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Abstract In this paper, we will make use of a new method to study the existence and unique-

ness for the solution of neutral stochastic functional differential equations with infinite delay

(INSFDEs for short) in the phase space BC((−∞, 0]; Rd). By constructing a new iterative

scheme, the existence and uniqueness for the solution of INSFDEs can be directly obtained only

under uniform Lipschitz condition, linear grown condition and contractive condition. Meanwhile,

the moment estimate of the solution and the estimate for the error between the approximate

solution and the accurate solution can be both given. Compared with the previous results, our

method is partially different from the Picard iterative method and our results can complement

the earlier publications in the existing literatures.
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1. Introduction

To the best of our knowledge, many dynamical systems depend not only on present and past

states but also involve derivative with delays as well as the functional of the past history. Neutral

functional differential equations are often used to describe the following systems:

d[x(t) − D(xt)]

dt
= f(t, xt), t ∈ [0, T ]. (1.1)

Taking the environmental disturbances into account, we are led to a neutral stochastic functional

differential equations with finite delay (NSFDEs for short):

d[x(t) − D(xt)] = f(t, xt)dt + g(t, xt)dB(t), t ∈ [0, T ]. (1.2)

As for some other dynamical properties of NSFDEs, we can refer to [6–8, 10–13]. By using the

well-known Picard iterative method, Mao [13] has discussed the existence and uniqueness for
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the solution of NSFDEs (1.2) under uniform Lipschitz condition, linear grown condition and

contractive condition. In [13], Mao firstly studied the existence and uniqueness on every small

interval into which the total time interval [0, T ] was felicitously subdivided, and then this result

was gradually extended to the total time interval [0, T ], that is, the existence and uniqueness

could indirectly be derived on the total interval [0, T ]. For the detailed statements, the readers

can refer to [13]. And, very recently, when introducing the phase space BC((−∞, 0]; Rd), the

existence and uniqueness for the solution of stochastic functional differential equations with

infinite delay can be gained without any great difficulties [1–2]. It should be pointed out that

although Zhou et al. [5] have directly obtained the existence and uniqueness for the solution of

INSFDEs on the total interval [0, T ] by utilizing the Picard iterative method, there are many

restrictive conditions to be imposed in their paper and these conditions are of great importance

to show their main results. Therefore, a problem to be solved is whether or not we can directly

yield the existence and uniqueness to INSFDEs on the total interval [0, T ] in the phase space

BC((−∞, 0]; Rd) only under uniform Lipschitz condition, linear grown condition and contractive

condition.

In this paper, motivated by the presentations above, we shall further study the existence

and uniqueness for the solution of INSFDEs in the phase space BC((−∞, 0]; Rd) by employing

a new iterative method. Firstly, we should emphasize that this method is partially different

from that used [13] and the key of this method is how to obtain the next one from the initial

value. To overcome this difficulty in the proof, applying the fixed point theorem, we firstly show

Lemma 3.4, and then can define the new iterative scheme to consider problem. We find that this

method is not only used to deal with the existence and uniqueness for the solution of INSFDEs,

but also to investigate the existence and uniqueness for NSFDEs only under uniform Lipschitz

condition, linear grown condition and contractive condition. So, the Picard iterative scheme is

not the optimal tool to study such problems. And what is more, we do not require any additional

restrictive conditions. Satisfactorily, we can also give the moment estimate of the solution and

the estimate for the error between the approximate solution and the accurate solution in this

paper.

2. Preliminaries

Let | · | denote the Euclidean norm in Rd. If A is a vector or a matrix, its transpose is de-

noted by AT ; If A is a matrix, for no confusion, its Frobenius norm is also represented by |A| =√
trace(ATA). Throughout this paper unless otherwise specified, let (Ω, F , P ) be a complete

probability space with a filtration {F t}t≥0 satisfying the usual conditions (i.e., it is right contin-

uous and F0 contains all P -null sets). Assume that B(t) is an m-dimensional standard Brownian

motion defined on this complete probability space, that is, B(t) = (B1(t), B2(t), . . . , Bm(t))T.

