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Abstract This paper considers the expected discounted penalty function Φ(u) for the perturbed

compound Poisson risk model with stochastic return on investments. After presenting an integro-

differential equation that the expected discounted penalty function satisfies, the paper derives

the closed form solution by constructing an identical equation. The exact expression for Φ′(0) is

given using the Laplace transform technique when interest rate is constant. Applications of the

results are given to the ruin probability and moments of the deficit at ruin.
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1. Introduction

We assume that the surplus process of an insurance company follows the perturbed compound

Poisson risk process of Dufresne and Gerber [1],

Ut = ct−

N(t)∑

i=1

Yi + σpWt, t ≥ 0,

where c > 0 is the rate of premium; {N(t), t ≥ 0} is a Poisson process with parameter λ > 0,

representing the total number of claims up to time t; σp > 0 is the dispersion parameter and

the claim size {Yi, i = 1, 2, . . .}, independent of {N(t), t ≥ 0} and standard Brownian motion

{W (t), t ≥ 0}, is a sequence of independent and identically distributed positive random variables

with distribution function F .

Suppose that the insurer is allowed to invest in an asset or investment portfolio. The return

on investment generating process is Rt = δt+ σBt, t ≥ 0, where {Bt, t ≥ 0} is another standard

Brownian motion. For simplicity, we assume throughout the paper that the process U and R are

independent. Then the current surplus at time t with an initial surplus u is

X(t) = eRt(u+

∫ t

0

e−RsdUs), t ≥ 0. (1)
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Let τ = inf {t ≥ 0, X(t) ≤ 0} be the bankruptcy time and w = w(x, y) be a non-negative

measurable function on [0,∞) × [0,∞). Then the expected discounted penalty function under

risk process (1) is

Φ(u) = E
[
e−ρτw(X(τ−), |X(τ)|)I(τ <∞) | X(0) = u

]
, (2)

where I(A) is the indicator function of event A and ρ > 0 is a discount factor.

The concept of the expected discounted penalty function was first introduced by Gerber and

Shiu [2–4] and it has proven to be a powerful analytical tool to study ruin quantities. Many

important results of ruin related functions can be obtained using this tool [5–9].

Since an insurance company often invests part of its capital in a risky portfolio, it has become

an important topic for studying risk models with stochastic return. Although some elegant results

have been obtained for Φ(u), the case with stochastic return still needs further investigation. For

a compound Poisson risk process, Cai [10] studied Φ(u) with stochastic interest process being a

Brownian motion with drift, while Yuen and Wang [11] considered the problem when stochastic

return is a compound Poisson process with drift, and Yuen et al. [12] extended the analysis to

a risk model with stochastic return under barrier strategy.

In this paper, we shall discuss the expected discounted penalty function in the classical risk

model perturbed by diffusion with stochastic return being a Brownian motion with drift. It is

slightly more general than discussed in Cai [10] since we add a Brownian motion to perturb the

aggregate claims process. The idea and methods we use are motivated by Sundnt and Teugels

[13] and Cai [10, 14]. In Section 2, we show the expected discounted penalty function Φ(u)

satisfies an integro-differential equation, which generalizes results of Cai [10] and Wang and Wu

[9]. In Section 3, we derive general solutions for Φ(u) in the form of an infinite series. The exact

solution for Φ′(0) when interest rate is constant is found using Laplace transforms in Section 4.

Section 5 presents two examples to illustrate applications of the results.

2. Integro-differential equation

The purpose of this section is to show that the expected discounted penalty function for

risk model (1) satisfies an integro-differential equation. The result is obtained by utilizing the

regenerative property of Poisson process at claim instants and conditioning on the amount of the

first claim. In order to prove our theorem, we need the following results stated here as a lemma.

For t ≥ 0, define

h(t) = u(eRt − 1) + c

∫ t

0

eRsds

and

h̃(t) = u(eRt − 1) + c

∫ t

0

eRsds+ σp

∫ t

0

eRt−RsdWs.

Lemma 1 For any t ≥ 0,

E[h̃(t)] = E[h(t)] = [e(δ+
1

2
σ2)t − 1](u+

c

δ + σ2

2

), (3)
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E[h̃2(t)] = E[h2(t)] + σ2
p ·

e(δ+σ2)t − 1

2(δ + σ2)
, (4)

E[

∫ t

0

eRt−RsdWs]
3 = 0, (5)

lim
t→0

E[h(t)(
∫ t

0
eRt−RsdWs)

2]

t
= 0. (6)

Proof It is easy to check that equation (3) holds.

