# Uniqueness Theorem of Algebroidal Functions in an Angular Domain 

Hui Fang LIU ${ }^{1,2, *}$, Dao Chun SUN ${ }^{2}$<br>1. Institute of Mathematics and Informatics, Jiangxi Normal University, Jiangxi 330027, P. R. China;<br>2. School of Mathematics, South China Normal University, Guangdong 510631, P. R. China


#### Abstract

Let $W(z)$ and $M(z)$ be $v$-valued and $k$-valued algebroidal functions respectively, $\triangle(\theta)$ be a $b$-cluster line of order $\infty($ or $\rho(r))$ of $W(z)$ (or $M(z)$ ). It is shown that $W(z) \equiv M(z)$ provided $\bar{E}\left(a_{j}, W(z)\right)=\bar{E}\left(a_{j}, M(z)\right)(j=1, \ldots, 2 v+2 k+1)$ holds in the angular domain $\Omega(\theta-\delta, \theta+\delta)$, where $b, a_{j}(j=1, \ldots, 2 v+2 k+1)$ are complex constants. The same results are obtained for the case that $\triangle(\theta)$ is a Borel direction of order $\infty$ (or $\rho(r)$ ) of $W(z)$ (or $M(z)$ ).


Keywords algebroidal function; order; uniqueness.
Document code A
MR(2000) Subject Classification 30D35
Chinese Library Classification O174.55

## 1. Introduction

Suppose that $A_{v}(z), \ldots, A_{0}(z)$ are analytic functions without common zeros in the complex plane and the indecomposable equation

$$
\begin{equation*}
\psi(z, W):=A_{v}(z) W^{v}+A_{v-1}(z) W^{v-1}+\cdots+A_{1}(z) W+A_{0}(z)=0 \tag{1}
\end{equation*}
$$

defines a $v$-valued algebroidal function $W(z)$ in the complex plane(if $A_{v}(z) \equiv 1$, then $W(z)$ is called a $v$-valued integral algebroidal function ), where $A_{0}(z) \not \equiv 0$, otherwise $W(z)$ is a reducible algebroidal function; where $A_{v}(z) \not \equiv 0$, otherwise $W(z)$ is $v-1$ valued or less. In particular, $W(z)$ is exactly a meromorphic function when $v=1$.

In this paper, we adopt the standard notations and definitions as explained in [1]. The notations $\Delta(\theta)$ and $\Omega(\alpha, \beta)$ denote a ray $\arg z=\theta$ and a set $\{z \mid \alpha<\arg z<\beta\}$ in the complex plane, respectively. For an arbitrary complex number $a$, $n(r, \Omega(\alpha, \beta), W(z)=a)$ denotes the number of roots of the equation $W(z)-a=0$ in the domain $\Omega(\alpha, \beta) \bigcap|z|<r$, multiple roots being counted multiply, and $\bar{E}(a, W(z))$ denotes the set of zeros of $W(z)-a$ (namely the set of points $z$ satisfying the equation $\psi(z, a)=0$ ), with every zero counted only once.

We also need the following definitions.

[^0]Definition 1 Suppose that $W(z)$ is a $v$-valued algebroidal function defined by (1), $a$ is an arbitrary complex number, and $\Delta(\theta)$ is a ray in the complex plane. If

$$
\varlimsup_{r \rightarrow \infty} \frac{\log n(r, \Omega(\theta-\varepsilon, \theta+\varepsilon), W=a)}{\log r}=\infty
$$

holds for any given $\varepsilon>0$, then we call $\Delta(\theta)$ a a-cluster line of order $\infty$ of $W(z)$.
Definition 2 Suppose that $W(z)$ is a $v$-valued algebroidal function defined by (1), $\Delta(\theta)$ is a ray in the complex plane. If for any complex number a (at most $2 v$ number of exceptional values), $\Delta(\theta)$ is always an $a$-cluster line of order $\infty$ of $W(z)$, then we call $\Delta(\theta)$ a Borel direction of order $\infty$ of $W(z)$.

Suppose that $W(z)$ is a $v$-valued algebroidal function of infinite order defined by (1). According to the result of Hiong in [2], there exists a function $U(r)=r^{\rho(r)}$ satisfying the following conditions:
(i) $\rho(r)$ is continuous and nondecreasing for $r \geq r_{0}\left(r_{0}>0\right)$, and tends to $+\infty$ as $r \rightarrow+\infty$.
(ii) $\lim _{r \rightarrow \infty} \frac{\log U(R)}{\log U(r)}=1, R=r+\frac{r}{\log U(r)}$.
(iii) $\varlimsup_{r \rightarrow \infty} \frac{\log T(r, W)}{\log U(r)}=1$.