Let BC((−∞, 0]; Rd) be the family of bounded and continuous Rd-value function ϕ defined in

(−∞, 0] with norm ‖ϕ‖ = sup−∞<θ≤0 |ϕ(θ)|. And M
2((−∞, 0]; Rd) represents the family of all

F0-measurable, Rd-valued process ϕ(t) = ϕ(t, ω), t ∈ (−∞, 0] such that E
∫ 0

−∞
|ϕ(t)|2dt < ∞.

In this paper, we mainly establish the existence and uniqueness theorem for the following
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INSFDEs:

d[x(t) − D(xt)] = f(t, xt)dt + g(t, xt)dB(t), t ∈ [0, T ], (2.1)

where xt = {x(t + θ) : (−∞ < θ ≤ 0} can be regarded as a BC((−∞, 0]; Rd)-value stochastic

process and f : [0, T ]×BC((−∞, 0]; Rd)→ Rd and g : [0, T ]×BC((−∞, 0]; Rd)→ Rm×d are Borel

measurable. And the initial value of (2.1) is imposed as follows: x0 = ξ = {ξ(θ) : −∞ < θ ≤ 0}
is an F0-measurable, BC((−∞, 0]; Rd)-value random variable such that

ξ ∈ M
2((−∞, 0]; Rd). (2.2)

Definition 1 ([13]) An Rd-value stochastic process x(t) defined on −∞ < t ≤ T is called the

solution of (2.1) with the initial value (2.2), if it has the following properties:

(i) x(t) is continuous and for all 0 ≤ t ≤ T , xt is ℑt-adapted;

(ii) {f(t, xt)}∈ L
1([0, T ]; Rd) and {g(t, xt)} ∈ L

2([0, T ]; Rd×m);

(iii) x0 = ξ, for each 0 ≤ t ≤ T , x(t) = D(xt)+x(0)−D(x0)+
∫ t

0 f(s, xs)ds+
∫ t

0 g(s, xs)dB(s),

a.s.

Moreover, a solution x(t) is said to be unique, if any other solution x̃(t) is indistinguishable

from it, that is, P (x(t) = x̃(t), for all −∞ < t ≤ T )=1.

In order to guarantee the existence and uniqueness for the solution of INSFDEs (2.1) with

the initial value (2.2), some required conditions are assumed as follows:

(A1) (uniform Lipschitz condition) For all φ, ϕ ∈ BC((−∞, 0]; Rd) and t ∈ [0, T ], it then

follows that

|f(t, φ) − f(t, ϕ)|2 ∨ |g(t, φ) − g(t, ϕ)|2 ≤ K1‖φ − ϕ‖2, K1 > 0;

(A2) (linear grown condition) For all (t, ϕ) ∈ [0, T ]× BC((−∞, 0]; Rd), it then follows that

|f(t, ϕ)|2 ∨ |g(t, ϕ)|2 ≤ K2(1 + ‖ϕ‖2), K2 > 0;

(A3) (contractive condition) There exists a positive constant κ ∈ (0, 1) such that

|D(ϕ) − D(φ)| ≤ κ‖ϕ − φ‖,

for all ϕ, φ ∈ BC((−∞, 0]; Rd).

Here, we define a space BT which is the set of all functions ξ(t, ω) : (−∞, T ] × Ω → Rd

satisfying the condition: ξ(t, ω) is measurable in ω for each fixed t ∈ (−∞, T ] and is bounded

and continuous in t for a.e. fixed ω ∈ Ω. And with its norm:

‖ξ(t, ω)‖BT
= {E( sup

t∈(−∞,T ]

|ξ(t, ω)|2)} 1

2 .

It is easily verified that the space BT is a Banach space with this norm ‖ · ‖BT
, the reader can

refer to [3, 4, 9].

3. Main results

Lemma 3.1 ([13]) For any a, b ≥ 0 and α ∈ (0, 1), we have

(a + b)2 ≤ a2

α
+

b2

1 − α
.
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Lemma 3.2 ([13]) Let p ≥ 2 and g ∈ L
p([0, T ]; Rd×m) such that E

∫ T

0
|g(s)|pds < +∞. Then,

E
(

sup
0≤t≤T

|
∫ t

0

g(s)dB(s)|p
)
≤

( p3

2(p − 1)

) p

2

T
p−2

2 E

∫ T

0

|g(s)|pds.

In particular, if p = 2, it follows E(sup0≤t≤T |
∫ t

0 g(s)dB(s)|2) ≤ 4E
∫ T

0 |g(s)|2ds.

