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1. Introduction

Recently, Softova [1] considered the boundedness on generalized Morrey spaces of the follow-

ing singular integral operator

Tf(x) = p.v.

∫

Rn

k(x;x− y)f(y)dy (1.1)

and its commutator with a function b ∈ BMO(Rn) defined by

[b, T ]f(x) = b(x)Tf(x) − T (bf)(x) = p.v.

∫

Rn

(b(x) − b(y))k(x;x − y)f(y)dy. (1.2)

In (1.1) and (1.2), the kernel k(x; ξ) : R
n × R

n \ {0} → R is a variable kernel with mixed

homogeneity; for its definition see the next section. This class of kernels was firstly studied by

Fabes and Rivière in [2]. They generalized the classical kernels of Calderón-Zygmund k(ξ) = Ω(ξ)
|ξ|n

having homogeneity of degree −n and those studied by Jones in [3] satisfying homogeneity

property of the form k(λξ, λmτ) = λ−n−mk(ξ, τ), ξ ∈ R
n, τ ∈ (0,∞), m ≥ 1. Introducing a

new metric ρ and using the Fourier transform in L2(Rn) and the Marcinkiewicz interpolation

theorem, Fabes and Rivière obtained the boundedness of (1.1) in Lp(Rn) for 1 < p < ∞, where

R
n is endowed with the topology induced by ρ and defined by ellipsoids.

In this paper, we consider the vector-valued singular operator of (1.1). Let 1 < q < ∞. We
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define the vector-valued singular operator Tq associated with the operator T by

TqF (x) = |TF (x)|q =
(

∞
∑

k=1

|Tfk(x)|q
)1/q

,

where for simplicity, we denote a sequence functions {fk}
∞
k=1 ≡ F.

Now we can state our first result.

Theorem 1.1 For 1 < q <∞, Tq is of type-(δ, δ), 1 < δ <∞.

Since the commutators of singular integral operators with BMO(Rn) functions play a key

role in the study of the regularity of solutions to nondivergence elliptic equations with VMO(Rn)

coefficients [4–6]. The commutators attract more attention recently [7–11] and references therein.

In fact, as a generalization of m-th commutator of singular integral and BMO function, Pérez

and Trujillo-Gozalez introduced multilinear commutators in [9], they obtained sharp weighted

and vector-valued estimates of multilinear commutators respectively in [9] and [10].

In [12], one of the authors of the paper discussed the generalization of (1.2), namely, multi-

linear commutator,

[~b, T ]f(x) = p.v.

∫

Rn

m
∏

i=1

(bi(x) − bi(y))k(x;x − y)f(y)dy, (1.3)

where ~b = {b1, . . . , bm}, and {bi}
m
i=1 are BMO functions.

Motivated by [9] and [10], as a continuation of [12] we consider in this paper vector-valued

extensions of the multilinear commutators of (1.1) defined by the formula

[~b, T ]qF (x) = |[~b, T ]F (x)|q =
(

∞
∑

k=1

|[~b, T ]fk(x)|q
)1/q

,

where ~b = {b1, . . . , bm}, {bi}
m
i=1 are BMO(Rn) functions, and F ∈ Lδ(ℓq)(Rn). Here is another

main result of this paper.

Theorem 1.2 Let 1 < δ <∞. Then there exists a positive constant C such that

‖[~b, T ]qF‖Lδ(Rn) ≤ C

m
∏

i=1

‖bi‖BMO‖F‖Lδ(ℓq)(Rn)

holds for all smooth vector functions F = {fk}
∞
k=1 with fk having compact support and F ∈

Lδ(ℓq)(Rn).

The paper is organized as follows. In Section 2, we recall some definitions and preliminary

results. In Section 3, we give the proofs of Theorems 1.1 and 1.2.

Throughout this paper, we use C to denote a positive constant that may vary from lines to

lines.

2. Preliminary results

Let α1, . . . , αn be real numbers, where αi ≥ 1 and set α =
∑n

i=1 αi. Following Fabes and

Rivière [2], the function F (x, ρ) =
∑n

i=1 x
2
i ρ

−2αi , considered for any fixed x ∈ R
n, is a decreasing



Vector-valued multilinear commutators of singular integrals with mixed homogeneity 431

one with respect to ρ > 0 and the equation F (x, ρ) = 1 has a unique solution ρ(x). It is easy to

check that ρ(x− y) defines a distance between any two points x, y ∈ R
n. Thus R

n, endowed with

the metric ρ, results in a homogeneous metric space, see [2, 7] for details. The balls with respect

to ρ, centered at the origin and of radius r, are simply the ellipsoids

Er(0) =
{

x ∈ R
n :

x2
1

r2α1
+ · · · +

x2
n

r2αn
< 1

}

with Lebesgue measure |Er(0)| = C(n)rα.

