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Abstract Time- and state-domain methods are two common approaches for nonparametrically

estimating the volatility of financial assets. Economic conditions vary over time in real financial

market. It is reasonable to expect that volatility depends on both time and price level for a given

state variable. Recently, Fan, et al (2007) proposed the idea of dynamically integrated method

in both time-and state domain. This idea has become an interesting topic in the estimation

of volatility. In this paper, our purpose is to discuss the integrated method in the estimation

of volatility. Simulations are conducted to demonstrate that the newly integrated method out-

performs some old ones, and the results of simulations demonstrate this fact. Furthermore, we

establish its asymptotic properties.
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1. Introduction

We consider the problem of estimating the diffusion coefficient, σ(·), for a continuous-time

diffusion process Xt following the stochastic differential equation

dXt = µ(Xt)dt + σ(Xt)dWt, 0 ≤ t ≤ T, (1)

where µ(·) is drift coefficient, Wt is a standard one-dimensional Brownian motion. This model

has been widely used for describing the price process of the financial assets.

There is a large literature on the estimation of the drift and volatility coefficient. Yao

and Tong [1] proposed the direct estimator σ̂2
t (x) = v̂(x) − {m̂(x)}2. There mainly exist two

problems. First, it cannot completely hold for σ̂2
t (x) ≥ 0; Secondly, there is a big bias. Härdle

and Tsybakov [2] applied the local polynomial regression estimator to reduce the large bias,

but they did not solve the first one, and this method is not fully effective to the unknown drift

Received April 15, 2008; Accepted January 1, 2009
Supported by the Hefei University of Technology’s Excellent Courses - Probability Theory and Mathematical

Statistics and “Eleventh Five -Year” national scientific and technological support projects-GIS -based cluster of
manufacturing industries to support R&D and modeling of technical service system - issue 5 - auto parts industry

cluster system modeling (Grant No. 2008BAF35B05).

* Corresponding author
E-mail address: dxq1006@126.com (X. Q. DU); yexuguo522@126.com (X. G. YE)



508 X. Q. DU and X. G. YE

coefficient, m(·). Others proposed the difference-based estimator. Rice [3, 4], Gasser, et al. [5],

and Müller and StadtMüller [6] used a high-pass filter to remove the regression function from the

data sequence {Yi}, but Hall, Kay and Titterigton [7] pointed out the resulting estimator was

inefficient even in some homoscedastic models with optimal filters. Then Hall, et al. [7] employed

the optimal difference sequence for a Gaussian model and got a certain degree of effectiveness.

For the purpose of acquiring the higher efficiency of the methods of estimation, the residual-

based estimators had been proposed for the coming years. Stone [8]. Hall and Carroll [9], Müller

and StadtMüller [10], Neumann [11], Fan and Gijbel [12],Gallant and Tauchen [13], Stanton

[14], Jiang and Knight [15], Fan and Yao [16], Arfi [17], Fan, et al.[18], Fan and Zhang [19] had

proposed various nonparametric methods and respectively proved their advantages. But now the

local linear estimator is attractive to estimate the variance function. Because we know economic

conditions vary over time, it is reasonable to expect that the volatility depends on both time and

price level for a given state variable. But we find there is no sufficient information to estimate

the bivariate functions in (1) without further restrictions. Because of consistently estimating the

volatility function, σ(x, t), we need to have data that eventually fill up a neighborhood of the point

(x, t). Fan, et al.[20] firstly proposed the dynamic integration of time-and state-domain methods

for volatility estimation, and further established the aggregation of nonparametric estimators

for volatility matrix. It is indicated that the new concept for estimating volatility is further

developed in modern financial analysis.

For most practical situations, we use the Euler scheme to approximate the diffusion process on

the basis of the fact that while higher order can possibly reduce approximation errors, it increases

variances of data substantially. Furthermore, it is reported that the difference between the Euler

approximation scheme and the strong order-one approximation is negligible by simulations. For

an overview, see the recent literature by Fan [21]. Here we use the Euler approximation scheme.