By Ito isometry, we have

E[

∫ t

0

eRt−RsdWs]
2 = E[

∫ t

0

e2(Rt−Rs)ds] =
e2(δ+σ2)t − 1

2(δ + σ2)
.

Therefore,

E[h̃2(t)] = E[h2(t) + σ2
p(

∫ t

0

eRt−RsdWs)
2 + 2h(t)σp

∫ t

0

eRt−RsdWs]

= E[h2(t)] + σ2
p ·

e(δ+σ2)t − 1

2(δ + σ2)
,

which implies that equation (4) holds.

Let M
(1)
t = (

∫ t

0 e
Rt−RsdWs)

3, Y
(1)
t = e3Rt and Z

(1)
t =

∫ t

0 e
−RsdWs. By Ito’s formula, we

obtain

dM
(1)
t = 3M

(1)
t [(δ +

3

2
σ2)dt+ σdBt] + 3Y

(1)
t (Z

(1)
t )2e−RtdWt + 3Y

(1)
t Z

(1)
t e−2Rtdt.

Integrating the above equation and noting that
∫ t

0

M (1)
u σdBu,

∫ t

0

Y (1)
u (Z(1)

u )2e−RudWu, Y
(1)
u Z(1)

u e−2Ru = eRu

∫ u

0

e−RsdWs

are martingales with zero-expectation, we get

E[M
(1)
t ] −M

(1)
0 = 3

∫ t

0

E[M (1)
u (δ +

3

2
σ2)]du.

Denoting E[M
(1)
t ] = g(t), the above equation can be re-expressed as

g(t) −M
(1)
0 = 3(δ +

3

2
σ2)

∫ t

0

g(u)du

with solution g(t) = C1e
(3δ+ 9

2
σ2)t. Since g(0) = C1 = M

(1)
0 = 0, we get g(t) ≡ 0, which implies

that equation (5) holds.

Let Y
(2)
t = h(t)e2Rt , Z

(2)
t = (

∫ t

0
e−RsdWs)

2 and M
(2)
t = Y

(2)
t Z

(2)
t . By Ito’s formula, we have

dM
(2)
t =Y

(2)
t (2

∫ t

0

e−Rt−RsdWs)dWt + Y
(2)
t e−2Rtdt+ Z

(2)
t e2Rtσ[2h(t) + ueRt]dBt+

Z
(2)
t [2h(t)δ + 2h(t)σ2 + eRt(δu+

5

2
uσ2 + c)]dt.

Integrating the above equation and taking expectations on both sides, we have

E[M
(2)
t ] =

∫ t

0

E
[
Y (2)

s e−2Rs
]
ds+ E

{∫ t

0

Z(2)
s [2h(s)δ + 2h(s)σ2 + eRs(δu +

5

2
uσ2 + c)]ds

}
.
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Hence, from L’Hospital rule, we get

lim
t→0

E[M
(2)
t ]

t
= lim

t→0

{
E

[
Y

(2)
t e−2Rt

]
+ E

[
Z

(2)
t h(t)(2δ + 2σ2)

]
+ E

[
Z

(2)
t eRt(δu +

5

2
uσ2 + c)

]}

, lim
t→0

[
I1(t) + I2(t) + I3(t)

]
. (7)

From equation (3), we get

lim
t→0

I1(t) = lim
t→0

[
e(δ+

1

2
σ2)t − 1

]
(u +

c

δ + σ2

2

) = 0. (8)

By Ito’s formula again, we have

d[Z
(2)
t h(t)]=[Z

(2)
t eRt(δu+

1

2
uσ2+c)+h(t)e−2Rt]dt+Z

(2)
t eRtuσdBt+2h(t)(

∫ t

0

e−Rt−RsdWs)dWt.

Integrating the above equation and taking expectations on both sides one more time, we can

write

E
[
Z

(2)
t h(t)

]
=

∫ t

0

E
[
Z(2)

s eRs(δu +
1

2
uσ2 + c) + h(s)e−2Rs

]
ds.