Definition 2.1 The function k(x; ξ) : R
n × {R

n \ {0}} → R is called a variable kernel with

mixed homogeneity if: (i) For every fixed x, k(x; ·) is a constant kernel satisfying

ia) k(x; ·) ∈ C∞(Rn \ {0});

ib) k(x; tα1ξ1, . . . , t
αnξn) = t−αk(x; ξ), ∀t > 0, αi ≥ 1, α =

∑n
i=1 αi;

ic)
∫

Σn
k(x; ξ)dσξ = 0 and

∫

Σn
|k(x; ξ)|dσξ < ∞, where Σn is the unit sphere with the

Euclidean norm in R
n and dσ is the Lebesgue measure induced in Σn;

(ii) For every multiindex β : supξ∈Rn |Dβ
ξ k(x; ξ)| ≤ C(β) independently of x.

For a given function f ∈ L1
loc(R

n) define the Hardy-Littlewood maximal operator Mf and

the sharp maximal operator f# by setting for all x ∈ R
n,

Mf(x) = sup
x∈E

1

|E|

∫

E

|f(y)|dy, f#(x) = sup
x∈E

1

|E|

∫

|f(y) − fE |dy,

where the supremum is taken over all ellipsoids E centered at x, and fE = 1
|E|

∫

E
f(y)dy. Define

also the vector-valued maximal operator MqF (x) = (
∑∞

k=1(Mfk(x))q)1/q for q ≥ 1.

Lemma 2.1 Let f be a measurable function. Then Mf is a type-(p, p) operator, that is, there

exists a constant C such that for all f ∈ Lp(Rn), Mf ∈ Lp(Rn) and ‖Mf‖p ≤ C‖f‖p.

Lemma 2.2 Let 1 < p <∞. Then there exists a constant C such that

‖f#‖p ≤ C‖f‖p

for all functions f ∈ Lp(Rn).

Definition 2.2 For f ∈ L1
loc(R

n), if f# ∈ L∞(Rn), we call f ∈ BMO(Rn). ‖f#‖L∞ is defined

to be the norm of f in BMO(Rn) and denoted by ‖f‖BMO.

Lemma 2.3 Let b ∈ BMO(Rn) and 1 < p < ∞. Then there exists a constant C such that for

any ellipsoid E
(

1

|E|

∫

E

|b(y) − bE |
pdy

)1/p

≤ C‖b‖BMO.

Lemma 2.3 is a John-Nirenberg type inequality. Lemmas 2.1–2.3 are the well known maximal

and sharp inequalities obtained in Lebesgue spaces [13, 14].

Definition 2.3 Let 1 < p < ∞. A function F = {fk}
∞
k=1 ∈ Lp

loc(R
n) belongs to Lp(ℓq)(Rn)
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space if the following norm is finite

‖F‖Lp(ℓq)(Rn) =
(

∫

Rn

(

∞
∑

k=1

|fk(x)|q
)p/q

dx
)1/p

.

Moreover, we need spherical harmonics and their properties. Denote by Yj the space of

all n-dimensional spherical harmonics of degree j. It is a finite dimensional linear space with

gj = dimYj such that g0 = 1, g1 = n and

gj =

(

j + n− 1

n− 1

)

−

(

j + n− 3

n− 1

)

≤ C(n)jn−2, j ≥ 2. (2.3)

Further, let {Ysj}
gj

s=1 be an orthonormal base of Yj . Then {Ysj : j = 0, 1, . . . ; s = 1, . . . , gj} is a

complete orthonormal system in L2(Σn) and

sup
x∈Σn

|Dβ
xYsj(x)| ≤ C(n)j|β|+(n−2)/2, j ≥ 1. (2.4)

If φ ∈ C∞(Σn), then
∑∞

j=0

∑gj

s=1 ψsjYsj is the Fourier series expansion of φ with respect to

{Ysj : j = 0, 1, . . . ; s = 1, . . . , gj} and

ψsj =

∫

Σn

φ(y)Ysj(y)dσ, |ψsj | ≤ C(n, l)j−2l sup
|β|=2l,y∈Σn

|Dβ
yφ(y)| (2.5)

for any integer l. In particular, the expansion of φ into spherical harmonics converges uniformly

to φ. We refer to [15] for the proof of the above results.

We write

[~b, T ]F (x) = p.v.