Suppose that we have historic data {Xti}n+1
i=1 from the process (1) with a sampling interval ∆ at

time t. Set Yi = (Xti+1
− Xti)/∆1/2. Then for the model (1), we have

Yi ≈ µ(Xti)∆
1
2 + σ(Xti)εi, (2)

where εi = (Wti+1
− Wti)/∆1/2 and εi ∼i.i.d N(0, 1) for i = 1, 2, . . . , n.

In this paper, firstly we will focus on comparing the integrated estimators and establishing

asymptotic properties of the proposed estimator, and then illustrate our ideas by numerical

simulations and analysis. Finally, we collect outlines of the conditions and the proofs in the

Appendix.

2. Estimation of volatility

The volatility estimation is an important part of modern financial econometrics and time

series analysis, which almost refers to every aspect of the financial field. There is a large litera-

ture on the estimation of volatility based on time-domain and state-domain smoothing. For an

overview, see the recent book and literature in references.
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2.1. Time-domain estimator

We firstly introduce the following smoothing estimator

σ̂2
WS,t =

n∑

i=1

αiY
2
t−i, (3)

where αi (i = 1, 2, . . . , n) are the weights of local data {Yi} in the estimator and
∑n

i=1 αi = 1.

Some popular versions of time-domain smoothing estimator are proposed by adapting the

above estimator. With the development of methodology, time-domain smoothing method had

been extensively discussed in modern financial analysis, we refer to [21] for an overview. Recently

we discuss the exponential weighted moving estimtor (σ̂2
EWM = 1−b

1−bn

∑n
i=1 bi−1Y 2

t−i, where b

is smoothing parameter). Since the weight decays exponentially, it essentially uses the recent

data. But one notes that the weight drops rapidly, which means that the relation of the returns

between Yt−i and Yt−j (i 6= j) is rapidly decreasing. Here we choose a nonparametric kernel

estimator (one side kernel estimator) for estimating the volatility. We choose the Epanechnikov

kernel in the nonparametric kernel estimator. Indeed it is the neighbor estimator and illustrates

its advantages over the adaptive moving estimator. So we use the kernel estimator to estimate

the volatility.

σ̂2
KS,t =

n∑

i=1

K(
i

n
)Y 2

t−i/

n∑

i=1

K(
i

n
). (4)

All of the time domain smoothing is based on the assumption that the asset returns Yt−1,

Yt−2, Yt−3, . . . , Yt−n have approximately the same volatility.

Theorem 1 If ∆ → 0 and n∆ → 0 (n → +∞), conditions (1)–(2) and lemmas in Appendix

hold. We have
√

nh(σ̂2
KS,t − σ2

t )
D−→ N

(
0, 2σ4

t

∫
K2(u)du

p(t)

)
.

2.2. State-domain estimator

For practical analysis of financial data, it is hard to determine whether the sampling interval

tends to zero. It is reasonable that a method is applicable whether or not “∆” is small. So here

we propose the following nonparametric estimators in state-domain.

To estimate the volatility, we need estimate f = µ(x)∆1/2 in (2). Here we use the local linear

estimator to estimate it (Indeed for simplifying the process, the estimator σ̂2
S,t behaves as if the

drift function f is known). We exclude the n data points used in the time-domain estimator.

The historical data at time t are {(Xti , Yi), i = 1, . . . , N − n}. Denote the squared residuals

by R̂i = {Yi − f̂(Xti)}2. The local constant estimator(â) and the local linear estimator(α̂)

respectively are given by

â = arg min
a

N−n∑

i=1

{R̂i − a}2Uh1
(Xti − x) (5)
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and

(α̂, β̂) = argmin
α,β

N−n∑

i=1

{R̂i − α − β(Xti − x)}2Wh2
(Xti − x), (6)

where Uh1
(·) = U(·/h1)/h1 and Wh1

(·) = W (·/h1)/h1 are kernel functions, h1 and h2 are the

smoothing parameters.