Lemma 3.3 Assume that the conditions (A2) and (A3) hold. If x(t) is a solution of INSFDEs

(2.1) with the initial value (2.2), then one yields

E( sup
−∞<t≤T

|x(t)|2) ≤
[ κ

√
κ + 4

(1 − κ)(1 −√
κ)

E‖ξ‖2 +
3K2(T + 4)T

(1 − κ)(1 −√
κ)

]
exp

( 3K2(T + 4)T

(1 − κ)(1 −√
κ)

)
.

(3.1)

In particular, x(t) (t ∈ (−∞, T ]) belongs to BT .

Proof For every integer n ≥ 1, define the stopping time:

τn = T ∧ inf{t ∈ [0, T ] : ‖xt‖ ≥ n}.

Obviously, as n → +∞, τn ↑ T a.s. Let xn(t) = x(t ∧ τn), for t ∈ (−∞, T ]. Then, for t ∈ [0, T ],

xn(t) satisfy the following equation:

xn(t) = D(xn
t ) + x(0) − D(x0) +

∫ t

0

f(s, xn
s )1[[0,τn]](s)ds +

∫ t

0

g(s, xn
s )1[[0,τn]](s)dB(s).

From Lemma 3.1 and the elementary inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), we obtain

|xn(t)|2 =|D(xn
t ) + x(0) − D(x0) +

∫ t

0

f(s, xn
s )1[[0,τn]](s)ds +

∫ t

0

g(s, xn
s )1[[0,τn]](s)dB(s)|2

≤1

κ
|D(xn

t ) − D(x0)|2 +
3

1 − κ
|x(0)|2 +

3t

1 − κ

∫ t

0

|f(s, xn
s )1[[0,τn]](s)|2ds+

3

1 − κ
|
∫ t

0

g(s, xn
s )1[[0,τn]](s)dB(s)|2

≤
√

κ‖xn
t ‖2 +

κ

1 −√
κ
‖x0‖2 +

3

1 − κ
|x(0)|2 +

3t

1 − κ

∫ t

0

|f(s, xn
s )1[[0,τn]](s)|2ds+

3

1 − κ
|
∫ t

0

g(s, xn
s )1[[0,τn]](s)dB(s)|2.

By Lemma 3.2, it is easily shown that

E( sup
0≤s≤t

|xn(s)|2) ≤
√

κE( sup
−∞<s≤t

|xn(s)|2) +
κ + κ

√
κ + 3

1 − κ
E‖ξ‖2+

3K2(T + 4)

1 − κ

∫ t

0

(1 + E( sup
−∞<r≤s

|xn(r)|2))ds.

Noticing that E(sup−∞<s≤t |xn(s)|2) ≤ E‖ξ‖2 + E(sup0≤s≤t |xn(s)|2), we have

E( sup
−∞<s≤t

|xn(s)|2) ≤
√

κE( sup
−∞<s≤t

|xn(s)|2) +
κ
√

κ + 4

1 − κ
E‖ξ‖2 +

3K2(T + 4)T

1 − κ
+

3K2(T + 4)

1 − κ

∫ t

0

E( sup
−∞<r≤s

|xn(r)|2)ds.
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E( sup
−∞<s≤t

|xn(s)|2) ≤ κ
√

κ + 4

(1 − κ)(1 −√
κ)

E‖ξ‖2 +
3K2(T + 4)T

(1 − κ)(1 −√
κ)

+

3K2(T + 4)

(1 − κ)(1 −√
κ)

∫ t

0

E( sup
−∞<r≤s

|xn(r)|2)ds.

From Gronwall inequality, we have

E( sup
−∞<s≤t

|x(s)|2) ≤
[ κ

√
κ + 4

(1 − κ)(1 −√
κ)

E‖ξ‖2 +
3K2(T + 4)T

(1 − κ)(1 −√
κ)

]
exp

( 3K2(T + 4)

(1 − κ)(1 −√
κ)

t
)
.

Let t = T . Then it follows that

E( sup
−∞<t≤T

|x(s)|2) ≤
[ κ

√
κ + 4

(1 − κ)(1 −√
κ)

E‖ξ‖2 +
3K2(T + 4)T

(1 − κ)(1 −√
κ)

]
exp

( 3K2(T + 4)T

(1 − κ)(1 −√
κ)

)
.