∫

Rn

m
∏

i=1

(bi(x) − bi(y))k(x, x − y)F (y)dy =
{

lim
ǫ→0

[~b, T ]ǫfd(x)
}∞

d=1
,

where

lim
ǫ→0

[~b, T ]ǫfd(x) = lim
ǫ→0

∫

ρ(x−y)>ǫ

m
∏

i=1

(bi(x) − bi(y))k(x, x − y)fd(y)dy.

Let x, y ∈ R
n and y = y/ρ(y) ∈ Σn. From the properties of the kernel with respect to the

second variable and completeness of {Ysj : j = 0, 1, . . . ; s = 1, . . . , gj} in L2(Σn), it follows that

k(x;x− y) = ρ(x− y)−αk(x;x − y) = ρ(x− y)−α
∑

s,j

ψsj(x)Ysj(x − y).

By Definition 2.1 (ii) and (2.5), we then have

‖ψsj‖∞ ≤ C(n, l, k)j−2l (2.6)

for any integer l > 1. Substituting the kernel with its expansion, we obtain

lim
ǫ→0

Tǫf(x) = lim
ǫ→0

∫

ρ(x−y)>ǫ

∑

s,j

ψsj(x)Hsj(x − y)f(y)dy,

lim
ǫ→0

[~b, T ]ǫf(x) = lim
ǫ→0

∫

ρ(x−y)>ǫ

m
∏

i=1

(bi(x) − bi(y))
∑

s,j

ψsj(x)Hsj(x− y)f(y)dy,

where Hsj(x−y) stands for Ysj(x− y)ρ(x−y)−α. It is known that Hsj(·) are constant kernels in

the sense of Definition 2.1 (i), see [1]. By the same argument stated in the proof of [1, Theorem
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3.1], we deduce

lim
ǫ→0

[~b, T ]ǫf(x) = lim
ǫ→0

∑

s,j

ψsj(x)[~b,Ksj,ǫ]f(x)

exists, where

Ksj,ǫf(x) =

∫

ρ(x−y)>ǫ

Hsj(x− y)f(y)dy,

and

[~b,Ksj,ǫ]f(x) =

∫

ρ(x−y)>ǫ

m
∏

i=1

(bi(x) − bi(y))Hsj(x− y)f(y)dy.

Thus we can write

[~b, T ]F (x) =
∑

s,j

ψsj(x)[~b,Ksj ]F (x)

with

KsjF (x) = lim
ǫ→0

∫

ρ(x−y)>ǫ

Hsj(x− y)F (y)dy,

and

[~b,Ksj ]F (x) = lim
ǫ→0

∫

ρ(x−y)>ǫ

m
∏

i=1

(bi(x) − bi(y))Hsj(x− y)F (y)dy.

For Hsj(x− y), we have the following lemma which is Lemma 3.2 in [1].

Lemma 2.4 Let E and 2E be ellipsoids centered at x0 and of radius r and 2r, respectively.

Then

|Hsj(x − y) −Hsj(x0 − y)| ≤ C(n, α)jn/2 ρ(x0 − x)

ρ(x0 − y)α+1

for each x ∈ E and y /∈ 2E .

For convenience, we introduce some notations. Given any positive integer m, for all 1 ≤

i ≤ m, we denote by Cm
i the family of all finite subsets σ = {σ(1), . . . , σ(i)} of i different

elements of {1, 2, . . . ,m}. For any σ ∈ Cm
i , we associate the complementary sequence σ′ given

by σ′ = {1, 2, . . . ,m}\σ. For any σ ∈ Cm
i , we set ~bσ =

∏

t∈σ bt, ‖
~bσ‖ =

∏

t∈σ ‖bt‖BMO and

[~bσ,Ksj ]F (x) =

∫

Rn

(~b(x) −~b(y))σHsj(x− y)F (y)dy.

In the case of σ = {1, 2, . . . ,m}, we denote [~bσ, T ] by [~b, T ].

3. Proofs of main results

To give the proofs, we adopt the method used in [1] and [10]. Firstly, we have the following

lemma, which is derived from Corollary 4.6.3 on page 328 in [13], since {Ksj}sj satisfy the

conditions therein according to [2] .

Lemma 3.1 Let 1 < δ, q <∞. There exists constant C such that for all F ∈ Lδ(ℓq)(Rn),

‖KsjF‖Lδ(ℓq)(Rn) ≤ C‖F‖Lδ(ℓq)(Rn).
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By Lemma 3.1, we can easily obtain Theorem 1.1. In fact,

‖TqF‖δ ≤

∞
∑

j=1

gj
∑

s=1

‖ψsj‖∞‖KsjF‖Lδ(ℓq)(Rn)

≤ C

∞
∑

j=1

gj
∑

s=1

j−2l‖F‖Lδ(ℓq)(Rn)

≤ C

∞
∑

j=1

j−2l+n−2‖F‖Lδ(ℓq)(Rn)

≤ C‖F‖Lδ(ℓq)(Rn),

provided that we take l > (n− 2)/2.