Note 1 For practical application, Fan and Gijbels [22] recommended the use of the local linear

fit (q = 1). For an overview, see the recent book by Fan and Gijbels [22]. Howeover, to avoid

zero in the denominator, we add N−2 in the denominator. This point is revised for practical

application in the pointwise estimation. But it has no impact on understanding the following

theorems and theoretically analyzing this method.

Theorem 2 Set vj =
∫

ujK2(u)du for j = 0, 1, 2. Suppose that the second derivatives µ(·) and

σ2(·) exist in a neighborhood of x, hn → 0 and nhn → ∞(n → ∞). Conditions (3)–(5) in the

Appendix hold. Then we have

(A) Asymptotic normality of σ̂2
KE,S :

√
(N − n)h1(σ̂2

KE,S − σ2
t )

D−→ N(0, 2σ4
t v0p(x)−1)

(B) Asymptotic normality of σ̂2
LE,S :

√
(N − n)h2(σ̂2

LE,S − σ2
t − θn)

D−→ N(0, 2σ4
t p(x)−1eT

1 (H−1S−1)T S∗H−1S−1e1)

where θn = 1
2h2

2σ̈
2(x)σ2

w + o(h2
2), σ2

w =
∫

u2w(u)du.

3. Integrated estimator

In this section, we firstly prove that the time-domain and state-domain estimator are nearly

independent (namely, asymptotic independent property), then we choose the dynamic weights

by the corresponding criterion.

Theorem 3 Suppose that the conditions of Theorems 1 and 2 are satisfied. Then we have

(a) Asymptotic independence:

Σ
− 1

2

1

( √
nh[σ̂2

KS,t − σ2
t )]√

(N − n)h1[σ̂2
KE,s − σ2

t ]

)
−→ N(0, I2),

where Σ
− 1

2

1 = diag{V2, 2σ4
t v0p(x)−1} and V2 = 2σ4

t

∫
K2(u)du

p(t) .

(a’) Asymptotic independence:

Σ
− 1

2

2

( √
nh[σ̂2

KS,t − σ2
t )]√

(N − n)h2[σ̂2
LE,S − σ2

t − θn]

)
−→ N(0, I2),

where Σ
− 1

2

2 = diag{V2, 2σ4
t p(x)−1eT

1 H−1S−1S∗(H−1S−1)T e1} and V2 = 2σ4
t

∫
K2(u)du

p(t) .

On the basis of time- and state-domain smoothing, we propose the integrated form with the
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dynamic optimal weights

σ̂2
I,(s,t) = Wtσ̂2

t,time + (1 − Wt)σ̂2
t,state, (7)

where Wt (0 ≤ Wt ≤ 1). Furthermore, we can get the dynamic optimal weights by minimizing

the variance of the integrated estimator, Wt =
Var(σ̂2

t,state)

Var(σ̂2
t,state)+Var(σ̂2

t,time)
. Therefore, we get the

integrated estimator:

σ̂2
I,(s,t) = Ŵtσ̂2

t,time + (1 − Ŵt)σ̂2
t,state. (8)

4. Numerical simulations and analysis

As an illustration, we use the simple abbreviation in Table 1 to denote several estimators.

KET: the kernel estimator in time-domain

KES: the kernel estimator in state-domain

LLE: the local linear estimator in state-domain

IE: the integrated estimator in Fan, et al.([20],λ = 0.94)

NIE 1: the New integrated estimator of time and state domain in (5)

NIE 2: the New integrated estimator of time and state domain in (6)

Table 1 Abbreviations of time-domain, state-domain and integrated estimators

Example 1 As a first illustration, we consider the well-known Cox-Ingersoll-Ross (CIR) model:

dXt = k(θ − Xt)dt + σX
1/2
t dWt, t ≥ t0, (9)

where the spot rate Xt, moves around a central location or long-run equilibrium level θ = 0.08571

at speed k = 0.21459, here σ is set to be 0.07830 ([19]).

