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Abstract In this paper, we investigate the existence of positive solutions for singular fourth-
order integral boundary-value problem with p-Laplacian operator by using the upper and lower
solution method and fixed point theorem. Nonlinear term may be singular at ¢ = 0 and/or t = 1
and z = 0.
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1. Introduction

Boundary value problems with integral boundary conditions for ordinary differential equa-
tions arise in different fields of applied mathematics and physics such as heat conduction, chem-
ical engineering, underground water flow, thermo-elasticity, and plasma physics. Moreover,
boundary-value problems with integral boundary conditions constitute a very interesting and
important class of problems. They include two, three, multi-point and nonlocal boundary-value
problems as special cases, which have received much attention of many authors (for instance, see
[6-9] and references therein). For boundary value problems with integral boundary conditions
and comments on their importance, we refer the reader to the papers by Gallardo [1], Karakostas
and Tsamatos [2], Lomtatidze and Malaguti [3] and the references therein.

Recently, Zhang and Feng [4] have studied the existence and nonexistence of symmetric

positive solutions for the following nonlinear fourth-order boundary value problems

(6p(a" ()" = (O t.2(0), 0<t<1.
(0) = 2(1) = [ g(s)as)ds. (ee)
6,06 (0)) = 0u(a" (1) = [ h(s)ey(a”(5))ds,

0
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where ¢,(t) = [t[P~2-t, p > 1, ¢, = ;17 %

the interval [0,1], f : [0,1] x [0, +00) — [0,+00) is continuous, g, h € L'[0,1] are nonnegative,

+ % =1, w € L[0,1] is nonnegative, symmetric on

symmetric on [0, 1].

Zhao [10] and Du and Zhao [11] investigated the existence and uniqueness of positive solu-
tions for some 2n-order two-point and second-order m-point boundary value problems under the
assumption that nonlinearity f(¢,z) is decreasing with respect to x. To the best of our knowl-
edge, no paper considers the existence of positive solution for integral boundary-value problem
with p-Laplacian operator when f (¢, x) is decreasing with respect to 2. To fill this gap, motivated
by above work, in this paper, we investigate the existence of positive solutions for the following

singular fourth-order differential equations
(Pp(z” (1)) = f(t,z(t)), 0<t<1,

z(0) = [ g(s)z(s)ds, x(1)=0, (1)
0

1
00(&" () = 6,a" (1) = [ hs)6 (o (9)ds,

where f € C[(0,1) x (0,+00),[0,+0)], g, h € L'[0,1] is nonnegative. Nonlinear term f(t,x)
may be singular at # = 0, t = 0 and Jor t = 1. Let 01 = fol(l — 8)g(s)ds, oo = fol h(s)ds.
Throughout this paper, we always assume that 0 < o1, 09 < 1.

The main features of this paper are as follows. Firstly, we discuss integral boundary value
problems with p-Laplacian operator which includes fourth-order two-point, three-point, multi-
point and nonlocal boundary value problem as special cases. As pointed in [4], up to now, no
paper has considered the fourth-order p-Laplacian equation with integral boundary conditions
except for [4]. To the author’s knowledge, boundary value problem (1) has not been considered
in the literature. Secondly, nonlinear term f(¢,z) in this paper may be singular not only at ¢t = 0
and/or t = 1, but also at £ = 0 which makes it different from that in [4]. Thirdly, we study the
existence of positive solution under the condition that f(¢,xz) is decreasing in x. This is new,

since most results given in the literature are under the assumption that f(¢, ) is increasing in x.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries and

lemmas. The main results are formulated in Section 3 and an example is also given.

2. Preliminaries and several lemmas

In our discussion, the space
X ={x:z,¢,(2") € C?[0,1]}

will be the basic space to study BVP (1).

A function «(t) is called a solution of BVP (1) if a(t) € C?[0, 1] satisfies ¢,,(a/ (t)) € C?[0,1]
and the BVP (1). In addition, «(¢) is said to be a positive solution if a(t) > 0 for ¢ € (0,1) and
a(t) is a solution of BVP (1).
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Definition 1 A function

Definition 2 A function

a(t) € X is called a lower solution of BVP (1) if a(t) satisfies
o/’(t) )< fltalt), 0<t<]l,

g(s)a(s)ds <0, «(l) <0,
0

—[¢><a"<o>> / h(s)dp(a” (5))ds] <0,

— |énla” (1)) - / 1 h(s)6p(a” ())ds| <0

B(t) € X is called an upper solution of BVP (1) if A(t) satisfies
(6 6”(t)2”>f(t ), 0< <1,

g9(s)B(s)ds > 0, B(1) >
0

—[qs(ﬁ"(o» / s )qsp(gf'(s))ds} >0,
0 1

(60" = [ 1107 61s] 2 0
0

If there exist a lower solution a(t) and an upper solution S(¢) of BVP (1) such that a(t) < 5(t),
then (a(t), 8(¢)) is called a couple of lower and upper solutions of BVP (1).

