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Abstract Let F be a field with characteristic 0, V = F n the n-dimensional vector space over

F and let G be a finite pseudo-reflection group which acts on V . Let χ : G −→ F ∗ be a 1-

dimensional representation of G. In this article we show that χ(g) = (det g)α(0 ≤ α ≤ r − 1),

where g ∈ G and r is the order of g. In addition, we characterize the relation between the relative

invariants and the invariants of the group G, and then we use Molien’s Theorem of invariants to

compute the Poincaré series of relative invariants.
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1. Introduction

Let F be a field with characteristic 0 and V be the n-dimensional vector space over F . The

pseudo-reflection and the reflecting hyperplane are defined as follows:

σ ∈ GL(V ), H = {ξ ∈ V |σξ = ξ}.

If dimH = n − 1, then σ is called a pseudo-reflection, and subspace H is called the reflecting

hyperplane of σ. A vector v 6= 0 in Im(σ − 1) is called a reflecting vector of σ (see [1, 2]).

Throughout this paper F denotes a fixed field with characteristic 0, unless the contrary is

explicitly stated. σ has finite order, so the characteristic of the field F does not divide the order

of σ (which we shall call the nonmodular case), thus σ must be diagonalizable.

For convenience, we always suppose G is a finite pseudo-reflection group that is generated

by the fundamental pseudo-reflections s1, . . . , sn. The definition of relative invariants is needed

in the paper. Let χ : G 7→ F ∗ be a 1-dimensional representation of G. For f ∈ F [V ∗], if

σ · f = χ(σ)f , then f is called the χ-relative invariant of G.

det : G 7→ F ∗

σ 7→ detσ
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is a 1-dimensional representation of G. The det-relative invariants of G have been discussed

completely in [5]. In section 3, we will calculate the Poincaré series of det-relative invariants.

This brought about the questions: How to characterize the other 1-dimensional representation

of the group G? What is the relation between relative invariants and invariants?

In Section 2, we shall discuss these questions, and obtain the conclusions:

Let χ : G 7→ F ∗ be a 1-dimensional representation of G. If each σ ∈ G, σ · P = χ(σ)P , then

χ(σ) = 1 or χ(σ) = (detσ)α, 1 ≤ α ≤ r − 1, r = |σ|.

The difference between the relative invariants and the invariants was described by Larry

Smith in [3], which is only a divisor Lχ = c
∏

U∈H(G) laU

sU
, c ∈ F ∗.

In Section 3, the Poincaré series of relative invariants of the group G can be computed.

2. The relative invariants of the finite pseudo-reflection group

Theorem 2.1 If P is a χ-relative invariant of the group G, i.e., for each σ ∈ G, σ ·P = χ(σ)P ,

P 6= 0, then χ(σ) = 1 or χ(σ) = (detσ)α, 1 ≤ α ≤ r − 1, where r is the order of σ.

Proof Let U be a reflecting hyperplane of a pseudo-reflection σ, GU = 〈σ〉, |σ| = r. Choose a

basis ε1, . . . , εn, such that

σi(εj) = εj (1 ≤ j ≤ n − 1), σi(εn) = ξσiεn, ξσi = ξi
σ,

where ξσ is a primitive r-root of unity. Suppose {x1, . . . , xn} ∈ V ∗ is the dual basis of ε1, . . . , εn,

thus the reflecting hyperplane U is determined by xn = 0. Since

σi · xj = xj , (1 ≤ j ≤ n − 1), σi · xn = ξ−1
σi xn

and

σ · P = χ(σ)P,

we have

P (x1, . . . , xn−1, ξ
−1
σ xn) = χ(σ)P (x1, . . . , xn).

If P (x1, . . . , xn) is described as follows:

P (x1, . . . , xn) =
∑

m≥0

Pm(x1, . . . , xn−1)x
m
n ,

then
∑

m≥0

Pm(x1, . . . , xn−1)ξ
−m
σ xm

n = χ(σ)
∑

m≥0

Pm(x1, . . . , xn−1)x
m
n ,

i.e.,

P0 + ξ−1
σ P1xn + · · · + ξ−r+1

σ Pr−1x
r−1
n + Prx

r
n + · · ·

= χ(σ)(P0 + P1xn + · · · + Pr−1x
r−1
n + Prx

r
n + · · · ).