Notice that the integrand on the right-hand side of the above equation is continuous and bounded

in (0, t], which implies that the integral is also continuous. Therefore,

lim
t→0

I2(t) = lim
t→0

E
[
Z

(2)
t h(t)(2δ + 2σ2)

]
= 0. (9)

Similarly, we can obtain

lim
t→0

I3(t) = lim
t→0

E
[
Z

(2)
t eRt(δu+

5

2
uσ2 + c)

]
= 0. (10)

Hence, equation (6) follows from (7)–(10).

We can now give equations satisfied by Φ(u).

Theorem 1 Consider risk process (1) and the expected discounted penalty function Φ(u) defined

in (2). If F is a continuous distribution and w(x, y) is bounded for x ≥ 0, y ≥ 0, then Φ(u)

satisfies the integro-differential equation

1

2
(σp

2+σ2u2)Φ′′(u) + (δu+
1

2
σ2u+ c)Φ′(u) − (λ + ρ)Φ(u)+

λ

∫ u

0

Φ(u− y)dF (y) + λ

∫
∞

u

w(u, y − u)dF (y) = 0 (11)

and the following boundary conditions:

Φ(∞) = 0, (12)

Φ(0) = w(0, 0). (13)

Proof Using similar arguments to Gerber and Shiu [3] and Willmot and Dickson [15], we

condition on the amount, y, of the first claim in a very short interval (0,∆t]. We note that if

there is no claim in (0,∆t], then X(∆t) = h̃(∆t) + u; if there is one claim in (0,∆t], then ruin

occurs when y ≥ h̃(∆t) + u. Thus,

Φ(u) =(1 − λ∆t)e−ρ∆tE
[
Φ(h̃(∆t) + u)

]
+ λ∆te−ρ∆tE

[ ∫ u+h̃(∆t)

0

Φ(h̃(∆t) + u− y)dF (y)
]
+
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λ∆te−ρ∆tE
[ ∫

∞

u+h̃(∆t)

w(h̃(∆t) + u, y − h̃(∆t) − u)dF (y)
]
+ o(∆t). (14)

By Taylor’s expansion, we have

E[Φ(h̃(t) + u)] = Φ(u) + Φ′(u)E[h̃(t)] +
1

2
Φ′′(u)E[h̃(t)]2 +

1

6
E[Φ′′′(ũ)h̃3(t)],

where u ≤ ũ ≤ u+ h̃(t).

In view of equations (3), (4) and (5), we can write

E[Φ(h̃(t) + u)] =Φ(u) + Φ′(u)E[h(t)] +
1

2
Φ′′(u)E

[
h2(t) + σ2

p

e2(δ+σ2)t − 1

2(δ + σ2)

]
+

1

6
Φ′′′(ũ)E

[
h3(t) + 3h(t)σ2

p(

∫ t

0

eRt−RsdWs)
2
]
.

Substituting the above equation into (14) gives

Φ(u) =Φ(u) + Φ′(u)E[h(∆t)] +
1

2
Φ′′(u)E

[
h2(∆t) + σ2

p ·
e2(δ+σ2)∆t − 1

2(δ + σ2)

]
+

1

6
Φ′′′(ũ)E

[
h3(∆t) + 3h(∆t)σ2

p(

∫ ∆t

0

eR∆t−RsdWs)
2
]
− (λ+ ρ)∆t · Φ(u)+

λ∆te−ρ∆tE
[ ∫

∞

u+h̃(∆t)

w(u+ h̃(∆t), y − u− h̃(∆t))dF (y)
]
+

λ∆te−ρ∆tE
[ ∫ u+h̃(∆t)

0

Φ(u + h̃(∆t) − y)dF (y)
]
+ o(△t). (15)

Results in the appendix of [10] have shown that

lim
t→0

E[h(t)]

t
= u(δ +

σ2

2
) + c, lim

t→0

E[h2(t)]

t
= σ2u2, lim

t→0

E[h3(t)]

t
= 0.

Thus, by dividing ∆t on both sides of equation (15), letting ∆t→ 0, and using the above results,

we obtain equation (11).

The boundary condition (12) holds from the boundedness of w, and the second boundary

condition (13) follows from the fact that zero initial surplus corresponds to the bankruptcy state.

We remark that Theorem 4.1 in [10] is a special case of above results with σp = 0 and σ > 0.

And our results coincide with the results of combination of Theorems 2.3 and 2.6 of Wang and

Wu [9] when σp > 0 and σ = 0.