We first state the following lemmas.

Lemma 1 Letr; >0 and ro > 0. If o(t) € C[0,1] and o(t) > 0, then the following problem

has a unique solution x(t)

—2"(t) =o(t), te(0,1), (2)
x(0) —/0 g(8)x(s)ds =ry, (1) =19 (3)

such that x(t) > 0, t € [0,1].

Proof Integrating (2) from 0 to ¢, we get

Integrating again, we obtain

x(t) = x(0) + 2'(0)t — /0 (t — s)o(s)ds. (5)

Letting ¢t =1 in (5), we have

Therefore,
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Substituting (6) into (5), we obtain

1 1
x(t) =r —i—/o g(s)x(s)ds —i—t[(rg —r) —i—/o (1—s)o(s)ds—

AE@MW@—A%—@dWm

=(1—t)r1 +tra + /0 G(t, s)o(s)ds + (1 — t)/o g(s)x(s)ds, (7)
where
G(ts)_{sllii; ggtgsi (8)

From (7) we obtain
1

/0 g(s)x(s)ds = /01 g(s){/o1 G(s,m)o(r)dr + (1 — ) /01 g(T)x(T)dr+
(1 —s)r + STQ] ds

/ / G(s,T) dT ds + /01(1 —s)g(s)ds - /Olg(s)x(s)ds—i—

/ﬁmwﬂm+mw

0
therefore

1 1 1 1
/0 g(s)x(s)ds :1 - fol(l a(0)s { /0 g(s) {/0 G(S,T)O'(T)dT:| ds+

1
/ g($)[(1 = s)r1 + srg]ds}. (9)
0

Substituting (9) into (7), we have

2(t) =(1 — )1 + tra + / CH(t $)o(s)dst

_ 1
11_ Utl /0 g(s)[(1 — s)ry + sro]ds, (10)
where 1 .,
Ht,s) = — / G(r, 5)g (11)
o1 = / (1 —9)g(s)ds. (12)
0

Obviously, G(t,s) > 0, H(t,s) > 0, o1 > 0. From (10), it is easily seen that z(t) > 0 for
tel0,1]. O

Lemma 2 Let r3 > 0 and rqy > 0. If y(t) € C[0,1] and y(t) > 0, then the following problem
—z"'(t) = y(t), (13)

x(0) — /0 h(s)xz(s)ds =r3, z(1)— /0 h(s)z(s)ds = ry (14)
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has a unique solution z(t) such that z(t) > 0, ¢ € [0,1].

Proof By integration of (13) from 0 to ¢, we have

Integrating again, we obtain

z(t) = x(0) + 2'(0)t — /0 (t — s)y(s)ds. (15)

Letting ¢t = 1 in (15), we have

1
2(0) = (ra —7a) + / (1 - s)y(s)ds. (16)

Substituting (14) and (16) into (15), we obtain
x(t) =rs —i—/o h(s)z(s)ds + t[(m —r3) —I—/O (1- s)y(s)ds} - /0 (t = s)y(s)ds
=r3 +t(ry —r3) —l—/o G(t, s)y(s)ds —i—/o h(s)x(s)ds, (17)

where G(t, s) is defined as in (8) and

/01 h(s)x(s)ds = /01 h(s) |:T3 +s(ry —r3) + /01 G(s,7)y(r)dr + /01 h(s)x(s)ds] ds
=rg /01 h(s)ds + (r4 —r3) /01 sh(s)ds + /01 h(s) {/01 G(s, T)y(T)dT} ds+

/ h(s)ds - / h(s)a(s)ds,

/01 h(s)x(s)ds = =TT fo s)ds{ /1 h(s)ds + (ry —r3) /01 sh(s)ds+

/ /Olasr dr ds (18)