Consequently,

E( sup
−∞<t≤τn

|x(t)|2) ≤
[ κ

√
κ + 4

(1 − κ)(1 −√
κ)

E‖ξ‖2 +
3K2(T + 4)T

(1 − κ)(1 −√
κ)

]
exp

( 3K2(T + 4)T

(1 − κ)(1 −√
κ)

)
.

Finally, the required inequality (3.1) follows by letting n → +∞. The proof is completed. 2

To derive our main results in this paper, firstly, we define an operator Π : BT → BT , that is,

(Πx)(t) :=

{
D(xt) + x(0) − D(x0) +

∫ t

0
f(s)ds +

∫ t

0
g(s)dB(s), t ∈ [0, T ],

ξ ∈ BC((−∞, 0]; Rd), t ∈ (−∞, 0].

Lemma 3.4 Assume that the condition (A3) holds, then the operator Π : BT → BT has a

unique fixed point.

Proof We first verify the mean square continuity of the operator Π on [0, T ]. Let x ∈ BT ,

t′ ∈ (0, T ), and |h| be sufficiently small. Applying Lemma 3.1 and Hölder inequality, we obtain

E(|(Πx)(t′ + h) − (Πx)(t′)|2) =E|D(xt′+h) − D(xt′ ) +

∫ t′+h

t′
f(s)ds +

∫ t′+h

t′
g(s)dB(s)|2

≤κE( sup
−∞<θ≤0

|x(t′ + h + θ) − x(t′ + θ)|2)+

2h

1 − κ

∫ t′+h

t′
E|f(s)|2ds +

2

1 − κ
E|

∫ t′+h

t′
g(s)dB(s)|2.

Owing to the fact that E|
∫ t′+h

t′
g(s)dB(s)|2 =

∫ t′+h

t′
E|g(s)|2ds, it follows

E(|(Πx)(t′ + h) − (Πx)(t′)|2) ≤κE( sup
−∞<θ≤0

|x(t′ + h + θ) − x(t′ + θ)|2)+

2h

1 − κ

∫ t′+h

t′
E|f(s)|2ds +

2

1 − κ

∫ t′+h

t′
E|g(s)|2ds → 0,

as |h| → 0, the operator Π is indeed the mean square continuous on [0, T ].

Next, we show that Π(BT ) ⊂ BT . Let x ∈ BT . From (3.1), Lemmas 3.1 and 3.2, we have

E( sup
−∞<t≤T

|(Πx)(t)|2) ≤E( sup
0≤t≤T

|(Πx)(t)|2) + E( sup
−∞<θ≤0

|(Πx)(θ)|2)

≤
√

κE( sup
−∞<t≤T

|x(t)|2) +
κ
√

κ + 4

1 − κ
E‖ξ‖2+
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3T

1 − κ

∫ T

0

E|f(t)|2dt +
12

1 − κ

∫ T

0

E|g(t)|2dt < +∞.

Therefore, it implies that Π(BT ) ⊂ BT .

Finally, we prove that Π is a contractive map. In fact, for any x, y ∈ BT , throughout the

standard computation, we yield

E( sup
−∞<t≤T

|(Πx)(t) − (Πy)(t)|2) ≤ k2E( sup
−∞<t≤T

|x(t) − y(t)|2).

That is, the operator Π is contractive on BT . Thus, the operator Π has a unique fixed point.

The proof is completed. 2

Up to now, we can define the following iterative scheme:

xn(t) = ξ(t), t ∈ (−∞, 0], n = 0, 1, 2, . . . ,

x0(t) = ξ(0), t ∈ [0, T ],

xn(t) = D(xn
t ) + x(0) − D(x0) +

∫ t

0

f(s, xn−1
s )ds +

∫ t

0

g(s, xn−1
s )dB(s),

t ∈ [0, T ], n = 1, 2, . . . . (3.2)

Theorem 3.5 Assume that the conditions: (A1)–(A3) hold, then there exists a unique solution

x(t) to INSFDEs (2.1) with the initial value (2.2). Moreover, the solution x(t) (t ∈ (−∞, T ])

belongs to BT .