Here we use the approximation scheme to generate 10000 samples. The scheme takes the

form

Xti+1
− Xti ≈ k(θ − Xti)∆ + σX

1/2
ti

∆1/2εi for ≤ i ≤ n, (10)

where εi =
Wti+1

−Wti

∆1/2 , εi ∼i.i.d N(0, 1). For each simulation experiment, we generate from a sam-

ple path of length 10000. We replicate the experiments 1000 times. Although choices of kernel

function play an import role to estimate the volatility, choices of kernel function depend purely

on individual references. Here we use the Epanechnikov kernel (K(u) = 0.75(1− u2)I(|u| ≤ 1)),

where I(·) stands for the indicator function. For a given kernel function, choices of an effec-

tive bandwidth parameter is very important to the performance of a non-parametric estimator

[11, 22, 23, 24]. For the purpose of illustration, here we set h = 0.04. In our implementation, we

usually set ∆ = 1/12 (yearly); 1/52 (monthly); or 1/252 (daily) in the state domain. Here we

set ∆ = 1/252. The initial value can be got from the distribution of Xt ([19]). We focus on an

interior state point x = 0.1 in the simulated calculation.
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Estinator Measure NP IMADE

KET Ave 0.006133086435664 7.493756945247402e-005

Std 4.575213916349301e-009 1.769163422049167e-009

KES Ave 0.006133610087099 6.757124298279898e-005

Std 3.624624686197756e-009 1.343031278355880e-009

LLE Ave 0.006131905666218 8.500395125373502e-005

Std 5.711765001730663e-009 2.101030167524508e-009

IE Ave 0.006122234037852 7.716647442301703e-005

Std 1.800156175593209e-008 1.503926863713015e-008

NIE 1 Ave 0.006134398849847 6.963277222752401e-005

Std 3.818917458841625e-009 1.395951926723230e-009

NIE 2 Ave 0.006129193172399 7.551176036654199e-005

Std 4.405727101088140e-009 1.556270394655766e-009

Table 2 Comparison of time-domain, state-domain and integrated estimators and σ
2 = 0.00613089

To assess the performance of the six estimators in Table 1, we compute the average and the

root mean squared error of each of the two measures over 1000 simulations. “NP” stands for the

number properties of estimating data : average and root mean squared error of the sampleing

data. “IMADE” stands for the ideal mean absolute deviation error (IMADE = m−1
∑T+m

i=T+1 |σ̂2
i −

σ2
t |).

The performance of each volatility estimation is described in Table 2, which shows that the

performance of the integrated estimators outperform the Fan’ estimator. Table 2 shows that two

estimators (KET, KES) outperform the latter (LLE) for the same kernel function and sample

number. It indicates that the integrated estimator from combining KET and KES should be

better than the integrated estimator from KET and KES, this guess is illustrated in Table 2. It

shows that the performance of the two new integrated estimators uniformly dominate the other

estimator. But it depends on the performance of the time-and state-domain estimators. These

results are derived by simulations under the same conditions, which only indicate some facts.

If we want to get the better results, we should consider every aspect in financial markets. But

further study on this topic is beyond our purpose in this paper.

Example 2 We now consider another familiar example of Geometric Brownian Motion (GBM)

model:

dXt = (µ + 2−1σ2)Xtdt + σXtdWt, 0 < t < T, (11)

where Wt is a standard one-dimensional Brownian motion. For Example 2, apparently both the

drift and diffusion are linear, and thus {Xt} is Markovian [19].

We simulate in time [0, T ] with T = 20, the corresponding approximate process with param-

eters µ = 0.087 and σ = 0.178. We choose the order-0.5 approximation scheme.

Xti+1
− Xti+1

∆1/2
= (µ + 2−1σ2)Xti∆

1/2 + σXtiεi for 1 ≤ i ≤ n, (12)
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where εi =
Wti+1

−Wti

∆1/2 and εi ∼i.i.d N(0, 1). Alternatively, we could directly use the explicit

solution Xt = X0 exp{µt+σWt} for equation (11). We focus on an interior state point X0 = 1.0;

1,000 sample paths of length 50, 000 are generated. The bandwidth parameter, h = 0.004 and

∆ = 1/250, is used respectively for local smoothing. Some demands are the same as in Example

1.