Substituting (18) into (17), we get

1
x(t) =rs + t(ra —3) +/0 G(t,s)y(s)ds + ———— 1 f / / G(s, 1) dT ds+
0

m [rg /01 h(s)ds + (ra —r3) /01 sh(s)ds}

[/01(1 — s)h(s)dsrs + /01 sh(s)dsm} + /01 K(t, s)y(s)ds, (19)

therefore

:(1 — t)Tg + t?"4 —+

1-— g9
where
K(t,s)=

1
+ 1_102 /0 G(s, 7)h(r)dr, (20)
1
02:/0 h(s)ds. (21)
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Obviously, G(t,s) > 0, K(t,s) > 0, o2 > 0. From (19), it is easily seen that x(t) > 0 for

tel0,1]. O

Lemma 3 Let y(t) € C[0,1]. Then the boundary value problem
—y"(t) = —f(t,$1(t)), t€(0,1),
y0) = (1) = [ ns)y()as

has a unique solution )
1) = = [ (o) f(sa()as,

where K (t, s) is defined as in (20).

Proof The proof is similar to the proof of Lemma 2, we omit the details.

Lemma 4 Let y(t) € C[0,1]. Then the boundary value problem
—z"(t) = —¢q(y(t)), te€(0,1),
1
x(0) :/ g(s)x(s)ds, x(1)=0

0

has a unique solution
1
ot) =~ [ H(t.)n(us)ds,
0

where H (t,s) is defined as in (11).

Proof The proof is similar to the proof of Lemma 1, we omit the details. O

Suppose that z is a solution of problem (1). Then from Lemma 4, we have

uw=1Ang%wm®.

By Lemma 3, we have

1 1
o) = [ Hts)o,( [ Kesnfmar)ar)as
Lemma 5 ([5]) Fort,s € [0,1], we have
pre(te(s) < H(t,s) < yie(s),
where

e(s)=s(1—s), pr =

3

1—0, 1—o09

Lemma 6 ([4]) Fort,s € [0, 1], we have
p2e(s) < K(t,s) < vze(s),

where

fol e(t)h(r)dr 1

p2 = 1_0_2 772:1_0_2-

(22)

(23)

(26)

(28)
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Throughout this paper, we make the following assumptions:

(H1) f€C[(0,1) x (0,+00),[0,4+00)] and f(¢,x) is nonincreasing with respect to ;

(Hz) For any A > 0, f(t,\) # 0 and fol s(1—3s)f(s,A8(1 — 5))ds < +o0;

(Hz) There exists a continuous function a(t) and some fixed positive number k such that
a(t) > kt(1 —t), t € [0,1] and

1 1
/0 H(t, s)¢q(/0 K(s,T)f(T,a(T))dT)ds = b(t) > a(t),

/0 H(t,s)gbq(/o K(s,T)f(T,b(T))dT)ds > a(t).

3. Main results

Theorem 1 Assume that conditions (Hy )—(Hs) are satisfied. Then the boundary value problem
(1) has at least one positive solution w which satisfies w(t) > mt(1 — t) for some m > 0.

Proof Let
P = {z(t) € C[0,1] : there exists a positive number k, such that z(t) > kye(t), t € [0,1]}. (29)

Obviously, P is not empty since t(1 —t) € P. Now, let us define an operator T on X by

(Tz)(t) = /01 Hit, S)(;Sq(/ol K(s, T)f(T,x(T))dT) ds,¥ z € P.

In the following, we divide the long proof into four parts.

Firstly, we show that T is well defined on P.

For any = € P, by the definition of P, there exists a positive number k, such that x(t) >
kyt(1 —t), t €0,1]. By (Hy), (H2), Lemmas 5 and 6, we have

/ K(s,7)f(r,z(r))dr < 72/ 7(1 = 7)f(1, kpr(1 — 7))dT < +00.
0 0

Therefore
1

(T2)(t) = /O Ht, s)¢q(/01 K (s, 7)1 (7,2(r))dr ) ds
< /01 v18(1 — s)gbq(/ol Yor(1 — 7) f(7, kT (1 — T))dT) ds

<ménn) [ a(1 = s)ds- / =)k (1= )T < 4o (30)

Let B = max;c[o,1) z(t). By (H2) and the continuity of f(, ), we know that fol e(s)f(s,B)ds > 0.
Thus,

/ e(s)f(s,z(s))ds > / e(s)f(s,B)ds > 0.
0 0
Therfore,

(Tz)(t) = /01 H(t, s)éq ( /01 K(s,7)f(r, x(T))dT) ds
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> /01 e(t)e(s)¢q(/01 pge(T)f(T,:E(T))dT) ds
= p1og(p2) /01 e(s)ds - qjq(/ol e(r)f(T,x(T))dT) -e(t)
= épl%(pz) : ¢q(/01 e(T)f(T,x(T))dT) e(t) = krge(t), (31)

where kry = $p10¢(p2) - ¢q ( fol e(m)f(r, a:(T))dT) ds > 0. It follows from (30) and (31) that 7" is
well defined on P and T(P) C P.
Secondly, we are in position to determine a couple of lower and upper solutions of BVP (1).