3. General solutions for Φ(u)

In this section, we give general solutions for Φ(u). We first give an identical equation of

equation (11). Based on this, the closed form expression for Φ(u) is obtained.

Theorem 2 The integro-differential equation

1

2
(σp

2+σ2u2)Φ′′(u) + (δu+
1

2
σ2u+ c)Φ′(u) − (λ + ρ)Φ(u)+

λ

∫ u

0

Φ(u− y)dF (y) + λ

∫
∞

u

w(u, y − u)dF (y) = 0 (16)
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is identical to the Volterra equation

Φ(u) =

∫ u

0

Φ(y)K(u, y)dy + g(u), (17)

where

g(u) =
1

σ2
p + σ2u2

[
σ2

pΦ(0) + σ2
pΦ′(0)u+ 2Φ(0)cu− 2λ

∫ u

0

∫ y

0

∫
∞

x

w(x, z − x)dF (z)dxdy
]
,

K(u, y) =
2

σ2
p + σ2u2

[
− y(−2σ2 + 2δ + λ+ ρ) − u(

1

2
σ2 − δ − λ− ρ) − c− λ

∫ u−y

0

F (t)dt
]
.

Furthermore, the solution of equation (16) is unique if F is a continuous distribution.

Proof Integrating equation (16) over u twice, integrating by parts and interchanging the order

of integration, we have

1

2
(σ2

p + σ2u2)Φ(u) −
1

2
σ2

p[Φ(0) + Φ′(0)u] − Φ(0)cu+

∫ u

0

Φ(y)[y(−2σ2 + 2δ + λ+ ρ)+

u(
1

2
σ2 − δ − λ− ρ) + c]dy + λ

∫ u

0

Φ(y)

∫ u−y

0

F (t)dtdy+

λ

∫ u

0

∫ y

0

∫
∞

x

w(x, z − x)dF (z)dxdy = 0,

which implies that equation (17) holds.

Since equation (16) is identical to (17), we just need to show the uniqueness of the solution

to equation (17). And, according to the theory of Volterra equation, this statement holds since

g(u) is absolutely integrable and K(u, y) is bounded integrable, which comes from the continuity

of F and the boundedness of w. 2

From Theorem 4 and the theory of Volterra equation [16], we can get the closed-form solution

of equation (16)

Φ(u) = g(u) +

∫ u

0

∞∑

n=1

Kn(u, t)g(t)dt,

where

Kn(u, t) =

∫ u

t

K(u, y)Kn−1(y, t)dy, u ≥ t, n = 2, 3, . . .

K1(u, t) = K(u, t).

Furthermore, Φ(u) can be approximated recursively by Picard’s sequence defined by

Φ0(u) = g(u),

Φn(u) = g(u) +

∫ u

0

Φn−1(s)g(s)ds, n = 1, 2, 3, . . . .

4. The exact solution for Φ′(0) under constant interest

Section 3 gives the expression and recursive formula for Φ(u). But, in order to apply these

results, we need to know the solution for Φ′(0). This section will devote to find Φ′(0) when
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Rt = δt, δ > 0, by using the Laplace transform technique of Sundt and Teugels [13] and Cai and

Dickson [14] and conditions given by Theorem 2.

We define an auxiliary function of Φ(x) as Z(x) = Φ(0) − Φ(x). Then Z(0) = 0. If the

claim size distribution F is sufficiently regular and w is bounded, we have Φ(x) → 0 as x → ∞

according to the monotone convergence theorem, which implies that limx→∞ Z(x) = Φ(0). In

this case, we can define Z̃(s) =
∫
∞

0 e−sxdZ(x), with Z̃(0) = Φ(0) = w(0, 0) <∞.

By substituting Φ(x) = Φ(0) − Z(x) into equation (11), we have that

−
1

2
σ2

pZ
′′(x)−(c+δx)Z ′(x)+(λ+ ρ)Z(x) − λ

∫ x

0

Z(x− y)dF (y) + Π(x) = 0, (18)

where

Π(x) = −(ρ+ λ)Φ(0) + λΦ(0)F (x) + λ

∫
∞

x

w(x, y − x)dF (y).