Lemma 3.2 Let [~b,Ksj ] be as above and 1 < p <∞. Then there exists a constant C such that

([~b,Ksj ]qF )#(x) ≤ C
[

jn/2‖~b‖
(

M(|F |pq)(x)
)1/p

+
m

∑

i=1

∑

σ∈Cm
i

‖~bσ‖
(

M(|[~bσ′ ,Ksj]qF |
p)(x)

)1/p ]

for all smooth vector functions F = {fk}
∞
k=1, fk ∈ L∞

c for k ≥ 1, and for all x ∈ R
n.

Proof To prove the lemma, we make use of induction on m. First let us consider m = 1. In

this case,

[b,Ksj ]F = (b − λ)KsjF −Ksj((b− λ)F ).

For fixed x0 ∈ R
n, E denotes an ellipsoid at x0 with radius r, 2E denotes the ellipsoid concentric

with E and radius two times the radius of E . Decompose F = F 1 + F 2, where F 1 = Fχ2E =

{fkχ2E}
∞
k=1, with χ being the characteristic function of the respective set. We write [b,Ksj]F

as follows: [b,Ksj ]F = (b − λ)Ksj(F ) − [Ksj((b − λ)F 1) + Ksj((b − λ)F 2)]. Setting λ = bE =
1
|E|

∫

E
b(y)dy, and A = |Ksj((b− λ)F 2)(x0)|q, we have

([b,Ksj ]qF )#(x0) ≤
2

|E|

∫

E

|[b,Ksj ]qF (x) −A|dx

≤
C

|E|

∫

E

∣

∣[b,Ksj]F (x) +Ksj ((b− λ)F 2)(x0)
∣

∣

q
dx

≤
C

|E|

∫

E

|(b(x) − λ)Ksj(F )(x)|q dx+
C

|E|

∫

E

∣

∣Ksj

(

(b− λ)F 1
)

(x)
∣

∣

q
dx+

C

|E|

∫

E

∣

∣Ksj

(

(b− λ)F 2
)

(x) −Ksj

(

(b− λ)F 2
)

(x0)
∣

∣

q
dx

=C(I + II + III).

We first estimate I. Here and in what follows, p′ is the conjugate exponent to p. Using Hölder’s

inequality, we have

I =
1

|E|

∫

E

(

∞
∑

k=1

|(b(x) − λ)Ksj(fk)(x)|q
)1/q

dx

=
1

|E|

∫

E

|b(x) − λ||Ksj(F )(x)|qdx



Vector-valued multilinear commutators of singular integrals with mixed homogeneity 435

≤ C
( 1

|E|

∫

E

|b(x) − λ|p
′

dx
)1/p′

( 1

|E|

∫

E

|Ksj(F )(x)|pqdx
)1/p

≤ C‖b‖BMO

(

M(|KsjF |
p
q)(x0)

)1/p
,

where in the last inequality, we used Lemma 2.3.

To estimate II, let 1 < τ < p and τ ′ be the conjugate exponent to τ . We have

II =
1

|E|

∫

E

∣

∣Ksj

(

(b − λ)F 1
)

(x)
∣

∣

q
dx

≤
1

|E|

(

∫

E

∣

∣Ksj

(

(b− λ)F 1
)

(x)
∣

∣

τ

q
dx

)1/τ(

∫

E

1dx
)1/τ ′

≤
C

|E|1/τ

(

∫

E

∣

∣(b− λ)F 1(x)
∣

∣

τ

q
dx

)1/τ

≤
C

|E|1/τ

(

∫

2E

|F (x)|pq dx
)1/p(

∫

2E

|b(x) − λ|pτ/(p−τ)dx
)(p−τ)/pτ

≤ C‖b‖BMO

(

M(|F |pq)(x0)
)1/p

,

where we used that (Ksj)q is of type (p, p) for 1 < q, p <∞ (see Lemma 3.1) and Lemma 2.3.