In fact, by direct computation, we obtain

[6p(T2)" ()] = f(t, (1)), te(0,1), (32)
and .
T2)0) = [ g(s)(Tx)(s)s. (Ta)1) =0, (33)
0
1
¢p((T2)"(0)) = ¢p((T2)" (1)) :/0 h(s)ép((T)"(s))ds. (34)
Let b(t) = (Ta)(t). Then by (H;) and (Hs), we have
a(t) < (Ta)(t) = b(t), b(t) = (Ta)(t) = (TH)(), ¢ < [0,1]. (35)
Since a(t) € P, by (31), we get that (T'a)(t), (Tb)(t) € P. Thus, it follows from (32)—(35) that
[6p(TH)" ()] = f (& (TD)(£) < [6p(TD)"(1)]" — f(t,b(t)) = O, (36)
[6p(Ta)"(1)]" = f(t,(Ta)(t)) = [6p(Ta)"(t)]" = f(t,al(t)) = 0. (37)

Let af(t) = (Th)(¢t), B(t) = (Ta)(t). (33) and (34) imply that (T'a)(t), (Th)(t) € X and satisfy
boundary condition. It is clear, a(t) < §(t). From (35)—(37), we know that «a(t) and 3(t) are a
couple of lower and upper solutions of BVP (1).

Thirdly, we shall show that the following boundary value problem

(¢p($"(t))1” =F(tz(t), 0<t<l,
x(0) :/ g(s)x(s)ds, z(1) =0, (38)

0 1
Mﬂ@ﬁwmﬂm:Ah®%W%WS

has a positive solution, where

ft,at)), ifz(t) < alt),
F(t, x(t)) = { ft2(8), it at) <w(t) < BO), (39)
f@t, (), it x(t) > B(t)
To this end, we consider the operator A : C[0, 1] — C]0, 1] defined as follows:

1

/ H(t,s qsq( K T)F(T,x(T))dT)ds.
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It is clear that a fixed-point of the operator A is a solution of the boundary value problem (38).

First, A is continuous since F' is continuous. Next, since «(t) € P, there exists a positive
number k, such that a(t) > kot(1 —t), ¢t € [0,1]. By (Hz), we have

/ s(1=8)F(s,af(s))ds < / s(1 =) f(s,af(s))ds
0 0

< / $(1 = 8)f(s,kas(l—s))ds < +o0. (40)
0

As a consequence, for any z(t) € C[0, 1], by (39) and (40), we get

1

(Az)(t) = /0 H(t,s)gbq( /0 1 K(S,T)F(T,x(r))dT) ds
< /01 ~v18(1 — s)gbq(/ol Yor(1 — T)F(T,x(T))dT) ds
< 16y () /01 s(1 — 5)ds - (bq(/ol (1= 7)F(r.a(r))dr) < +ov, (41)

which implies that the operator A is uniformly bounded.

On the other hand, since H (¢, s) is continuous on C[0, 1] x C[0, 1], it is uniformly continuous
on C0,1] x C[0,1] as well. Thus, for fixed s € [0, 1] and for any € > 0, there exists a constant
d > 0 such that for any t1,t3 € [0,1] and [t; — t2| <4,

€
Da(12) - 9q(fy 7(1 = 7) (7, kar(1 = 7))d7)
In addition, for all z(t) € C[0,1], we have

|H(t1, 8) — H(f278)| <

(40)(0) ~ (A)2) < [ 1B 00,0) ~ HC)lon ([ K57 Fratrar) s
< /01 H(t1,5) - H(t2,5)|¢q(/01727—(1 )/ (r.a(7)dr)ds

</ B (01,9) = Hta,5) 10y (22)04 / L= 1) ({1 = 7)) ds
<€

which implies that the operator A is equicontinuous. Thus, the Ascoli-Arzela theorem guarantees
that A is a compact operator. By Schauder’s fixed point theorem, A has a fixed point w, i.e.,
w = Aw. So, the boundary value problem (38) has a solution.

Finally, we prove that boundary value problem (1) has at least one positive solution. To see
this, we need only to prove that a(t) < w(t) < 8(t), t € [0, 1].