Equating coefficients of the xn, we obtain:

χ(σ) = 1 or P0 = 0;
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χ(σ)ξσ = 1 or P1 = 0;

· · ·

χ(σ)ξr−1
σ = 1 or Pr−1 = 0.

We prove that only one of

χ(σ) = 1, χ(σ)ξσ = 1, . . . , χ(σ)ξr−1
σ = 1

occurs. Otherwise, suppose there exist two equalities

χ(σ)ξm
σ = 1, χ(σ)ξn

σ = 1, 0 ≤ m, n ≤ r − 1,

which implies ξm−n
σ = 1. Clearly, m − n < r, which contradicts the fact that ξσ is a primitive

r-th root of unity. Hence it is impossible for no less than two cases to exist at the same time. In

fact, if none of

χ(σ) = 1, χ(σ)ξσ = 1, . . . , χ(σ)ξr−1
σ = 1

exists, then

P0 = 0, P1 = 0, . . . ,

i.e.,

P = 0

which contradicts P 6= 0. Therefore, there must exist only one of

χ(σ) = 1, χ(σ)ξσ = 1, . . . , χ(σ)ξr−1
σ = 1.

Suppose χ(σ)ξu
σ = 1, 0 ≤ u ≤ r − 1, then

χ(σ) = ξr−m = ξα = (detσ)α, 0 ≤ α ≤ r − 1.

This completes the proof. 2

For the remainder of this section we shall characterize the relation between the χ-relative

invariants and invariants of G. Let H(G) = {Hs|s ∈ G} denote the set of reflecting hyperplanes

of all pseudo-reflections in G.

Hs = {λ ∈ V |ls(x1, . . . , xn)(λ) = 0}

is defined by ls(x1, . . . , xn) = 0, where ls(x1, . . . , xn) = 0 is a homogeneous linear polynomial. If

U ∈ H(G) is a reflecting hyperplane of G, we denote by GU the pointwise stabilizer of U in G.

This is the group generated by all the pseudo-reflections in G with U as a reflecting hyperplane

together with 1. For every U ∈ H(G) , choose aU ∈ N minimal such that χ(sU ) = det(sU )aU

and introduce the form

Lχ = c
∏

U∈H(G)

laU

sU
, c ∈ F ∗.

In the following, we shall show that Lχ = c
∏

U∈H(G) laU

sU
, c ∈ F ∗ divides every χ-relative

invariant of G. To this end, we require two lemmas.
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Lemma 2.2 Let l ∈ F [V ∗]1 be a linear polynomial function and s ∈ G a pseudo-reflection.

Suppose s(l) = α · l, for some α ∈ F ∗. Then either α = 1 or α = det(s), where l and ls are

nonzero multiples of l and ls.

Proof The case α = 1 is trivial. On the other hand, for each f ∈ F [V ∗], ls is a divisor of sf −f .

In fact, by appropriate choice of basis, without loss of generality, assume that s(εn) = λsεn.

Then ls = (λ−1)
‖εn‖ xn is a divisor of sf − f if and only if xn is. We know

(sf − f)(v) = f(s−1v) − f(v) = f(v −
1 − λ−1

‖εn‖
xn(v)εn) − f(v),

which becomes f(v) − f(v) = 0 for all v ∈ V if we substitute 0 for xn. Then xn must appear in

each monomial summand of sf − f , unless sf − f is itself 0. Therefore, sf − f is divisible by ls.

We denote

△s(f) =
sf − f

ls
.

By [4, Lemma 7.1.5], △s(ls) = λs − 1, so

(λs − 1)ls = △s(l)ls = s(l) − l = (α − 1)l.

If α 6= 1, then λs 6= 1, α = λs = det(s), l and ls are proportional.

Lemma 2.3 Let l1, . . . , lm ∈ F [V ∗]1 be linear polynomial functions and s ∈ G a pseudo-

reflection. Suppose there are constants α1, . . . , αm ∈ F ∗ such that

s(li) =

{

αili+1, 1 ≤ i ≤ m − 1;

αml1, i = m.

If none of l1, . . . , lm is nonzero multiples of ls, then α1 · · ·αm = 1 and L = α1 · · ·αm is an

invariant of s.

Proof Clearly, s(L) = α1 · · ·αmL and sm(l1) = α1 · · ·αml1. If sm 6= 1, then it is a pseudo-

reflection with the reflecting hyperplane ker(ls). Since l1 is not a nonzero multiple of ls, by

Lemma 2.2, α1 · · ·αm = 1. On the other hand, if sm = 1, then l1 = sm(l1) = α1 · · ·αml1, so

again α1 · · ·αm = 1.