Proof Existence. Obviously, x0(t) ∈ BT (t ∈ (−∞, T ]). Moreover, we easily show that xn(t) ∈
BT , for t ∈ (−∞, T ] and n = 1, 2, . . . . In fact, from (3.2), Lemmas 3.1 and 3.2, it is easily

obtained that

|xn(t)|2 ≤
√

κ‖xn
t ‖2 +

κ

1 −√
κ
‖x0‖2 +

3

1 − κ
|x(0)|2 +

3K2T
∫ t

0 (1 + ‖xn−1
s ‖2)ds

1 − κ
+

3|
∫ t

0
g(s, xn−1

s )dB(s)|2
1 − κ

.

E( sup
0≤s≤t

|xn(s)|2) ≤
√

κE( sup
−∞<s≤t

|xn(s)|2) +
κ + κ

√
κ + 3

1 − κ
E‖ξ‖2+

3K2(T + 4)

1 − κ

∫ t

0

(1 + E( sup
−∞<r≤s

|xn−1(r)|2))ds.

In view of E(sup−∞<s≤t |xn(s)|2) ≤ E‖ξ‖2 + E(sup0≤s≤t |xn(s)|2), we have

E( sup
−∞<s≤t

|xn(s)|2) ≤
√

κE( sup
−∞<s≤t

|xn(s)|2) +
κ
√

κ + 4

1 − κ
E‖ξ‖2+

3K2(T + 4)T

1 − κ
+

3K2(T + 4)

1 − κ

∫ t

0

E( sup
−∞<r≤s

|xn−1(r)|2)ds.

E( sup
−∞<s≤t

|xn(s)|2) ≤ κ
√

κ + 4

(1 − κ)(1 −√
κ)

E‖ξ‖2 +
3K2(T + 4)T

(1 − κ)(1 −√
κ)

+

3K2(T + 4)

(1 − κ)(1 −√
κ)

∫ t

0

E( sup
−∞<r≤s

|xn−1(r)|2)ds.
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For any N ≥ 1, one yields

max
1≤n≤N

E( sup
−∞<s≤t

|xn(s)|2) ≤3K2(T + 4)T + κ
√

κ + 4

(1 − κ)(1 −√
κ)

E‖ξ‖2 +
3K2(T + 4)T

(1 − κ)(1 −√
κ)

+

3K2(T + 4)

(1 − κ)(1 −√
κ)

∫ t

0

max
1≤n≤N

E( sup
−∞<r≤s

|xn(r)|2))ds.

Applying Gronwall inequality gives

max
1≤n≤N

E( sup
−∞<s≤t

|xn(s)|2) ≤
(3K2(T + 4)T + κ

√
κ + 4

(1 − κ)(1 −√
κ)

E‖ξ‖2 +
3K2(T + 4)T

(1 − κ)(1 −√
κ)

)
×

exp
( 3K2(T + 4)T

(1 − κ)(1 −√
κ)

)
.

Since N is arbitrary, we deduce

E( sup
−∞<s≤t

|xn(s)|2) ≤
(3K2(T + 4)T + κ

√
κ + 4

(1 − κ)(1 −√
κ)

E‖ξ‖2+
3K2(T + 4)T

(1 − κ)(1 −√
κ)

)
exp

( 3K2(T + 4)T

(1 − κ)(1 −√
κ)

)

for all t ∈ [0, T ] and n = 1, 2, . . . . Hence, xn(t) ∈ BT , for all t ∈ (−∞, T ] and n = 0, 1, 2, . . . .

From (3.2), Lemmas 3.1 and 3.2 again, we get

|x1(t)|2 ≤
√

κ sup
−∞<s≤t

|x1(s)|2 +
κ + κ

√
κ + 3

1 − κ
‖ξ‖2 +

3T

1 − κ

∫ t

0

|f(s, x0
s)|2ds+

3

1 − κ
|
∫ t

0

g(s, x0
s)dB(s)|2,

sup
0≤s≤t

|x1(s)|2 ≤
√

κ sup
−∞<s≤t

|x1(s)|2 +
κ + κ

√
κ + 3

1 − κ
‖ξ‖2 +

3K2T

1 − κ

∫ t

0

(1 + ‖x0
s‖2)ds+

3

1 − κ
sup

0≤s≤t

|
∫ t

0

g(s, x0
s)dB(s)|2.