Now we turn to estimate III. Since x, x0 ∈ E , y /∈ 2E , by Lemma 2.4, we have

∣

∣Ksj

(

(b− λ)F 2
)

(x) −Ksj

(

(b− λ)F 2
)

(x0)
∣

∣

q

≤
(

∞
∑

k=1

∣

∣

∣

∫

(2E)c

|Hsj(x − y) −Hsj(x0 − y)||b(y) − λ|f2
k (y)|dy

∣

∣

∣

q)1/q

≤ Cjn/2ρ(x0 − x)

∫

(2E)c

|b(y) − λ||F (y)|q
ρ(x0 − y)α+1

dy

≤ Cjn/2r
(

∫

(2E)c

|F (y)|pq
ρ(x0 − y)α+1

dy
)1/p(

∫

(2E)c

|b(y) − λ|p
′

ρ(x0 − y)α+1
dy

)1/p′

, (3.2)

where in the second inequality, we used Minkowski’s inequality. Here we have
∫

(2E)c

|F (y)|pq
ρ(x0 − y)α+1

dy =

∞
∑

k=1

∫

2k+1E\2kE

|F (y)|pq
ρ(x0 − y)α+1

dy ≤
2α+1

r
M(|F |pq)(x0). (3.3)

Since |b2kE − bE | ≤ C(n, α)k‖b‖BMO for k ∈ N, by Lemma 2.3, we have

∫

(2E)c

|b(y) − λ|p
′

ρ(x0 − y)α+1
dy =

∞
∑

k=1

∫

2k+1E\2kE

|b(y) − λ|qip
′

ρ(x0 − y)α+1
dy

≤

∞
∑

k=1

1

(2kr)α+1

∫

2k+1E\2kE

|b(y) − λ|p
′

dy

≤
∞
∑

k=1

2p′−1

(2kr)α+1

∫

2k+1E\2kE

(|b(y) − b2k+1E |
p′

+ |b2k+1E − bE |
p′

)dy

≤

∞
∑

k=1

|2k+1E|

(2kr)α+1
(1 + kp′

)‖b‖p′

BMO

≤ C
‖b‖p′

BMO

r
. (3.4)
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Combining (3.2), (3.3), and (3.4), we obtain

III ≤ Cjn/2‖b‖(M(|F |pq)(x0))
1/p.

Summing up I to III, and taking the supremum over all ellipsoids E , we obtain the lemma

for the case of m = 1.

Now suppose m > 1. For any ~λ = (λ1, . . . , λm) ∈ R
m, we have

[~b,Ksj ]F (x) =

∫

Rn

(b1(x) − b1(y)) · · · (bm(x) − bm(y))Hsj(x− y)F (y)dy

=

∫

Rn

m
∏

i=1

((bi(x) − λi) − (bi(y) − λi))Hsj(x− y)F (y)dy

=

m
∑

i=0

∑

σ∈Cm
i

(−1)m−i(~b(x) − ~λ)σ

∫

Rn

(~b(y) − ~λ)σ′Hsj(x− y)F (y)dy

=(

m
∏

i=1

(bi(x) − λi)KsjF (x) + (−1)mKsj(

m
∏

i=1

(bi − λi)F )(x)+

m−1
∑

i=1

∑

σ∈Cm
i

(−1)m−i(~b(x) − ~λ)σ

∫

Rn

(~b(y) − ~λ)σ′Hsj(x− y)F (y)dy. (3.5)

Now for (~b(y) − ~λ)σ′ , we write (~b(y) − ~λ)σ′ = (~b(y) −~b(x) +~b(x) − ~λ)σ′ . Thus,

m−1
∑

i=1

∑

σ∈Cm
i

(−1)m−i(~b(x) − ~λ)σ

∫

Rn

(~b(y) − ~λ)σ′Hsj(x− y)F (y)dy

=

m−1
∑

i=1

∑

σ∈Cm
i

(−1)m−i(~b(x) − ~λ)σ

m−i
∑

j=0

∑

ξ∈Cm−i
j

(~b(x) − ~λ)ξ

∫

Rn

(~b(y) −~b(x))ξ′Hsj(x− y)F (y)dy

=

m−1
∑

i=1

∑

σ∈Cm
i

(−1)m−i(~b(x) − ~λ)σ×

m−i
∑

j=0

∑

ξ∈C
m−i
j

ξ
⋃

ξ′=σ′

(−1)m−i−j(~b(x) − ~λ)ξ

∫

Rn

(~b(x) −~b(y))ξ′Hsj(x − y)F (y)dy

=

m−1
∑

i=1

∑

σ∈Cm
i

(−1)m−i
m
∏

t=1

(bt(x) − λt)

∫

Rn

Hsj(x − y)F (y)dy+

m−1
∑

i=1

∑

σ∈Cm
i

(−1)m−i(~b(x) − ~λ)σ×

m−i−1
∑

j=0

∑

ξ∈C
m−i
j

ξ
⋃

ξ′=σ′

(−1)m−i−j(~b(x) − ~λ)ξ

∫

Rn

(~b(x) −~b(y))ξ′Hsj(x − y)F (y)dy

=

m−1
∑

i=1

(

m

i

)