Since w is a solution of (38), this means



504 X. Q. ZHANG
In addition, since f(¢,«) is nonincreasing in x, we have

F(t.50)) < Ft.w(®) < f(t.al), te 0.1 (a4)
By (35) and (H), we get

F(,b(0) < Ft, () < [ at), t<[01] (15)
Since a(t) € P, by (32), we have

68 O = [0 ((Ta)" W))" = F(t,alt)), 1€ [0,1],

which together with (33)-(35), (42)(44) implies that
6 (8 O] — [ O = F(1,(0)) — Fltso(8) 20, 1 [0,1],
(3-20) = [ 96)(306) ~ (o), (8- )(1) =0

¢p(8"(0)) — dp(w”(0)) = /01 h(s)[¢p(B"(5)) — p(w”(s))]ds, (16)
¢p(B" (1)) = dp(w”(1)) = /01 h(s)[p(B"(5)) — dp(w”(s))]ds.
Let 2 = ¢,(8") — ¢p(w”). Then = is twice differentiable in [0, 1] and by (46) we have
{ ()20, 0<t<1, 1 .
2(0) - /O h(s)z(s)ds = 0, (1) — /0 h(s)z(s)ds = 0. 47)

By Lemma 2, we know z(t) < 0, ¢ € [0, 1], that is, ¢,(3"(t)) < ¢p(w”(t)) on [0,1]. Since ¢, is

monotone increasing, we have
B (t) <w’(t), forte|0,1],

ie.,

(B—w)"(t) <0, fortel0,1].
Set m = 8 — w. Then we have

m’(t) <0, 0<t<1,
(48)

By Lemma 1, we obtain

w(t) < B(t), forte|0,1].

Similarly, we can obtain that w(t) > «(t) on [0,1]. Therefore, w(t) is a positive solution of the
boundary value problem (1). In addition, a(t) € P implies that there exists a positive constant
m > 0 such that w(t) > a(t) > mt(1l —t), ¢t € [0,1]. The proof is completed. O

If f(t,z) is nonsingular at = 0, then for all > 0, f(¢,z) < f(¢,0), t € (0,1). Thus, we

have the following
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Theorem 2 If (Hy) holds, and for any u > 0, f(t,u) #Z 0 and satisfies

1
0< / s(1—8)f(s,0)ds < +o0.
0

Then the boundary value problem (1) has at least one positive solution w(t) which satisfies
w(t) > mt(1 —t) for some m > 0.

Proof We need only to replace P by
P ={x(t)e E:z(t) >0, t€[0,1]}

in Theorem 1 and let a(t) = 0. The rest of proof is similar to that in Theorem 1. O

If f(t, ) is nonsingular, then the conclusion of Theorem 1 can be strengthened as the following

Theorem 3 If f(t,z) : [0,1] X [0,400) — [0, +00) is continuous, decreasing in x and f(t,\) Z 0
for any A > 0, then the boundary value problem (1) has at least one positive solution w(t) which
satisfies w(t) > mit(1 — t) for some m > 0.

To show the application of our main results, we present an example.

Example 1 Consider the singular fourth-order integral boundary-value problem with p-Laplacian

operator

(49)

where ¢, (t) = [t|P72t, p > 1, and ao(t), a;(t) are nonnegative and continuous on (0,1), 0 < a; <
1(i=1,2,...,n).
If > ai(t) # 0 on [0,1], and

/01 11— ) (ao(t) + iai(t)t“i(l 1)) dt < oo, (50)

then the fourth-order boundary value problem (49) has a positive solution w(t) such that w(t) >

mit(1 — t) for some m > 0.

Proof Let f(t,2) = ao(t) + > 1 ai(t)z=, t € (0,1), g(t) = 3, h(t) = 0. It is not difficult to

verify that conditions (Hy) and (Hg) are satisfied in Theorem 1 under the condition (50). Set
= maxi<i<p{@;}. Then we have f(¢t,z) < f(t,ru) < r~*f(t, «) holds for all positive numbers
r < 1. Since e(t) = t(1 —t) € P, by (31), we know Te € P,T?c € P which implies that there

exist positive numbers k, [ such that Te > ke, T?e > le. Take a positive number
ro < min{l, k, ll/(lf‘ﬁ)}.

Then,

2 2
T(roe) > Te > ke > roe, Tz(roe) > ry T?e > rh le > rge.
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If we take a(t) = rot(1 — t), then it is easy to check that (Hs) is satisfied. So, our conclusion

follows from Theorem 1. O

Remark 1 Example 1 shows that there exist a large number of functions that satisfy condition

(Hs) and (Hs) is natural and easy to be verified.
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