We say that the function $U(r)$ is the type function of $W(z)$.
Definition 3 Suppose that $W(z)$ is a $v$-valued algebroidal function defined by (1) and $U(r)=$ $r^{\rho(r)}$ is its type function. Let $a$ be an arbitrary complex number and $\Delta(\theta)$ be a ray in the complex plane. If

$$
\varlimsup_{r \rightarrow \infty} \frac{\log n(r, \Omega(\theta-\varepsilon, \theta+\varepsilon), W=a)}{\log U(r)}=1
$$

holds for any given $\varepsilon>0$, then we call $\Delta(\theta)$ an $a$-cluster line of order $\rho(r)$ of $W(z)$.
Definition 4 Suppose that $W(z)$ is a $v$-valued algebroidal function defined by (1), $\Delta(\theta)$ is a ray in the complex plane. If for any complex number a (at most $2 v$ number of exceptional values), $\Delta(\theta)$ is always an $a$-cluster line of order $\rho(r)$ of $W(z)$, then we call $\Delta(\theta)$ a Borel direction of order $\rho(r)$ of $W(z)$.

The uniqueness theory of algebroidal functions in the complex plane is an interesting problem. Many authors, such as Valiron [3], He [4, 5] and Yi [6], have ever done a lot of works. But owing to the complexity of its branch points, the results in uniqueness theory are fewer than those in meromorphic functions, as found in [7]. The uniqueness theory of algebroidal functions was firstly investigated by Valiron, who proved the following result in [3].

Theorem A Let $W(z)$ and $M(z)$ be two $v$-valued algebroidal functions. If there are $4 v+1$ number of $a_{j} \in C$ such that $E\left(a_{j}, W(z)\right)=E\left(a_{j}, M(z)\right)(j=1, \ldots, 4 v+1)$, then $W(z) \equiv M(z)$.

In [4], He obtained an improvement as follows.
Theorem B Let $W(z)$ and $M(z)$ be $v$-valued and $k$-valued algebroidal functions, respectively, and let $k \leq v$. If there are $4 v+1$ number of $a_{j} \in C$ such that $\bar{E}\left(a_{j}, W(z)\right)=\bar{E}\left(a_{j}, M(z)\right)(j=$ $1, \ldots, 4 v+1)$, then $W(z) \equiv M(z)$.

It is natural to ask whether the conditions of Theorem B can be weakened. In this paper, we obtain the following results which answer the question.

Theorem 1 Let $W(z)$ and $M(z)$ be $v$-valued and $k$-valued irreducible algebroidal functions in the complex plane, respectively, $a_{1}, \ldots, a_{2 v+2 k+1}$ be distinct complex numbers. If $\triangle(\theta)$ is a $b$ - cluster line of order $\infty$ of $W(z)$ (or $M(z)$, such that $\bar{E}\left(a_{j}, W(z)\right)=\bar{E}\left(a_{j}, M(z)\right)(j=$ $1, \ldots, 2 v+2 k+1)$ holds in an angular domain $\Omega(\theta-\delta, \theta+\delta)$, where $b$ is an arbitrary complex number and $\delta$ is a sufficiently small positive number, then $W(z) \equiv M(z)$.

From Theorem 1 we can get the following two corollaries.
Corollary 1 Suppose that $W(z), M(z)$ and $a_{1}, \ldots, a_{2 v+2 k+1}$ satisfy the hypothesis of Theorem 1. If $\triangle(\theta)$ is a Borel direction of order $\infty$ of $W(z)$ (or $M(z)$ ), such that $\bar{E}\left(a_{j}, W(z)\right)=$ $\bar{E}\left(a_{j}, M(z)\right)(j=1, \ldots, 2 v+2 k+1)$ holds in an angular domain $\Omega(\theta-\delta, \theta+\delta)$, where $\delta$ is a sufficiently small positive number, then $W(z) \equiv M(z)$.