Hence, it is easily shown that

E( sup
−∞<t≤T

|x1(s)|2) ≤ κ
√

κ + 4

(1 − κ)(1 −√
κ)

E‖ξ‖2 +
3K2(T + 4)T

(1 − κ)(1 −√
κ)

(1 + E‖ξ‖2)

≡C1.

Next, we note that

|x1(t) − x0(t)|2 ≤κ sup
−∞<θ≤0

|x1(t + θ) − x(θ)|2 +
2K2T

2

1 − κ
(1 + ‖ξ‖2)+

2

1 − κ
|
∫ t

0

g(s, x0
s)dB(s)|2

≤
√

κ sup
−∞<s≤t

|x1(s)|2 +
κ
√

κ + κ

1 − κ
‖ξ‖2 +

2K2T
2

1 − κ
(1 + ‖ξ‖2)+

2

1 − κ
|
∫ t

0

g(s, x0
s)dB(s)|2.

E( sup
0≤s≤t

|x1(s) − x0(s)|2) ≤
√

κE( sup
−∞<s≤t

|x1(s)|2) +
κ
√

κ + κ

1 − κ
E‖ξ‖2+

2K2(T + 4)T

1 − κ
(1 + E‖ξ‖2).
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E( sup
−∞<t≤T

|x1(t) − x0(t)|2) =E( sup
0≤t≤T

|x1(t) − x0(t)|2)

≤
√

κC1 +
κ
√

κ + κ

1 − κ
E‖ξ‖2 +

2K2(T + 4)T

1 − κ
(1 + E‖ξ‖2)

≡C. (3.3)

Now, for all n ≥ 0 and t ∈ [0, T ], we claim that

E( sup
−∞<r≤t

|xn+1(r) − xn(r)|2) ≤ C
[2K2(T + 4)

(1 − κ)2

]n tn

n!
, (3.4)

where the constant C is defined in (3.3). We shall show this by induction. In view of (3.3), it

is easily seen that (3.4) holds when n = 0. Under the inductive assumption that (3.4) holds for

some n ≥ 0. We shall show that (3.4) still holds for n + 1. Note that

|xn+2(t) − xn+1(t)|2 =|D(xn+2
t ) − D(xn+1

t ) +

∫ t

0

(f(s, xn+1
s ) − f(s, xn

s ))ds+

∫ t

0

(g(s, xn+1
s ) − g(s, xn

s ))dB(s)|2

≤κ sup
−∞<s≤t

|xn+2(s) − xn+1(s)|2 +
2t

1 − κ

∫ t

0

|f(s, xn+1
s ) − f(s, xn

s )|2ds+

2

1 − κ
|
∫ t

0

(g(s, xn+1
s ) − g(s, xn

s ))dB(s)|2.

Using Lemma 3.2, we have

E( sup
−∞<s≤t

|xn+2(s) − xn+1(s)|2) =E( sup
0≤s≤t

|xn+2(s) − xn+1(s)|2)

≤κE( sup
−∞<s≤t

|xn+2(s) − xn+1(s)|2)+

2K1t

1 − κ

∫ t

0

E( sup
−∞<r≤s

|xn+1(r) − xn(r)|2)ds+

8K1

1 − κ

∫ t

0

E( sup
−∞<r≤s

|xn+1(r) − xn(r)|2)ds,

E( sup
−∞<s≤t

|xn+2(s) − xn+1(s)|2) ≤2K1(T + 4)

(1 − κ)2

∫ t

0

E( sup
−∞<r≤s

|xn+1(r) − xn(r)|2)ds

≤C
[2K2(T + 4)

(1 − κ)2

]n+1 tn+1

(n + 1)!
.

That is, (3.4) holds for n + 1. Hence, by induction, (3.4) holds for all n ≥ 0.

For any m > n ≥ 1, we obtain

‖xm − xn‖BT
=

[
E( sup

−∞<t≤T

|xm(t) − xn(t)|2)
] 1

2

≤
+∞∑

k=n

[
E( sup

−∞<t≤T

|xk+1(t) − xk(t)|2)
] 1

2

≤
+∞∑

k=n

[
C

(2K1(T + 4)

(1 − κ)2

)k T k

k!

