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Abstract For A C Z,, and n € Zp,, let 0a(n) be the number of solutions of equation n =
z+y,z,y € A. Given a positive integer m, let R,, be the least positive integer r such that there
exists a set A C Z,, with A+ A = Z,, and ca(n) < r. Recently, Chen Yonggao proved that all
R, < 288. In this paper, we obtain new upper bounds of some special type Ry,2.
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1. Introduction

Given a set A C N, let 04(n) be the number of ordered pairs (a,a’) € A x A such that
a+a’ = n. Erdés and Turédn [4] conjectured that if c4(n) > 1 for all n > ng, then o4 (n) must be
unbounded. This conjecture has attracted much attention since 1941. To our regret, no serious
advance has been made. Erdds-Turdn conjecture seems to be extremely difficult. While this
famous conjecture is still an unsolved problem, a natural related question which has been raised
is: in which abelian groups or semigroups is the analogue of this conjecture valid? Pus [6] first
established that the analogue of Erdds-Turan conjecture fails to hold in some abelian groups.
For related problems, see [2, 3, 5].

For A,B C Z,, and n € Z,,, let 04, 5(n) be the number of solutions of equation n = = + v,
x €A, y€ B. Let 04(n) = 04,4(n). For each positive integer m, let Ruzsa number R,, be the
least positive integer r such that there exists a set A C Z,, with A+ A = Z,, and o4(n) < r.
Based on Ruzsa’s method [7], Tang and Chen [8] showed that the analogue of Erdds-Turdn
conjecture fails to hold in (Z,,, +), namely, for any sufficiently large integer m, R,, < 768. In [9],
Tang and Chen showed that R,, < 5120 for any natural number m. Recently, Chen [1] improved
the previous upper bounds to R,, < 288 for any positive integer m and Ry,> < 48 for any prime
D.

In this paper, the following results are proved.
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Theorem Let k be a positive integer, p > 7 be a prime, and let T' C Z such that T + T contains

at least k 4+ 1 consecutive integers. Then

—+o0

Ry <16 - 018X Z max{or(kw+m —1),00(kw +m)}.

Corollary 1 Let k > 2 be a positive integer, p > 7 be a prime, and let T C {0,1,2,...,k — 1}

such that T'+ T contains at least k 4+ 1 consecutive integers. Then

Rype <16 - [ max l(maX{UT(m —1),0r(m)} + max{or(k+m —1),00(k +m)}).

Corollary 2 Let p be a prime. Then Rj,> < 96, Ry,» < 48 and Ryp> < 64 fork = 3,5,6,7,8,9, 10.

Remark 1 The method used here is based on Chen’s method as in the proof of Theorem 1 [1].
By employing Corollary 1, we can find the new upper bounds of Rjy> for some k£ > 11.

2. Proofs
For an integer k, let
Qr = {(u,ku?) :u € Z,} C Zf).

Lemma ([1]) Let p be an odd prime and m be a quadratic nonresidue of p with m+1 Z 0 (mod p),
3m +1# 0 (modp), m+3 # 0 (modp). Put B = Qi1 U Quims1) U Qam. Then for any
(¢,d) € Z2 we have 1 < op(c,d) < 16, where op(c,d) is the number of solutions of the equation
(¢,d)=x+vy, z,y € B.

Remark 2 By simple observation, we see that if p = 3,5, there does not exist the corresponding
m satisfying the above conditions. If p = 7, we can choose m = 3 or m = 5. Since the number of
quadratic nonresidue of modulo p is (p—1)/2 > 5 for p > 11, there exists a quadratic nonresidue
m such that m+1 # 0 (modp), 3m+1 % 0 (modp), m+ 3 £ 0 (mod p).

Proof of Theorem Assume that
{Li+1,...,l+k}CT+T.

In the following proofs, for (u,v) € B we always assume that 0 <u<p—-1,0<v <p—1.
FornEkaz,Ogngkp2—1, write n =c+kpd, [+ D)p<c<(+1+4+kp—1,c¢deZ.
By the lemma there exist (u1,v1), (uz,v2) € B such that
¢ =uy +ug (modp), d=wv;+ v (modp).
Put
c=u; +us+ sp, d=wv1 +ve +1tp, s,t€Z.
By ({+1)p<c<(+14+kp—1and 0 <u;+us <2p—2, we have
(I-=Dp+2<sp<(I+1+kp-1

Sol <s<|[+k. Since
{LI+1,...l+k}YCT+T,
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there exist t1,to € T such that s =t; + t5. Thus

n =c+ kpd = uy + us + sp + kpvy + kpvs
= (u1 + kpv1 + t1p) + (uz + kpvz + top) (mod kp?).