Estimator Measure NP IMADE

KET Ave 0.031684527781019 1.787526876911020e-004

Std 2.451424005418594e-008 8.546524900690302e-009

KES Ave 0.031785657829251 8.876827267321372e-004

Std 1.087330178264748e-006 6.940339004959433e-007

LLE Ave 0.031816822310177 0.001005895072185

Std 1.892250407349083e-006 1.387725684910996e-006

IE Ave 0.031689301327384 9.323532566736667e-004

Std 1.233307439126375e-006 7.994656071184975e-007

NIE 1 Ave 0.031679627805908 1.794410737083469e-004

Std 2.507962808329603e-008 8.989067684178025e-009

NIE 2 Ave 0.031680848561931 1.860336227279028e-004

Std 2.835474432049124e-008 1.106155147933674e-008

Table 3 Comparison of time-domain, state-domain and integrated estimators and σ
2 = 0.031684

To assess the performance of the six estimators in Table 1, we compute the average and the

root mean squared error of each of the two measures over 1000 simulations. “NP” stands for the

number properties of estimating data: average and root mean squared error of the sampleing data.

“IMADE” stands for the ideal mean absolute deviation error (IMADE = m−1
∑T+m

i=T+1 |σ̂2
i −σ2

t |).
The results from the simulated data are reported in Table 3. In order to study the influence

of the sample number on the effect of estimators, we respectively use 10000 smaples in Example 1

and 50000 samples in Example 2 to illustrate our method. Comparing Table 2 with Table 3 shows

that the time-domain estimator with Epanechnikov kernel is attractive to estimate the volatility

and depends tightly on sample number. Furthermore, we use the difference bandwidth between

Examples 1 and 2 to illustrate the influence of the difference bandwidth on the performance of

the estimators. It is also shown that the integrated estimator by integrating the good time-and

state-domain estimator can get more efficient estimator in Tables 2 and 3. By simulations, Tables

2 and 3 report that the new integrated estimator outperforms the estimator of the integration

method of time and state domains Fan, et al.([20],λ = 0.94).

5. Appendix

We always use C to denote a generic constant which may be different at different places. We

introduce the following conditions.



514 X. Q. DU and X. G. YE

Condition 1 σ2(x) is Lipschitz conditions.

Condition 2 There exists a constant C > 0, such that E|µ(Xs)|2(p+δ) ≤ C and E|σ(Xs)|2(p+δ) ≤
C for any s ∈ [t − η, t], where η is some positive constant, p is an integer not less than 2 and

δ > 0.

Condition 3 The strictly stationary process {(Xti , Yi), i = 1, . . . , n − 1} is absolutely regular,

i.e.,

β(j) = sup
i≥0

E{ sup
A∈ω∞

i+j

|Pr(A|ωi
1)| − Pr(A)} → 0,

as j → ∞, where ωj
i is the σ−field generated by {(Xti , Yi), i = 1, . . . , n−1} (j ≥ i). Furthermore,

for the same δ as in Condition 2,
∑∞

j=0 j2β
δ

1+δ (j) < ∞, we use the convention 00 = 0.

Condition 4 The discrete observations {Xti}n+1
i=1 satisfy the stationarity condition of Banon

[25]. Furthermore, a stationary process Xt is said to satisfy the condition G2(s, α) of Rosenblatt

[26].

Condition 5 The conditional density pl(y|x) of Xti+1
for given Xti is continuous in the argu-

ments (x, y) and is bounded by a constant (independent of l).

Lemma 1 Under Conditions (1)–(2) in the Appendix, we have

|σ2(Xs) − σ2(Xu)| ≤ λ|s − u|
p−1

2p

for any s, u ∈ [t − η, t], where the coefficient C satisfies E(λ2(p+δ)) < ∞ and η is a positive

constant.