Taking the Laplace transform of equation (18) yields

−δZ̃ ′(s) + Z̃(s)(L(s) −
ρ

s
) =

1

2
σ2

pZ̃
′(0) + Π̃(s),

where

L(s) =
1

2
σ2

ps+ c− λ

∫
∞

0

e−sx(1 − F (x))dx,

Π̃(s) =

∫
∞

0

e−sxΠ(x)dx. (19)

When δ > 0, we note that

d

ds

[
Z̃(s)s

ρ
δ e

−1

δ

∫
s

0
L(t)dt

]
= −

1

δ
e

−1

δ

∫
s

0
L(t)dts

ρ
δ

[1

2
σ2

pZ
′(0) + Π̃(s)

]

and by monotone convergence theorem we have that

Z̃(s)s
ρ
δ =

∫
∞

0

e−sxs
ρ
δ dZ(x) → 0, s→ ∞,

which implies

Z̃(s)s
ρ
δ e

−1

δ

∫
s
0

L(t)dt =
1

δ

∫
∞

s

e
−1

δ

∫
t
0

L(m)dmt
ρ
δ

[1

2
σ2

pZ
′(0) + Π̃(t)

]
dt.

Put s = 0 in the above equation to obtain

1

2
σ2

pZ
′(0)

∫
∞

0

e
−1

δ

∫
t

0
L(m)dmt

ρ
δ dt = −

∫
∞

0

e
−1

δ

∫
t

0
L(m)dmt

ρ
δ Π̃(t)dt,

or, equivalently,

Z ′(0) =
−2

∫
∞

0
e

−1

δ

∫
t
0

L(m)dmt
ρ
δ Π̃(t)dt

σ2
p

∫
∞

0
e

−1

δ

∫
t
0

L(m)dmt
ρ
δ dt

.

From the fact that Φ′(0) = −Z ′(0), we obtain

Φ′(0) =
2

∫
∞

0
e

−1

δ

∫
t
0

L(m)dmt
ρ
δ Π̃(t)dt

σ2
p

∫
∞

0
e

−1

δ

∫
t
0

L(m)dmt
ρ
δ dt

. (20)
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Example Under conditions of Theorem 2, if F is an exponential distribution with F (y) =

1 − e−βy, β > 0, equation (11) is re-expressed as

1

2
(σp

2 + σ2u2)Φ′′(u) + (δu +
1

2
σ2u+ c)Φ′(u) − (λ+ ρ)Φ(u)+

λA(u) + λβe−βu

∫ u

0

Φ(y)eβydy = 0, (21)

where A(u) =
∫
∞

u
w(u, y − u)dF (y).

Taking the derivative with respect to u on both sides of equation (21), we get

1

2
(σp

2+σ2u2)Φ′′′(u) + Φ′′(u)σ2u+ Φ′′(u)(δu +
1

2
σ2u+ c) + Φ′(u)(δ +

1

2
σ2)−

(λ+ ρ)Φ′(u) + λA′(u) − λβ2e−βu

∫ u

0

Φ(y)eβydy + λβΦ(u) = 0. (22)

Multiplying equation (21) by β and adding to equation (22), we can get the differential equation

satisfied by Φ(u)

1

2
(σp

2 + σ2u2)Φ′′′(u) + (
1

2
σ2

pβ +
1

2
σ2u2β + δu +

3

2
σ2u+ c)Φ′′(u)+

(βδu +
1

2
βσ2u+ cβ + δ +

1

2
σ2 − λ− ρ)Φ′(u)−

(λ+ ρ)βΦ(u) + λβA(u) + λA′(u) + λβΦ(u) = 0.

From equation (19) we get Π̃(s) = − ρ
s
. Thus according to equation (20), we have

Φ′(0) = −
2ρ

∫
∞

0
e

−1

δ

∫
t
0

L(m)dmt
ρ
δ
−1dt

σ2
p

∫
∞

0
e

−1

δ

∫
t
0

L(m)dmt
ρ
δ dt

.

Furthermore, from equation (21) we have

Φ′′(0) =
2(ρ− cΦ′(0))

σ2
p

.

Paulsen and Gjessing [17] and Cai [10] also considered the case for exponential claim distri-

bution. Results in this example coincides with equation (2.11) when δ = r − 1
2σ

2 in [17]. Also,

Example 5.1 in [10] is a special case of our example by taking σp = 0.

5. Applications

In this section, we give two examples to illustrate applications of the derived results.