Let

Ay ={u+kpv|(u,v) € BY, A= |]J(A +1p),
teT

where
A +tp={a+tpla e A}

Then o4(n) > 1.
For n € Zyy2, by the definition of A, we have

UA(n) < Z 0A1+t1P>A1+t2P(n) = Z oA, (n - (tl + t2)p)

t1,to€T t1,to€T
—+oo

= 3" ortoa,(n—w)

t=—o0
Writen=¢ +kpd, 0< <kp—1,0<d <p-1,,d €Z. Let =mp+r,0<r<p-—1,
m,r €Z. Then 0 <m < k—1.
Assume that o4, (n — tp) > 1. Then there exist (u1,v1), (u2,v2) € B such that
n —tp = uy + kpvy + uz + kpvy (mod kp?).
That is,
mp + 1+ kpd —tp = uy + kpvy + ug + kpvy (mod kp?). (1)

Thus
r = uj + uz (modp).

Since 0 < 7, ug, ug < p—1, we have r = uy + u2 or r = uy + ug — p. If r = w3 + ug, then by (1)
we have

m+ kd —t = kvy + kv (mod kp). (2)
Then k|m — t. Let m —t = kw. By (2) we have
d' +w = vy + vy (modp).
If r = uy + ug — p, then by (1) we have
m—1+kd —t = kv, + kvg (mod kp). (3)
Then klm — 1 —t. Let m — 1 — ¢ = kw’. By (3) we have
d +w' =wv; + vy (modp).

Hence, by the lemma we have

+oo
oa(n) < Z or(m —kw) - #{r = u1 +uz,d +w = v1 + vz (mod p) }+

wW=—00
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+oo
Z or(m—1—kuw') - #{r =u; + us — p,d + w' = vy + ve (mod p)}
+oo
= Z or(m — kw) - #{r = uy + ua,d’ + w = v; + vy (mod p)}+
+oo
Z or(m—1—kw)-#{r =uy +uz — p,d +w = vy + ve (mod p)}
—+oo
< Z max{or(m — kw),or(m — 1 — kw)}op(r,d +w)
+oo
<16 Z max{or(m — kw),or(m — 1 — kw)}
—+oo
<16 - - .
<16 Ogrﬁgﬁ_lw;m max{or(kw +m — 1), or(kw +m)}

This completes the proof of the Theorem. O

Proof of Corollary 1 For any t1, to € T we have 0 < t1 +t3 <2k —2. Soop(t) =0fort <0
or t > 2k — 2. Now Corollary 1 follows from Theorem immediately.

Proof of Corollary 2 If k = 1, it is easy to verify R, < 96 holds for p = 2,3,5. As for
3<k<10,if p=2,3,5, let

A:{051725ap72p53p77(kp_1)p}

We have 1 < oa(n) < (k+1)p—1for all n € Zyy2. Then o4(n) <48 for k <8 and p = 2,3, 5,
and o4(n) <64 for k =9,10 and p = 2,3, 5.

Now we assume that p > 7.

k=1.

Let T = {0,1}. Then T+ T = {0,1,2} and o7 (0) = 1, o7(1) = 2, op(2) = 1. By Theorem
we have Rj2 < 96.

k=3,4.

Let 7 = {0,1,2}. Then T+ T = {0,1,2,3,4} and o7(0) = 1, op(1) = 2, 07(2) = 3,
or(3) =2, o7(4) = 1. By Corollary 1 we have Rz,> < 64 and Ry, < 48.

k=5,6.

Let T = {0,1,2,3}. Then T+ T = {0,1,2,3,4,5,6} and o7(0) = 1, op(1) = 2, o7(2) = 3,
or(3) =4, or(4) =3, o7(5) = 2, or(6) = 1. By Corollary 1 we have Ry,> < 64 (k=5,6).

k=17,8.

Let T = {0,1,3,4}. Then T+T = {0,1,2,3,4,5,6,7,8} and o7(0) = 1, o7(1) = 2, o7(2) = 1,
or(3) =2, or(4) =4, or(5) =2, or(6) = 1, op(7) = 2, op(8) = 1. By Corollary 1 we have
Ry2 <64 (E=17,8).

k=9,10.

Let T = {0,1,3,4,5}. Then T+ T = {0,1,2,3,4,5,6,7,8,9,10} and o7(0) = 1, op(1) = 2,
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O'T(2) = 1, O'T(3) = 2, O'T(4) = 4, O'T(5) = 4, UT(G) = 3, O'T(7) = 2, O'T(8) = 3, O’T(Q) = 2,
or(10) = 1. By Corollary 1 we have Ry,> < 64 (k =9,10).

This completes the proof of Corollary 2. O
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