Corollary 2 Let $W(z)$ and $M(z)$ be two $v$-valued irreducible algebroidal functions, $a_{1}, \ldots, a_{4 v+1}$ be distinct complex numbers. If $\triangle(\theta)$ is a b-cluster line (or a Borel direction) of order $\infty$ of $W(z)$ (or $M(z)$ ), such that $\bar{E}\left(a_{j}, W(z)\right)=\bar{E}\left(a_{j}, M(z)\right)(j=1, \ldots, 4 v+1)$ holds in an angular domain $\Omega(\theta-\delta, \theta+\delta)$, where $b$ is an arbitrary complex number and $\delta$ is a sufficiently small positive number, then $W(z) \equiv M(z)$.

Theorem 2 Suppose that $W(z), M(z)$ and $a_{1}, \ldots, a_{2 v+2 k+1}$ satisfy the hypothesis of Theorem 1. If $\triangle(\theta)$ is a b-cluster line of order $\rho(r)$ of $W(z)$ (or $M(z)$ ), such that $\bar{E}\left(a_{j}, W(z)\right)=$ $\bar{E}\left(a_{j}, M(z)\right)(j=1, \ldots, 2 v+2 k+1)$ holds in an angular domain $\Omega(\theta-\delta, \theta+\delta)$, where $b$ is an arbitrary complex number and $\delta$ is a sufficiently small positive number, then $W(z) \equiv M(z)$.

From Theorem 2 we also can get the following two corollaries.
Corollary 3 Suppose that $W(z), M(z)$ and $a_{1}, \ldots, a_{2 v+2 k+1}$ satisfy the hypothesis of Theorem 1. If $\triangle(\theta)$ is a Borel direction of order $\rho(r)$ of $W(z)$ (or $M(z)$ ), such that $\bar{E}\left(a_{j}, W(z)\right)=$ $\bar{E}\left(a_{j}, M(z)\right)(j=1, \ldots, 2 v+2 k+1)$ holds in an angular domain $\Omega(\theta-\delta, \theta+\delta)$, where $\delta$ is a sufficiently small positive number, then $W(z) \equiv M(z)$.

Corollary 4 Let $W(z)$ and $M(z)$ be two $v$-valued irreducible algebroidal functions, $a_{1}, \ldots, a_{4 v+1}$ be distinct complex numbers. If $\triangle(\theta)$ is a b-cluster line (or a Borel direction) of order $\rho(r)$ of $W(z)($ or $M(z))$, such that $\bar{E}\left(a_{j}, W(z)\right)=\bar{E}\left(a_{j}, M(z)\right)(j=1, \ldots, 4 v+1)$ holds in an angular domain $\Omega(\theta-\delta, \theta+\delta)$, where $b$ is an arbitrary complex number and $\delta$ is a sufficiently small positive number, then $W(z) \equiv M(z)$.

## 2. Some Lemmas

Suppose $W(z)$ is a $v$-valued irreducible algebroidal function defined by (1). Its single valued domain is the connected Riemman surface $\widetilde{T_{z}}$. The point on the connected Riemman surface $\widetilde{T_{z}}$ is the regular function element $\widetilde{b}=\left\{\omega_{b, j}(z), B(b, r)\right\}\left(\omega_{b, j}(z)\right.$ denotes an analytic function in
the disc $B(b, r)=\{z| | z-b \mid<r\})$. There exists a path $\gamma \subset \widetilde{T_{z}}$ for any two regular function elements $\left(\omega_{b, j}(z), B(b, r)\right)$ and $\left(\omega_{a, t}(z), B(a, r)\right)$ to extend analytically to each other. We often write $W=W(z)=\left\{\omega_{j}(z), b\right\}_{j=1}^{v}$.

In [8] and [9], Sun and Gao have given the definitions of the addition, the negative element of two algebroidal functions, respectively.

Definition 5 Let $W(z)=\left\{\omega_{j}(z), b\right\}_{j=1}^{v}$ and $M(z)=\left\{m_{t}(z), b\right\}_{t=1}^{k}$ be $v$-valued and $k$-valued algebroidal functions, respectively. The sum of $W(z)$ and $M(z)$ is defined as

$$
\begin{aligned}
(W+M)(z) & =\left\{\left((\omega+m)_{j}(z), b\right)\right\}_{j=1}^{v k} \\
& =\left\{\left(\omega_{j}(z)+m_{t}(z), b\right) ; j=1, \ldots, v ; t=1, \ldots, k\right\}
\end{aligned}
$$