Theorem 2.4 Let χ : G 7→ F ∗ be a 1-dimensional representation of G. If U ∈ H(G), f is a

χ-relative invariant of G, then laU

sU
divides f .

Proof Choose a basis u1, . . . , un−1 for the reflecting hyperplane U and extend it to a basis

u1, . . . , un−1, un for V , where un is an eigenvector corresponding to the eigenvalue det(sU ). Let

z1, . . . , zn ∈ V ∗ be the dual basis of u1, . . . , un. Then lsU
(z1, . . . , zn) can be regarded as zn

equally. Since f is a χ-relative invariant of G, we only consider the case that f is a monomial

polynomial function. Suppose that f = ze1

1 · · · zen

n . By Lemma 2.2, we have

χ(sU ) · f = sU · f = (det sU )en · f.

Since aU is the smallest natural number such that χ(sU ) = (detsU )aU , we must have aU ≤ en,

therefore, the result follows.
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Corollary 2.5 Let χ : G 7→ F ∗ be a 1-dimensional representation of G. If f is a χ-relative

invariant of G, then Lχ = c
∏

U∈H(G) laU

sU
, c ∈ F ∗ divides f .

To prove that Lχ = c
∏

U∈H(G) laU

sU
, c ∈ F ∗ is a χ- relative invariant of G, we shall write Lχ

in the form

Lχ = claU′

s
U′

∏

U ′ 6=U ′′

laU′′

s
U′′

.

Since ls
U′

6= lS
U′

, if U ′ 6= U ′′, by Lemma 2.3, the product
∏

U ′ 6=U ′′ l
a

U′′

s
U′

is an invariant of sU ′ . It

follows from Lemma 2.2

sU ′(laU′

s
U′

) = sU ′(ls
U′

)a
U′ = (detsU ′ · ls

U′
)a

U′ = (detsU ′)a
U′ · laU′

s
U′

= χ(sU ′ ) · laU′

s
U′

,

so

sU ′(Lχ) = sU ′(laU′

s
U′

∏

U ′ 6=U ′′

laU′′

s
U′′

) = sU ′(laU′

s
U′

)sU ′(
∏

U ′ 6=U ′′

laU′′

s
U′′

)

= χ(sU ′)laU′

s
U′

∏

U ′ 6=U ′′

laU′′

s
U′′

= χ(sU ′)
∏

U ′ 6=U ′′

laU′′

s
U′′

.

Namely,

Lχ = c
∏

U∈H(G)

laU

sU
, c ∈ F ∗

is a χ-relative invariant.

Theorem 2.6 Let χ : G 7→ F ∗ be a 1-dimensional representation of G. Lχ = c
∏

U∈H(G) laU

sU
,

c ∈ F ∗, then Lχ = c
∏

U∈H(G) laU

sU
, c ∈ F ∗ is a χ-relative invariant.

Proof If s is a fundamental pseudo-reflection, then s(Lχ) = χ(s)Lχ. For each g ∈ G, we may

write g = s1 · · · sk, where si (i = 1, 2, . . . , k) are fundamental pseudo-reflections. Therefore,

g(Lχ) = (s1 · · · sk)(Lχ) = (s1 · · · (skLχ)) = χ(s1) · · ·χ(sk)Lχ = χ(g)Lχ

and Lχ = c
∏

U∈H(G) laU

sU
, c ∈ F ∗ is a χ-relative invariant. 2

Theorem 2.7 Let χ : G 7→ F ∗ be a 1-dimensional representation of G. If f is a χ-relative

invariant, then f = h · Lχ, h is an invariant.

Proof Since G is generated by fundamental pseudo-reflections, for every g ∈ G, g may be

denoted as the product of some suitable fundamental pseudo-reflections. Hence

g(Lχh) = g(Lχ)g(h) = g(Lχ)h = χ(g)Lχh = χ(g)(Lχh)

and the result follows.