(−1)m−i
m
∏

t=1

(bt(x) − λt)

∫

Rn

Hsj(x − y)F (y)dy+
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m−1
∑

i=1

∑

σ∈Cm
i

Cm,i(~b(x) − ~λ)σ

∫

Rn

(~b(x) −~b(y))σ′Hsj(x− y)F (y)dy

= (−1 + (−1)m+1)
m
∏

t=1

(bt(x) − λt)

∫

Rn

Hsj(x− y)F (y)dy+

m−1
∑

i=1

∑

σ∈Cm
i

Cm,i(~b(x) − ~λ)σ

∫

Rn

(~b(x) −~b(y))σ′Hsj(x− y)F (y)dy, (3.6)

where Cm,i are 1 or −1. Substituting (3.6) into (3.5), we have

[~b,Ksj ]F (x) =(−1)m+1
m
∏

i=1

(bi(x) − λi)KsjF (x) + (−1)mKsj(

m
∏

i=1

(bi − λi)F )(x)+

m−1
∑

i=1

∑

σ∈Cm
i

Cm,i(~b(x) − ~λ)σ

∫

Rn

(~b(x) −~b(y))σ′Hsj(x − y)F (y)dy.

For fixed x0 ∈ R
n, let E , 2E , F 1 and F 2 be the same as above. We write [~b,Ksj]F as follows

[~b,Ksj ]F (x) =(−1)m+1
m
∏

i=1

(bi(x) − λi)Ksj(F )(x) + (−1)mKsj(

m
∏

i=1

(bi − λi)F
1)(x)+

(−1)mKsj(

m
∏

i=1

(bi − λi)F
2)(x)+

m−1
∑

i=1

∑

σ∈Cm
i

Cm,i(~b(x) − ~λ)σ

∫

Rn

(~b(x) −~b(y))σ′Hsj(x− y)F (y)dy.

Setting λi = biE = 1
|E|

∫

E
bi(y)dy, and A = |(−1)mKsj(

∏m
i=1(bi − λi)F

2)(x0)|q, we then have

([~b,Ksj]qF )#(x0)

≤
2

|E|

∫

E

|[~b,Ksj ]qF (x) −A|dx

≤
C

|E|

∫

E

∣

∣

∣
[~b,Ksj ]F (x) − (−1)mKsj

(

m
∏

i=1

(bi − λi)F
2
)

(x0)
∣

∣

∣

q
dx

≤
C

|E|

∫

E

∣

∣

∣

m
∏

i=1

(bi(x) − λi)Ksj(F )(x)
∣

∣

∣

q
dx+

C

|E|

∫

E

∣

∣

∣
Ksj

(

m
∏

i=1

(bi − λi)F
1
)

(x)
∣

∣

∣

q
dx+

C

|E|

∫

E

∣

∣

∣
Ksj

(

m
∏

i=1

(bi − λi)F
2
)

(x) −Ksj

(

m
∏

i=1

(bi − λi)F
2
)

(x0)
∣

∣

∣

q
dx+

C

|E|

∫

E

∣

∣

∣

m−1
∑

i=1

∑

σ∈Cm
i

(−1)m−i+1(~b(x) − ~λ)σ

∫

Rn

(~b(x) −~b(y))σ′Hsj(x− y)F (y)dy
∣

∣

∣

q
dx

= C(I + II + III + IV).

To estimate I, similar to the case of m = 1, using Hölder’s inequality for finitely many
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functions, we have

I =
1

|E|

∫

E

(

∞
∑

k=1

|

m
∏

i=1

(bi(x) − λi)Ksj(fk)(x)|q
)1/q

dx

=
1

|E|

∫

E

m
∏

i=1

|bi(x) − λi||Ksj(F )(x)|qdx

≤ C
( 1

|E|

∫

E

m
∏

i=1

|bi(x) − λi|
p′

dx
)1/p′

( 1

|E|

∫

E

|Ksj(F )(x)|pqdx
)1/p

≤ C

m
∏

i=1

‖bi‖BMO

(

M(|KsjF |
p
q)(x0)

)1/p
,

where in the last inequality, we used Lemma 2.3.