The negative element of $W(z)$ is the algebroidal function $-W(z)=\left\{-\omega_{j}(z), b\right\}_{j=1}^{v}$ defined by the equation

$$
\begin{aligned}
\psi^{-}(z, W) & =A_{v}(z)\left(W+\omega_{1}(z)\right)\left(W+\omega_{2}(z)\right) \cdots\left(W+\omega_{v}(z)\right) \\
& =A_{v}(z) W^{v}-A_{v-1}(z) W^{v-1}+\cdots+(-1)^{v} A_{0}(z)=0
\end{aligned}
$$

They also obtained the following result.
Lemma 1 The sum $(W+M)(z)$ of the $v$-valued algebroidal function $W(z)$ and the $k$-valued algebroidal function $M(z)$ is a $v k$-valued algebroidal function. The negative element $-W(z)$ of the $v$-valued algebroidal function $W(z)$ is also a $v$-valued algebroidal function.

From the above results, we can obtain the definition of the subtraction of two algebroidal functions as follows.

Definition 6 Let $W(z)=\left\{\omega_{j}(z), b\right\}_{j=1}^{v}$ and $M(z)=\left\{m_{t}(z), b\right\}_{t=1}^{k}$ be $v$-valued and $k$-valued algebroidal functions, respectively. The difference subtracting $M(z)$ from $W(z)$ is defined as

$$
\begin{aligned}
(W-M)(z) & =\left\{\left((\omega-m)_{j}(z), b\right)\right\}_{j=1}^{v k} \\
& =\left\{\left(\omega_{j}(z)-m_{t}(z), b\right) ; j=1, \ldots, v ; t=1, \ldots, k\right\}
\end{aligned}
$$

We also can obtain the following result.
Lemma 2 Let $W(z)$ and $M(z)$ be $v$-valued and $k$-valued algebroidal functions, respectively. The difference $(W-M)(z)$ is a $v k$-valued algebroidal function.

Lemma 3 Let $W(z)$ and $M(z)$ be $v$-valued and $k$-valued algebroidal functions, respectively. If 0 is not the pole of $W(z)$ and $M(z)$. Then

$$
T(r, W \pm M) \leq T(r, W)+T(r, M)+\log 2
$$

Remark This Lemma is Lemma 1 in [8].
Lemma 4 Let $W(z)$ and $M(z)$ be $v$-valued and $k$-valued algebroidal functions in the disc $|z|<1$, respectively. Suppose that $W(z)$ (or $M(z)$ ) is of infinite order, and $a_{1}, \ldots, a_{2 v+2 k+1}$ are distinct complex numbers. If $\bar{E}\left(a_{j}, W(z)\right)=\bar{E}\left(a_{j}, M(z)\right)(j=1, \ldots, 2 v+2 k+1)$ holds in the
disc $|z|<1$, then $W(z) \equiv M(z)$.
Proof Firstly, we may assume that $a_{j}(j=1, \ldots, 2 v+2 k+1)$ are all finite. By the second fundamental Theorem of algebroidal functions in the disc $|z|<1$, as found in [10], we get

$$
\begin{equation*}
(2 k+1) T(r, W)<\sum_{j=1}^{2 v+2 k+1} \bar{N}\left(r, W=a_{j}\right)+S(r, W) \tag{2}
\end{equation*}
$$

where $S(r, W)=O\{\log T(r, W)\}+O\left\{\log \frac{1}{1-r}\right\}$, possibly outside an exceptional set $E \subset[0,1)$ such that $\int_{E} \frac{d r}{1-r}<\infty$;

$$
\begin{equation*}
(2 v+1) T(r, M)<\sum_{j=1}^{2 v+2 k+1} \bar{N}\left(r, M=a_{j}\right)+S(r, M) \tag{3}
\end{equation*}
$$

where $S(r, M)=O\{\log T(r, M)\}+O\left\{\log \frac{1}{1-r}\right\}$, possibly outside an exceptional set $F \subset[0,1)$ such that $\int_{F} \frac{d r}{1-r}<\infty$.