When interest is constant, the equation satisfied by Φ(u) is

Φ(u) =

∫ u

0

Φ(y)K(u, y)dy + g(u), (23)

where

g(u) = w(0, 0) + uΦ′(0) +
1

σ2
p

[
2 w(0, 0) c u− 2λ

∫ u

0

∫ y

0

∫
∞

x

w(x, z − x)dF (z)dxdy
]
,

K(u, y) =
2

σ2
p

[
y(−2δ − λ) + u(δ + λ) − c− λ

∫ u−y

0

F (t)dt+ ρ(u− y)
]
,
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Φ′(0) =
2

∫
∞

0
e

−1

δ

∫
t
0

L(m)dmt
ρ
δ Π̃(t)dt

σ2
p

∫
∞

0
e

−1

δ

∫
t
0

L(m)dmt
ρ
δ dt

.

5.1 Ruin probability

Denote the ruin probability with initial surplus u as Pr(τ < ∞) = ψ(u). Let w(x, y) = 1

and ρ = 0. We get Φ(u) = E[I(τ <∞)] = ψ(u). From Section 4, we have Π̃(s) = 0, Φ′(0) = 0.

Then, equation (23) yields that

ψ(u) =

∫ u

0

ψ(y)K(1)(u, y)dy + g(1)(u),

where

g(1)(u) = 1 +
1

σ2
p

[
2 · c · u− 2λ

∫ u

0

∫ y

0

1 − F (x)dxdy
]
,

K(1)(u, y) =
2

σ2
p

[
y(−2δ − λ) + u(δ + λ) − c− λ

∫ u−y

0

F (t)dt
]
.

5.2 Moments of the time of ruin

In the following, we regard ρ as a variable and denote Φ(u), K(u, y), g(u) in Section 3

as Φ(u, ρ), K(u, y, ρ) and g(u, ρ), respectively. We assume that these functions are infinitely

differentiable about ρ.

Denote the m-th order moment of the time of ruin as

E
[
τm I(τ <∞)

]
= (−1)

m
Rm(u), m = 1, 2, . . . .

Let w(x, y) = 1. We get

Φ(u, ρ) = E
[
e−ρτI(τ <∞)

]

and

Rm(u) =
∂mΦ(u, ρ)

∂ρm

∣∣∣
ρ=0

.

Taking derivatives with respect to ρ on K(u, y, ρ) for m times, m = 1, 2, 3, . . . , we have

∂K(u, y, ρ)

∂ρ
=

2

σp
2
(u− y),

∂mK(u, y, ρ)

∂ρm
= 0, m = 2, 3, 4, . . . .

Then, equation (23) yields that

∂Φ(u, ρ)

∂ρ
=

∫ u

0

∂Φ(y, ρ)

∂ρ
K(u, y, ρ)dy +

∫ u

0

Φ(u, ρ)
∂K(u, y, ρ)

∂ρ
dy +

∂g(u, ρ)

∂ρ
, (24)

∂mΦ(u, ρ)

∂ρm
=

∫ u

0

∂mΦ(y, ρ)

∂ρm
K(u, y, ρ)dy +m

∫ u

0

∂m−1Φ(y, ρ)

∂ρm−1

∂K(u, y, ρ)

∂ρ
dy+

∂mg(u, ρ)

∂ρm
, m = 2, 3, . . . . (25)
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From equation (19), we have Π̃(t) = −ρ
t

. Letting ρ → 0+ in equation (24) and (25), we obtain

the recursive equation satisfied by Rm(u)

R1(u) =

∫ u

0

R1(y)K(u, y)dy +
2

σp
2

∫ u

0

Φ(y, 0)(u− y)dy −
2u

∫
∞

0 e
−1

δ

∫
t
0

L(m)dm 1
t
dt

σp
2
∫
∞

0 e
−1

δ

∫
t
0

L(m)dmdt
,

Rm(u) =

∫ u

0

Rm(y)K(2)(u, y)dy +
2m

σp
2

∫ u

0

Rm−1(y)(u− y)dy + g(2)(u), m ≥ 2,

where

g(2)(u) = u ·
∂m

∂ρm

(−2ρ
∫
∞

0 e
−1

δ

∫
t
0

L(m)dmt
ρ
δ
−1dt

σ2
p

∫
∞

0 e
−1

δ

∫
t
0

L(m)dmt
ρ
δ dt

)∣∣∣
ρ=0

,

K(2)(u, y) =
2

σ2
p

[
y(−2δ − λ) + u(δ + λ) − c− λ

∫ u−y

0

F (t)dt
]
.
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