Proof of Theorem 1 Let Zi,s = (rs − rti)
2. Applying Itô formula to Zi,s, we obtain

dZi,s = 2
(∫ s

ti

µudu +

∫ s

ti

σudWu

)
(µsds + σsdWs) + σ2

sds

= 2
[
(

∫ s

ti

µudu +

∫ s

ti

σudWu)µsds + σs(µsds + σsdWs)
]

+ 2
(∫ s

ti

σudWu

)
σsdWs + σ2

sds.

Then Y 2
i can be decomposed as Y 2

i = 2ai + 2bi + σ̃2
i , where

ai = ∆−1
[ ∫ ti+1

ti

µuds

∫ s

ti

µudu +

∫ ti+1

ti

µsds

∫ s

ti

σudWu +

∫ ti+1

ti

σsdWs

∫ s

ti

µudu
]

bi = ∆−1

∫ ti+1

ti

∫ s

ti

σudWudσsWs, σ̃2
i = ∆−1

∫ ti+1

ti

σ2
sds.

Therefore,

σ̂2
KS,t − σ2

t =

n∑

i=1

K( ti−t
h )

∑n
i=1 K( ti−t

h )
[2ai + 2bi + σ̃2

i − σ2
t ]

= 2

n∑

i=1

K( ti−t
h )∑n

i=1 K( ti−t
h )

ai + 2

n∑

i=1

K( ti−t
h )∑n

i=1 K( ti−t
h )

bi +

n∑

i=1

K( ti−t
h )∑n

i=1 K( ti−t
h )

(σ̃2
i − σ2

t ).
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Lemma 2 Under Conditions (1)–2, if n → ∞, ∆ → 0 and n∆ → 0, then

∣∣∣
n∑

i=1

K( ti−t
h )∑n

i=1 K( ti−t
h )

(σ̃2
i − σ2

t )
∣∣∣ =

∣∣∣
n∑

i=1

K( ti−t
h )∑n

i=1 K( ti−t
h )

(σ̃2
i − σ2

t )
∣∣∣→ 0 (n → +∞),

∣∣∣2
n∑

i=1

K( ti−t
h )∑n

i=1 K( ti−t
h )

ai

∣∣∣ = 2
∣∣∣

n∑

i=1

K( ti−t
h )∑n

i=1 K( ti−t
h )

ai

∣∣∣→ 0 (n → +∞).

Lemma 3 If Conditions (1)–(2) are satisfied, then

bj = ∆−1

∫ ti+1

ti

∫ s

ti

σudWuσsdWs = σ2
t ∆−1

∫ ti+1

ti

(Ws − Wti)dWs + γj ,

where

γj = ∆−1

∫ ti+1

ti

(σs − σt)
[ ∫ s

ti

σudWu

]
dWs + ∆−1σt

∫ ti+1

ti

[ ∫ s

ti

(σs − σt)dWu

]
dWs.

Because

2
n∑

i=1

K( ti−t
h )

∑n
i=1 K( ti−t

h )
bi = 2

n∑

i=1

K( ti−t
h )

∑n
i=1 K( ti−t

h )
σ2

t ∆−1

∫ ti+1

ti

(Ws−Wti)dWs+2
n∑

i=1

K( ti−t
h )

∑n
i=1 K( ti−t

h )
γi,

we have |2∑n
i=1

K(
ti−t

h )
∑

n
i=1

K(
ti−t

h )
γi| = 2|∑n

i=1
K(

ti−t

h )
∑

n
i=1

K(
ti−t

h )
γi| → 0 (n → +∞). Therefore, we only

consider

2

n∑

i=1

K( ti−t
h )

∑n
i=1 K( ti−t

h )
σ2

t ∆−1

∫ ti+1

ti

(Ws − Wti)dWs

= 2σ2
t ∆−1

n∑

i=1

K( ti−t
h )∑n

i=1 K( ti−t
h )

[ ∫ ti+1

ti

WsdWs − WtidWs

]

= 2σ2
t ∆−1

n∑

i=1

K( ti−t
h )