Now assume, to the contrary, that $W(z) \not \equiv M(z)$. Then by the assumption that $\bar{E}\left(a_{j}, W(z)\right)=$ $\bar{E}\left(a_{j}, M(z)\right)$, we have

$$
\sum_{j=1}^{2 v+2 k+1} \bar{n}\left(r, W=a_{j}\right)=\sum_{j=1}^{2 v+2 k+1} \bar{n}\left(r, M=a_{j}\right) \leq \bar{n}\left(r, \frac{1}{W(z)-M(z)}\right)
$$

Hence we obtain

$$
\begin{aligned}
& \sum_{j=1}^{2 v+2 k+1} \bar{N}\left(r, W=a_{j}\right) \leq k \bar{N}\left(r, \frac{1}{W(z)-M(z)}\right) \\
& \sum_{j=1}^{2 v+2 k+1} \bar{N}\left(r, M=a_{j}\right) \leq v \bar{N}\left(r, \frac{1}{W(z)-M(z)}\right)
\end{aligned}
$$

Then using the first fundamental Theorem of algebroidal functions in the disc $|z|<1$ and Lemma 3, we have

$$
\sum_{j=1}^{2 v+2 k+1} \bar{N}\left(r, W=a_{j}\right) \leq k T\left(r, \frac{1}{W(z)-M(z)}\right) \leq k\{T(r, W)+T(r, M)\}+O(1)
$$

By the same reasoning, we have

$$
\sum_{j=1}^{2 v+2 k+1} \bar{N}\left(r, M=a_{j}\right) \leq v\{T(r, W)+T(r, M)\}+O(1)
$$

Therefore we obtain

$$
\begin{equation*}
v \sum_{j=1}^{2 v+2 k+1} \bar{N}\left(r, W=a_{j}\right)+k \sum_{j=1}^{2 v+2 k+1} \bar{N}\left(r, M=a_{j}\right) \leq 2 v k\{T(r, W)+T(r, M)\}+O(1) \tag{4}
\end{equation*}
$$

From (2), (3) and (4), we obtain

$$
\begin{equation*}
v T(r, W)+k T(r, M) \leq S(r, W)+S(r, M) \tag{5}
\end{equation*}
$$

Since $W(z)$ (or $M(z)$ ) is an algebroidal function of infinite order, (5) is a contradiction. So $W(z) \equiv M(z)$.

Now assume that one of the $a_{j}(j=1, \ldots, 2 v+2 k+1)$ is infinity. Without loss of generality, we assume $a_{2 v+2 k+1}=\infty$. Take any finite value $c$ such that $c \neq a_{j}(j=1, \ldots, 2 v+2 k)$. Set

$$
F(z)=\frac{1}{W(z)-c}, \quad G(z)=\frac{1}{M(z)-c}
$$

And put

$$
b_{j}=\frac{1}{a_{j}-c}(j=1, \ldots, 2 v+2 k), \quad b_{2 v+2 k+1}=0
$$

Then we have $\bar{E}\left(b_{j}, F(z)\right)=\bar{E}\left(b_{j}, G(z)\right)$. From the above proof, we have $F(z) \equiv G(z)$. Hence $W(z) \equiv M(z)$.

## 3. Proof of Theorems

Proof of Theorem 1 Without loss of generality, we may assume that $\triangle(\theta)$ is a $b$-cluster line of order $\infty$ of algebroidal function $W(z)$ and $\theta=0$. Set

$$
u(z)=\frac{z^{\frac{\pi}{2 \delta}}-1}{z^{\frac{\pi}{2 \delta}}+1}, z(u)=\left(\frac{1+u}{1-u}\right)^{\frac{2 \delta}{\pi}}
$$

Then they map $\Omega(-\delta, \delta)$ conformally on $|u|<1$. Setting $z=p e^{i \varphi}$ gives

$$
\begin{aligned}
|u(z)| & =\left|\frac{p^{\frac{\pi}{2 \delta}} \cos \frac{\pi \varphi}{2 \delta}-1+i p^{\frac{\pi}{2 \delta}} \sin \frac{\pi \varphi}{2 \delta}}{p^{\frac{\pi}{2 \delta}} \cos \frac{\pi \varphi}{2 \delta}+1+i p^{\frac{\pi}{2 \delta}} \sin \frac{\pi \varphi}{2 \delta}}\right| \\
& =\sqrt{\frac{p^{\frac{\pi}{\delta}}+1-2 p^{\frac{\pi}{2 \delta}} \cos \frac{\pi \varphi}{2 \delta}}{p^{\frac{\pi}{\delta}}+1+2 p^{\frac{\pi}{2 \delta}} \cos \frac{\pi \varphi}{2 \delta}}} \\
& =1-2 p^{-\frac{\pi}{2 \delta}}(1+o(1)) \cos \frac{\pi \varphi}{2 \delta} .
\end{aligned}
$$