From Theorem 2.7, we obtain the conclusion that the difference between relative invariants

and invariants is only one divisor Lχ = c
∏

U∈H(G) laU

sU
, c ∈ F ∗.
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3. The Poincaré series of relative invariants of finite pseudo-reflection

groups

Suppose F [V ∗] is graded F -algebra. The Poincaré series of F [V ∗] is defined as follows:

P (F [V ∗], t) =
∑

d

dimF [V ∗]dt
d,

where F [V ∗]d is an F -subspace consisting of all homogeneous polynomial functions of degree d

in F [V ∗]. For the finite subgroup of the general linear group, its Poincaré series of invariants

can be characterized by Molien’s Theorem [4, 5].

Lemma 3.1 (Molien) Let V be a finite dimension F vector space. Let G ∈ GL(V ) be a finite

nonmodular subgroup. Then

P (F [V ∗]G, t) =
1

|G|

∑

σ∈G

1

det(1 − σt)
.

To compute the Poincaré series of relative invariants, we denote by Ak (k = 0, 1, 2 . . .) the

subspace consisting of relative invariants of degree k. Suppose that deg(Lx) = M . It follows

from Theorem 2.7 that dimAk = dimF [V ∗]Gk−M . So we can make use of the Molien’s Theorem

of invariants to compute the Poincaré series of relative invariants as follows

P (F [V ∗]Gχ , t) = P (Ak, t)) =

∞
∑

k=M

(dimAk)tk =

∞
∑

k=M

dimF [V ∗]Gk−M · tk

=

∞
∑

d=0

dimF [V ∗]Gd · tdtM = (

∞
∑

d=0

dimF [V ∗]Gd · td)tM

=
tM

|G|

∑

σ∈G

1

det(1 − σt)
.

The following example illustrates Theorem 2.7.

Example If aU equals 1, where χ(σ) = (detσ)aU and U ∈ H(G), for every σ ∈ G, then

a χ-relative invariant becomes a det-relative invariant. We have conclusions analogous to the

preceding results.

Lemma 3.2 Let σ1, . . . , σN be all the pseudo-reflections in the group G, the hyperplanes of which

are U1, . . . , UN respectively, where Ui = {λ ∈ V |li(x1, . . . , xn)(λ) = 0}, and x1, . . . , xn ∈ V ∗ is a

dual basis relative to {ε1, . . . , εn}. Suppose f1, . . . , fn is a group fundamental invariants of G. If

we regard f1, . . . , fn as polynomials in n indeterminates x1, . . . , xn, then

∂(f1, . . . , fn)

∂(x1, . . . , xn)
= c

N
∏

i=1

li(x1, . . . , xn), c ∈ F, c 6= 0.

Lemma 3.3 Suppose that G is a finite pseudo-reflections group, f1, . . . , fn are homogeneous

invariants which are independent algebraically, and they generate a algebra F [V ∗]G. Let

J =
∂(f1, . . . , fn)

∂(x1, . . . , xn)
.
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Then

(i) σ · J = (detσ)J ;

(ii) Suppose that P ∈ F [V ∗], σ · P = (detσ)P , for each σ ∈ G, then P = Jg, g ∈ F [V ∗]G;

(iii) For k = 0, 1, 2, . . . , let Ak be a subspace consisting of det-relative invariants of degree

k. Then

dimAk = dimF [V ∗]Gk−N .

Hence, we calculate the Poincaré series of det-relative invariants as follows:

P (F [V ∗]Gdet, t) = P (Ak, t)) =

∞
∑

k=N

(dimAk)tk

=

∞
∑

k=N

dimF [V ∗]Gk−N tk = (

∞
∑

d=0

dimF [V ∗]Gd td)tN

=
tN

|G|

∑

σ∈G

1

det(1 − σt)
.

In view of the preceding methods, we have

Theorem 3.4 Let Fp be a finite field with pn elements and G be a finite pseudo-reflection

group. If r|pn − 1, |σ| = r where σ ∈ G, then for any σ ∈ G,

χ(σ) = (detσ)α, 0 ≤ α ≤ 1

and

f = h · Lχ, Lχ = c
∏

U∈H(G)

laU

sU
, c ∈ F ∗,

where f is a χ-relative invariant and h is an invariant of G.

Theorem 3.5 Let V be a finite dimension Fp vector space, and G ∈ GL(V ) be a finite

nonmodular subgroup. If p does not divide G, then

P (F [V ∗]G, t) =
1

|G|

∑

σ∈G

1

det(1 − σt)
.

Hence, when Fp is a finite field with pn elements, in the case r|pn − 1, the Poincaré series of

relative invariants of finite pseudo-reflection group G is the same as the preceding.
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