∑n
i=1 K( ti−t

h )

[1
2
(W 2

ti+1
− W 2

ti
) − ∆

2
− Wti(Wti+1

− Wti)
]

= 2σ2
t ∆−1

n∑

i=1

K( ti−t
h )

∑n
i=1 K( ti−t

h )

1

2
(Wti+1

− Wti)
2 − σ2

t

= σ2
t ∆−1

n∑

i=1

K( ti−t
h )∑n

i=1 K( ti−t
h )

(Wti+1
− Wti

∆1/2

)2

− σ2
t

= σ2
t

n∑

i=1

K( ti−t
h )

∑n
i=1 K( ti−t

h )

[
(
Wti+1

− Wti

∆1/2
)2 − 1

]

= σ2
t

n∑

i=1

K( ti−t
h )∑n

i=1 K( ti−t
h )

[ε2
i − 1].

Conditions 2 and 3 imply that E{Wni(t)σ
2(Xti)(ε

2
i − 1)}2+ δ

2 < ∞, by Theorem 1 of Fan and

Yao [16]. σ2
t

∑n
i=1

K(
ti−t

h )
∑n

i=1
K(

ti−t

h )
[(

Wti+1
−Wti

∆1/2 )2 − 1] is asymptotically normal mean 0 and variance

2σ4
t

∫
K2(u)du
nhp(t) . Therefore, we easily get

√
nh(σ̂2

KS,t − σ2
t ) → N

(
0, 2σ4

t

∫
K2(u)du

p(t)

)
.
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Parts of proofs for Lemma 1-3 and Theorem 1 can be found in Fan’s literatrue [21]. 2

Proof of Theorem 2 Without loss of generality, we assume that f(x) = 0, hence R̂i =

Y 2
i . (A) is easily proved [16]. By [27], let Y = (Y 2

1 , Y 2
2 , . . . , Y 2

N−n), W = diag{W (
Xt1−x

h2
),

W (
Xt2−x

h2
), . . . , W (

XtN−n
−x

h2
)} and

X =




1 Xt1 − x
...

...

1 XtN−n − x


 .

Denote by mi = E[Y 2
i |Xti ], m = (m1, m2, . . . , mN−n)T and e1 = (1, 0)T. Then it can be written

that

σ̂2
LE,S = eT

1 (XTWX)−1XTWY,

σ̂2
LE,S − σ2

t = eT
1 (XTWX)−1XTW{m− XβN} + eT

1 (XTWX)−1XTW{Y − m}
= eT

1 B + eT
1 b,

where βN = (m(x), m′(x))T with m(x) = E[Y 2
1 |Xti = x]. By [16], the bias vector B converges

in probability to a vector B with B = O(h2
2) = o(1/

√
(N − n)h2). In the following, we will show

that the centralized vector b is asymptotically normal.

Put u = (N − n)−1H−1XTW (Y −m) where H = diag{1, h2}, then by [27], the vector b can

be written as

b = p−1(x)H−1S−1u(1 + op(1)), (13)

where S = (µi+j−2), i, j = 1, 2 with µj =
∫

ujk(u)du. For any constant vector c, define

QN = cT u =
1

2

N−n∑

i=1

{Y 2
i − mi}Ch2

(Xti−x),

where C(u) = c1W (u) + c2uW (u) with Cu(h2) = C(u/h2)/h. Applying the “big-block” and

“small-block” arguments in [27, Theorem 6.3], we obtain

θ−1(x)
√

(N − n)h2QN → N(0, 1), (14)

where θ2(x) = 2p(x)σ4
t

∫
C2(u)du. Namely,

√
(N − n)h2c

T u → N
(
0, 2p(x)σ4

t

∫
C2(u)du

)
.

Because QN is a linear transform of u, we have
√

(N − n)h2u → N(0, 2σ4
t p(x)S∗/(N − n)h2),

where S∗ = (vi+j−2), i, j = 1, 2, with vj =
∫

ujK2(u)du. So we can reduce to u →N(0,
2σ4

t p(x)S∗

(N−n)h2
).