Set $0<\delta^{\prime}<\delta, 0<\eta<2 \cos \frac{\pi \delta^{\prime}}{2 \delta}$. Then when $r$ is sufficiently large, we have

$$
y=1-\eta r^{-\frac{\pi}{2 \delta}}>\max \left\{\left|u\left(p e^{i \varphi}\right)\right|\left|0<p \leq r,|\varphi| \leq \delta^{\prime}\right\} .\right.
$$

Since $\Delta(0)$ is a $b$-cluster line of order $\infty$ of algebroidal function $W(z)$, there is a sequence of points $\left\{r_{n}\right\}$ such that for any given large $L(>0)$,

$$
n\left(r_{n}, \Omega\left(-\delta^{\prime}, \delta^{\prime}\right), W(z)=b\right)>r_{n}{ }^{L}
$$

Set $y_{n}=1-\eta r_{n}^{-\frac{\pi}{2 \delta}}$, then

$$
n\left(y_{n}, W(z(u))=b\right)>n\left(r_{n}, \Omega\left(-\delta^{\prime}, \delta^{\prime}\right), W(z)=b\right)>r_{n}^{L}
$$

Set $r_{n}^{\prime}=2 r_{n}, y_{n}^{\prime}=1-\eta r_{n}^{\prime-\frac{\pi}{2 \delta}}$, then

$$
y_{n}^{\prime}=1-\frac{1-y_{n}}{2^{\frac{\pi}{2 \delta}}}=y_{n}+\left(1-y_{n}\right)\left(1-2^{-\frac{\pi}{2 \delta}}\right)
$$

Hence

$$
\begin{aligned}
T\left(y_{n}^{\prime}, W(z(u))\right) & >N\left(y_{n}^{\prime}, W(z(u))=b\right)-B \\
& >\frac{1}{v} \int_{y_{n}}^{y_{n}^{\prime}} \frac{n(y, W(z(u))=b)}{y} \mathrm{~d} y-B \\
& >\frac{1}{v} n\left(y_{n}, W(z(u))=b\right) \log \frac{y_{n}^{\prime}}{y_{n}}-B
\end{aligned}
$$

$$
\begin{aligned}
& >A\left(1-y_{n}\right) r_{n}{ }^{L} \\
& >A\left(\frac{1}{1-y_{n}^{\prime}}\right)^{\frac{2 \delta}{\pi} L-1}
\end{aligned}
$$

where $A$ and $B$ are positive numbers, which may be different at different place. So we have

$$
\varlimsup_{y_{n}^{\prime} \rightarrow 1} \frac{\log T\left(y_{n}^{\prime}, W(z(u))\right.}{\log \frac{1}{1-y_{n}^{\prime}}} \geq \frac{2 \delta}{\pi} L-1
$$

Therefore $W(z(u))$ is an algebroidal function of infinite order in the disc $|u|<1$.
Since $\bar{E}\left(a_{j}, W(z)\right)=\bar{E}\left(a_{j}, M(z)\right)$ holds in the angular domain $\Omega(-\delta, \delta)$, we get $\bar{E}\left(a_{j}, W(z(u))\right)$ $=\bar{E}\left(a_{j}, M(z(u))\right)$ in $|u|<1$. So by Lemma 4, we obtain that $W(z(u)) \equiv M(z(u))$ holds in $|u|<1$, which leads to $W(z) \equiv M(z)$ in $\Omega(-\delta, \delta)$. Then by the uniqueness Theorem of analytic functions, we get $W(z) \equiv M(z)$ in the complex plane.

Proof of Theorem 2 Similar to the proof of Theorem 1, we may assume that $\triangle(\theta)$ is a $b$-cluster line of order $\rho(r)$ of algebroidal function $W(z)$ and $\theta=0$. Set

$$
u(z)=\frac{z^{\frac{\pi}{2 \delta}}-1}{z^{\frac{\pi}{2 \delta}}+1}, z(u)=\left(\frac{1+u}{1-u}\right)^{\frac{2 \delta}{\pi}}
$$

Since $\Delta(0)$ is a $b$-cluster line of order $\rho(r)$ of algebroidal function $W(z)$, there is a sequence of points $\left\{r_{n}\right\}$ such that for any given $\varepsilon>0$

$$
n\left(r_{n}, \Omega\left(-\delta^{\prime}, \delta^{\prime}\right), W(z)=b\right)>U^{1-\varepsilon}\left(r_{n}\right)
$$