To estimate II, let 1 < τ < p and τ ′ be the conjugate exponent to τ again. We have

II =
1

|E|

∫

E

∣

∣

∣
Ksj

(

m
∏

i=1

(bi − λi)F
1
)

(x)
∣

∣

∣

q
dx

≤
1

|E|

(

∫

E

∣

∣

∣
Ksj(

m
∏

i=1

(bi − λi)F
1(x)

∣

∣

∣

τ

q
dx

)1/τ(

∫

E

1dx
)1/τ ′

≤
C

|E|1/τ

(

∫

E

∣

∣

∣

m
∏

i=1

(bi − λi)F
1(x)

∣

∣

∣

τ

q
dx

)1/τ

≤
C

|E|1/τ

(

∫

2E

|F (x)|pqdx
)1/p(

∫

2E

m
∏

i=1

|bi(x) − λi|
pτ/(p−τ)dx

)(p−τ)/pτ

≤C
m
∏

i=1

‖bi‖BMO

(

M(|F |pq)(x0)
)1/p

,

where we used that (Ksj)q is of type (p, p) for 1 < q, p <∞ (see Lemmas 2.3 and 3.1).

Now we turn to estimate III. Since x, x0 ∈ E , y /∈ 2E , by Lemma 2.4, we have

∣

∣

∣
Ksj

(

m
∏

i=1

(bi − λi)F
2
)

(x) −Ksj

(

m
∏

i=1

(bi − λi)F
2
)

(x0)
∣

∣

∣

q

≤
(

∞
∑

k=1

∣

∣

∣

∫

(2E)c

|Hsj(x− y) −Hsj(x0 − y)|

m
∏

i=1

|bi(y) − λi||f
2
k (y)|dy

∣

∣

∣

q)1/q

≤ Cjn/2ρ(x0 − x)

∫

(2E)c

∏m
i=1 |bi(y) − λi||F (y)|q

ρ(x0 − y)α+1
dy

≤ Cjn/2r
(

∫

(2E)c

|F (y)|pq
ρ(x0 − y)α+1

dy
)1/p(

∫

(2E)c

∏m
i=1 |bi(y) − λi|

p′

ρ(x0 − y)α+1
dy

)1/p′

, (3.7)

where in the second inequality, we used Minkowski’s inequality.

Let 1 < q1, . . . , qm <∞, and 1/q1 + · · ·+ 1/qm = 1. By Hölder’s inequality for finitely many

functions, we obtain

(

∫

(2E)c

∏m
i=1 |bi(y) − λi|

p′

ρ(x0 − y)α+1
dy

)1/p′

≤

m
∏

i=1

(

∫

(2E)c

|bi(y) − λi|
qip

′

ρ(x0 − y)α+1
dy

)1/qip
′

. (3.8)
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Similarly to (3.4), for 1 ≤ i ≤ m, we have

∫

(2E)c

|bi(y) − λi|
qip

′

ρ(x0 − y)α+1
dy ≤ C

‖bi‖
qip

′

BMO

r
. (3.9)

Combining (3.7) to (3.9), we obtain

III ≤ Cjn/2‖~b‖(M(|F |pq)(x0))
1/p. (3.10)

Finally, we estimate IV. Let 1 < τ < p and τ ′ be the conjugate exponent to τ again. We

have

IV ≤
1

|E|

m−1
∑

i=1

∑

σ∈σi

(

∫

E

∣

∣

∣

∏

t∈σ

|bt(x) − λt|[bσ′ ,Ksj ]qF (x)
∣

∣

∣

τ

dx
)1/τ(

∫

E

1dx
)1/τ ′

≤

m−1
∑

i=1

∑

σ∈σi

( 1

|E|

∫

E

|[bσ′ ,Ksj ]qF (x)|pdx
)

1
p
( 1

|E|

∫

E

∏

t∈σ

|bt(x) − λt|
pτ/(p−τ)dx

)

(p−τ)
pτ

≤ C

m−1
∑

i=1

∑

σ∈σi

‖bσ‖ (M |[bσ′ ,Ksj ]q|
pF (x0))

1/p
.

Summing up I to IV, and taking the supremum over all ellipsoids E , we obtain Lemma 3.2

for m > 1. This finishes the proof of Lemma 3.2. 2

Lemma 3.3 Let 1 < δ, q <∞. Then

‖[~b,Ksj]F‖Lδ(ℓq)(Rn) ≤ Cjn/2‖~b‖BMO‖F‖Lδ(ℓq)(Rn) (3.11)

holds for all smooth vector functions F = {fk}
∞
k=1 and F ∈ L∞

c for 1 ≤ k <∞ and for all x ∈ R
n

with constants C depending only on n, p and α.

Proof We use induction on m. First we suppose ([~b,Ksj ]qF )# in Lδ(Rn). Let m = 1. In this

case ~b = b1. Choose p such that 1 < p < δ. By Lemmas 3.1 and 3.2, we have
∫

Rn

|([b1,Ksj]qF )#(x)|δdx ≤C

∫

Rn

[

jn/2‖b1‖BMO

(

M(|F |pq)(x)
)1/p

+

‖b1‖BMO

(

M(|KsjF |
p
q)(x)

)1/p
]δ

dx

≤C[jn/2‖b1‖BMO‖F‖Lδ(ℓq)(Rn)]
δ.