] 1

2 → 0,
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as n → +∞. Thus, {xn(t)}n≥1 (t ∈ (−∞, T ]) is a Cauchy sequence in Banach space BT . Denote

the limit by x(t) ∈ BT (t ∈ (−∞, T ]). Now, letting n → +∞ in (3.2), we can derive the solution

of INSFDEs (2.1) with the initial value (2.2). In the other words, we have shown the existence.

Uniqueness. Let x1(t) and x2(t) (t ∈ (−∞, T ]) be both the solution of INSFDEs (2.1) with

the initial value (2.2). Then, by the similar computation, we yield

E( sup
−∞<s≤t

|x1(s) − x2(s)|2) =E( sup
0≤s≤t

|x1(s) − x2(s)|2)

≤2K1(T + 4)

(1 − κ)2

∫ t

0

E( sup
−∞<r≤s

|x1(r) − x2(r)|2)ds, for t ∈ [0, T ].

From Gronwall inequality, it follows

E( sup
−∞<s≤t

|x1(s) − x2(s)|2) = 0, for all t ∈ [0, T ].

Hence,

‖x1 − x2‖2
BT

= E( sup
−∞<t≤T

|x1(t) − x2(t)|2) = 0,

that is, the uniqueness is also proved. The proof is completed. 2

Theorem 3.6 Assume that the conditions of Theorem 3.5 hold. Let x(t) (t ∈ (−∞, T ]) be the

unique solution of INSFDEs (2.1) with the initial value (2.2) and {xn(t)}n≥1 (t ∈ (−∞, T ]) be

the iterative sequence defined by (3.2). Then, for n ≥ 1,

E( sup
−∞<t≤T

|xn(t) − x(t)|2) ≤ C exp
(4K1(T + 4)T

(1 − κ)2

)(2K1(T + 4)

(1 − κ)2

)n T n

n!
,

where the constant C is defined in Theorem 3.5.

Proof For n ≥ 1, similarly, we can compute

E( sup
−∞<s≤t

|xn+1(s) − x(s)|2) ≤ 2K1(T + 4)

(1 − κ)2

∫ t

0

E( sup
−∞<r≤s

|xn(r) − x(r)|2)ds. (3.5)

By virtue of (3.4) and (3.5), we deduce

E( sup
−∞<s≤t

|xn(s) − x(s)|2) =E( sup
−∞<s≤t

|xn(s) − xn+1(s) + xn+1(s) − x(s)|2)

≤2E( sup
−∞<t≤T

|xn(t) − xn+1(t)|2) + 2E( sup
−∞<s≤t

|xn+1(s) − x(s)|2)

≤C
(2K1(T + 4)

(1 − κ)2

)n T n

n!
+

4K1(T + 4)

(1 − κ)2
×

∫ t

0

E( sup
−∞<r≤s

|xn(r) − x(r)|2)ds.

Utilizing Gronwall inequality, one yields that

E( sup
−∞<s≤t

|xn(s) − x(s)|2) ≤ C exp
(4K1(T + 4)T

(1 − κ)2

)(2K1(T + 4)

(1 − κ)2

)n T n

n!
.

Hence, letting t = T , we have

E( sup
−∞<t≤T

|xn(t) − x(t)|2) ≤ C exp
(4K1(T + 4)T

(1 − κ)2

)(2K1(T + 4)

(1 − κ)2

)n T n

n!
.
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The proof is completed. 2

Remark 3.1 From the whole argument above, only under uniform Lipschitz condition, linear

grown condition and contractive condition, by constructing a new iterative scheme, we can

directly obtain the existence and uniqueness for the solution of INSFDEs (2.1) with the initial

value (2.2) on the total interval [0, T ] in the phase space BC((−∞, 0]; Rd). Thus, we improve

the results in [5]. Besides this, we can also give the moment estimate of the solution and the

estimate for the error between the approximate solution and the accurate solution in this paper.

Remark 3.2 Similarly to [1, 13], we could also investigate the existence and uniqueness for the

solution of INSFDEs in the phase space BC((−∞, 0]; Rd) on the entire interval [0, +∞).

Remark 3.3 In contrast to [13], we can also directly study the existence and uniqueness for the

solution of NSFDEs by employing this new iterative method. Hence, this method can complement

the shortage of Picard iterative method in [13].

Remark 3.4 We could also discuss the existence and uniqueness for the solution of INSFDEs

at the phase space BC((−∞, 0]; Rd) under the non-Lipschitz condition used in [2, 3].
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