Set $y_{n}=1-\eta r_{n}^{-\frac{\pi}{20}}$, then

$$
n\left(y_{n}, W(z(u))=b\right)>n\left(r_{n}, \Omega\left(-\delta^{\prime}, \delta^{\prime}\right), W(z)=b\right)>U^{1-\varepsilon}\left(r_{n}\right)
$$

Set $r_{n}^{\prime}=2 r_{n}, y_{n}^{\prime}=1-\eta r_{n}^{\prime-\frac{\pi}{2 \delta}}$, then

$$
y_{n}^{\prime}=1-\frac{1-y_{n}}{2^{\frac{\pi}{2 \delta}}}=y_{n}+\left(1-y_{n}\right)\left(1-2^{-\frac{\pi}{2 \delta}}\right)
$$

Hence

$$
\begin{aligned}
T\left(y_{n}^{\prime}, W(z(u))\right) & >N\left(y_{n}^{\prime}, W(z(u))=b\right)-B \\
& >\frac{1}{v} \int_{y_{n}}^{y_{n}^{\prime}} \frac{n(y, W(z(u))=b)}{y} \mathrm{~d} y-B \\
& >\frac{1}{v} n\left(y_{n}, W(z(u))=b\right) \log \frac{y_{n}^{\prime}}{y_{n}}-B>A\left(1-y_{n}\right) U^{1-\varepsilon}\left(r_{n}\right) \\
& =A \eta r_{n}^{-\frac{\pi}{2 s}} U^{1-\varepsilon}\left(r_{n}\right)
\end{aligned}
$$

where $A$ and $B$ are positive numbers, which may be different at different place. So we have

$$
\varlimsup_{y_{n}^{\prime} \rightarrow 1} \frac{\log T\left(y_{n}^{\prime}, W(z(u))\right.}{\log \frac{1}{1-y_{n}^{\prime}}} \geq \varlimsup_{y_{n}^{\prime} \rightarrow 1} \frac{\log A \eta r_{n}^{-\frac{\pi}{2 \delta}} U^{1-\varepsilon}\left(r_{n}\right)}{\log \frac{\left(2 r_{n}\right)^{\frac{\pi}{2 \delta}}}{\eta}}=\infty
$$

Therefore $W(z(u))$ is an algebroidal function of infinite order in the disc $|u|<1$. Then by the similar reasoning as in the proof of Theorem 1 , we get $W(z) \equiv M(z)$ in the complex plane.

## References

[1] HE Yuzan, XIAO Xiuzhi. Algebroidal Function and Ordinary Differential Equations.[M]. Beijing: Science Press, 1988. (in Chinese)
[2] HIONG K L. Sur les fonctions entières et les fonctions méromorphes d'ordre infini [J]. J. Math. Pures Appl., 1935, 14: 233-308.
[3] VALIRON G. Sur quelques propriétés des fonctions algébrö̈des [J]. C. R. Math. Acad. Sci. Paris, 1929, 189: 729-824.
[4] HE Yuzan. On the algebroid functions and their derivatives (II) [J]. Acta Math. Sinica, 1965, 15: 500-510.
[5] HE Yuzan. On the multiple values of algebroid functions [J]. Acta Math. Sinica, 1979, 22(6): 733-742. (in Chinese)
[6] YI Hongxun. On the multiple values and uniqueness of algebroid functions [J]. J. Engineering Math., 1991, 8: 1-8.
[7] YI Hongxun, YANG C. C. Uniqueness Theory of Meromorphic Functions [M]. Beijing: Science Press, 1995.
[8] SUN Daochun; GAO Zongsheng. Theorems for algebroid functions [J]. Acta Math. Sinica (Chin. Ser.), 2006, 49(5): 1027-1032. (in Chinese)
[9] SUN Daochun; GAO Zongsheng. Uniqueness theorem for algebroidal functions [J]. J. South China Normal Univ. Natur. Sci. Ed., 2005, 3: 80-85. (in Chinese)
[10] TODA N. Sur les directions de Julia et de Borel des fonctions algebroides [J]. Nagoya Math. J., 1969, 34: 1-23.


[^0]:    Received March 29, 2008; Accepted January 5, 2009
    Supported by the National Natural Science Foundation of China (Grant No. 10471048) and the Research Fund of the Doctoral Program of Higher Education (Grant No. 20050574002).

    * Corresponding author

    E-mail address: liuhuifang73@sina.com (H. F. LIU)