Because that b = p−1(x)H−1S−1u(1 + op(1)), we have

b → N(0, 2σ4
t p(x)−1(H−1S−1)TS∗H−1S−1/(N − n)h2).

Furthermore, we easily get σ̂2
LE,S−σ2

t → N(0, 2σ4
t p(x)−1eT

1 (H−1S−1)TS∗e1H
−1S−1/(N − n)h2). 2
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Proof of Theorem 3 If Theorem 3 (a’) is proved, then we can easily get the proof of Theorem

3 (a). Because of the above results, we only prove nearly independent. In the following, we will

decompose QN into two parts Q
/
N and Q

//
N , which satisfy that

(i) (N − n)h2E[θ−1(x)Q
/
N ]2 ≤ h2

N−n (h−1
2 aN−n(1 + o(1)) + (N − n)o(h−1

2 )) → 0;

(ii) Q
//
N is identically distributed as QN and is asymptotically independent of σ̂2

KS,t.

Define

Q
/
N =

1

N − n

aN−n∑

i=1

{Y 2
i − E[Y 2

i |Xti ]}Ch2
(Xti − x) (15)

and Q
//
N = QN −Q

/
N , where aN−n is a positive integer with aN−n = o(N −n) and aN−n∆ → ∞.

Let vN,l = vl+1

√
h2 and vi = {Yi − mi}Ch2

(Xti − x) (i = 1, 2, . . . , n). Then by [27]

VAR[θ−1(x)vN,0] = (1 + o(1)) and

n−1∑

l=1

|Cov(vN,0, vN,l+1)| = o(1),

which yields the result in (i). Combining this with equation (7), (i) and equation (8) leads to

θ−1(x)
√

(N − n)hNQ
//
N → N(0, 1).

According to the stationarity conditions of Banon [25], a stationary process Xt is said to satisfy

the condition G2(s, α) of Rosenblatt [26] and the Proposition 2.6 of Fan and Yao [27] imply that

the ρ(l) of {Xti} decays exponentially and the strong-mixing coefficient α(l) ≤ ρ(l). It follows

that

|E exp{iζ(Q
//
N + σ̂2

KS,t)} − E exp{iζ(Q
//
N }E exp{iζσ̂2

KS,t)}| ≤ 16α(sN) → 0

for any ζ ∈ R. By theorem of Volkonskii and Rozanov (1959) or Revuz and Yor [28], we get the

asymptotic independence of σ̂2
KS,t and Q

//
N .

By (i),
√

(N − n)h2Q
′
N is asymptotically negligible. This together with Theorem1 leads to

d1θ
−1(x)

√
(N − n)h2QN + d2V

−1/2
2

√
nh[σ̂2

KS,t − σ2
t ] → N(0, d2

1 + d2
2)

for any d1, d2 ∈ R, where V2 = 2σ4
t

∫
K2(u)du

p(t) . Since QN is a linear transform of u,

V − 1
2

( √
(N − n)hNu√

nh[σ̂2
KS,t − σ2

t ]

)
−→ N(0, I2),

where V = diag{V1, V2} with V1 = 2σ4
t p(x)S∗, where S∗ = (vi+j−2), i, j = 1, 2 with vj =∫

ujK2(u)du. This combined with equation (13) gives the joint asymptotic normality of b and

σ̂2
KS,t. Note that B = op(1/

√
(N − n)h2), it follows that

Σ
− 1

2

2

( √
(N − n)hN [σ̂2

LE,S − σ2
t − θn]√

nh[σ̂2
KS,t − σ2

t ]

)
−→ N(0, I2),

where Σ
− 1

2

2 = diag{2σ4
t p(x)−1eT

1 (H−1S−1)TS∗H−1S−1e1, V2} and V2 = 2σ4
t

∫
K2(u)du

p(t) . Note that

σ̂2
t,time and σ̂2

t,state are asymptotically independent, it follows that the asymptotical normality

of σ̂2
I,(s,t) holds. 2
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