‖gk‖2
.
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Note that t1 = 1

‖g1‖2 . We obtain

tk ≤ (1 + 2σM)
k

∑

1

1

‖gi‖2
. (3.11)

Suppose that (3.9) does not hold, which means that the gradients remain bounded away from

zero: there exists γ > 0 such that

‖gk‖ ≥ γ, (3.12)

for all k ≥ 1. By (3.11) and (3.12), we have

tk ≤
(1 + 2σM)k

γ2
,

which implies that tk at most increases linearly, therefore we have
∑

k≥1

t−1

k = +∞. (3.13)

On the other hand, by (2.8) and (3.1), we obtain

∑

k≥1

‖gk‖
4

‖dk‖2
< +∞, (3.14)

which contradicts (3.13), hence (3.9) follows. 2

4. Numerical experiments

In this section, numerical results for the modified Polak-Ribière-Polyak (MPRP) and the

classical one (PRP) are reported. The problems that we tested are from Neculai Andrei Home

Page: http://www.ici.ro/camo/neculai/ansoft.htm. For these tests, the parameters in the strong

Wolfe-Powell line search (2.4)–(2.5) were chosen to be δ = 10−4 and σ = 0.1 and the initial trial

value for the line search was set to 1/‖g1‖ for the first iteration. For the given test problems,

the termination criterion was following:

‖g(xk)‖ ≤ 10−5.

All codes were written in Fortran and run on PC with 1.7 GHZ CPU processor and 256

M RAM memory and Linux operation system. In these runs the methods were implemented

without restarting. The PRP code is co-authored by Guanghui Liu, Jorge Nocedal, and Richard

Waltz and is obtained from Jorge Nocedal’s web page:

http://www.eecs.northwestern.edu/∼nocedal/software.html

Number results are summarized in Table 4.1. In the Table, problem denotes the name of

the test problem in Fortran, Dim denotes the number of the variable in the problem, NI denotes

the number of iterations, F-G denotes the number of functions and gradient evaluations, CPU

time in seconds, and -1 denotes that the line search procedure described above failed to find a

step-length.
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PRP MPRP

Problem Dim NI/F-G/CPU NI/F-G/CPU

Diagonal 2 500 -1 -1

1000 -1 502/1017 /0.6719E+00

Extended Quadratic Penalty QP1 500 7/28/0.2000E-02 8/26/0.9999E-03

1000 8/27/0.5999E-02 7/26/0.3000E-02

Extended Powell 1000 212/473/0.6899E-01 238/541/0.6999E-01

2000 222/500/0.1120E+00 101/237/0.5499E-01

Singuad 1000 309/702/0.3609E+00 126/417/0.2170E+00

2000 414/967/0.9499E+00 146/486/0.4969E+00

Extended PSC1 1000 7/29/0.1800E-01 7/22/0.1500E-01

2000 11/37/0.4299E-01 12/33/0.3999E-01

Extended Trigonometric 1000 54 /132/0.1600E+00 46/115/0.1410E+00

2000 44/123/0.2840E+00 26/75/0.1700E+00

5000 52/136/0.8089E+00 32/86/0.5109E+00

Extended Penalty 1000 12/58/0.6999E-02 12/53/0.5999E-02

2000 15/64/0.1200E-01 11/56/0.8999E-02

5000 15/70/0.4299E-01 14/62/0.3300E-01

Perturbed Quadratic 1000 161/324/0.6099E-01 161/324/0.6001E-01

2000 228/458/0.1460E+00 228/458/0.1459E+00

5000 361/725/0.5449E+00 361/725/0.5449E+00

Extended Block-Diagonal BD1 1000 9/84/0.3000E-01 12/73/0.2200E-01

2000 -1 19/77/0.4399E-01

5000 7/48/0.7599E-01 18/66/0.1130E+00

Table 4.1 Test results for the PRP method and the MPRP method

From the Table 4.1, we see that for some problem the MPRP method performs much better

than the PRP method, for example the Extended Block-Diagonal BD1; whereas for the Extended

Powell problem with dim=1000, the MPRP method performs worse than the PRP method. On

the whole, the MPRP method performs better than the PRP method for the given test problems.
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