Power 1/δ to the last inequality, we obtain (3.11). Assume that (3.11) holds for 1, 2, . . . ,m− 1.

Then by Lemmas 3.1 and 3.2 again, we have
∫

Rn

|([~b,Ksj]qF )#(x)|δdx ≤C

∫

Rn

[

(jn/2‖~b‖)δ
(

M(|F |pq)(x)
)δ/p

+

m−1
∑

i=1

∑

σ∈Cm
i

‖bσ‖
δ
(

M(|[~bσ′ ,Ksj ]F |
p
q)(x)

)δ/p ]

dx

≤C[(jn/2‖~b‖)δ‖(M(|F |pq)‖δ/p)
δ/p+

m−1
∑

i=1

∑

σ∈Cm
i

(jn/2‖~bσ‖‖~bσ′‖)δ(‖|F |pq‖δ/p)
δ/p]
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≤C(jn/2‖~b‖‖F‖Lδ(ℓq)(Rn))
δ,

where 1 < p < δ. Power 1/δ to the inequality again, we obtain (3.11). To end the proof of the

lemma, we need to check that ([~b,Ksj]qF )# in Lδ(Rn), for F ∈ L∞
C and F in Lδ(ℓq)(Rn).

First, suppose that the symbols {bi}
m
i=1 are all bounded functions. Since F has compact

support, we can assume that the support of F is contained in the E = E(0, R). Then we can

write
∫

Rn

|[~b,Ksj ]qF (x)|δdx =

∫

2E

|[~b,Ksj ]qF (x)|δdx+

∫

(2E)c

|[~b,Ksj ]qF (x)|δdx.

The first integral can easily be estimated by making use of the L∞-boundedness of the bi and

the Lq-boundedness for q > 1 of the operator Ksj , since Ksj is a Calderón-Zygmund operator.

For the second term, by the properties of Hsj , since ρ(x) > 2R, we have the following pointwise

estimate:

|[~b,Ksj ]qF (x)| ≤ C
(

∞
∑

k=1

∣

∣

∣

∫

E

∏m
i=1 |bi(x) − bi(y)||fk(y)|

ρ(x− y)α
dy

∣

∣

∣

q)1/q

≤ C
(

∞
∑

k=1

∣

∣

∣

1

ρ(x− 0)α

∫

E(0,ρ(x−0))

|fk(y)|qdy
∣

∣

∣

q)1/q

≤ CMqF (x).

According to our supposition F ∈ L∞
C and F in Lδ(ℓq)(Rn), then F ∈ Lδ for 1 < δ <∞. By the

well known fact that Mq is bounded in Lδ for 1 < δ <∞, we obtain the second integral is finite.

This means [~b,Ksj ]qF ∈ Lδ for 1 < δ <∞.

For the general case, lettingN > 0,we truncate the symbols bi as bNi = max(min(bi, N), −N)

and denote ~bN = (bN1 , . . . , b
N
m). It is easy to see that ‖bNi ‖BMO ≤ C‖bi‖BMO. According to the

above, we have
∫

Rn

|[~bN ,Ksj ]q|
δdx ≤ C‖~b‖

∫

Rn

|F (x)|δqdx.

Taking into account the fact that F has compact support, we obtain that any product bNi1 . . . b
N
ik
F

converges in any Lq for q > 1 to bi1 . . . bik
F as N → ∞. Hence, at least a subsequence,

|[~bN ,Ksj]qF |
δ converges pointwise almost everywhere to |[~b,Ksj ]qF |

δ. By Fatou’s lemma we

conclude that the lemma holds for this general case. Thus, by Lemma 2.2, we obtain Lemma

3.3 for F ∈ L∞
C . Then, by the standard limit process, we obtain Lemma 3.3. This completes the

proof of Lemma 3.3. 2

Now we can complete the proof of Theorem 1.2. By (3.1) and Lemma 3.3, we have

‖[~b, T ]F‖Lδ(ℓq)(Rn) ≤

∞
∑

j=1

gj
∑

s=1

‖ψsj(x)‖∞‖[~b,Ksj ]qF‖δ ≤ C‖~b‖‖F‖Lδ(ℓq)(Rn)

∞
∑

j=1

j−2l+n−2+n/2.

So choosing l > (3n− 2)/4, we obtain that

‖[~b, T ]qF‖δ ≤ C‖~b‖‖F‖Lδ(ℓq)(Rn).

This completes the proof of Theorem 1.2. 2

Remark The main results of the paper can also be obtained by the similar method in [16].
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