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Abstract The paper investigates the sequential observations’ variance change in linear regres-

sion model. The procedure is based on a detection function constructed by residual squares of

CUSUM and a boundary function which is designed so that the test has a small probability

of false alarm and asymptotic power one. Simulation results show our monitoring procedure

performs well when variance change occurs shortly after the monitoring time. The method is

still feasible for regression coefficients change or both variance and regression coefficients change

problem.
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1. Introduction

The problem of testing for a parameter change has attracted much attention from many

researchers since the parameter change in the underlying model is occasionally observed in actual

practice. Change-point detection procedures fall into two categories: retrospective or a posteriori

tests and on-line, sequential or priori tests. The former tests study a fixed historical sample. The

latter tests, which our paper will use, is motivated by the work of Chu, Stinchcombe and White

[1] who proposed the following problem: Given a previously estimated model, the arrival of new

data invites the question: is yesterday’s model capable of explaining today’s data? By using this

idea, Berkes et al. [2] detected change-point in GARCH(p, q) models, Aue [3, 4] tested changes in

RCA(1) time series, Zeileis et al. [5] studied structural change in dynamic econometric models,

and Andreous and Ghysels [6] detected disruptions in financial markets.

The problem of testing for a variance change has become an important issue in time series

analysis since the variance is often interpreted as a risk in econometrics. There are many papers

considering this problem, for example, Inclán and Tiao [7], Csörgo and Horváth [8], Lee and
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Na [9], among many others. However, all these papers test for fixed historical samples. About

sequential tests of variance change problem, Carsoule et al. [10] detected normal random variable

data, Horváth et al. [11] investigated on-line detection of change in unconditional variance in

a conditionally heteroskedastic time series. The change point problem of linear regression as

a most useful and simple model was studied by many authors. For instance, Bai [12], Lee et

al. [13]. Horváth et al. [14, 15], Aue et al. [16] monitored change point of regression parameter

in linear model. However, few literature monitored variance change in linear regression model.

Motivated by this, in this paper we discuss sequential variance change monitoring problem in

linear regression model.

Our monitoring procedure is based on a detection function constructed by residual squares

of CUSUM and a boundary function which is designed so that the test has a small probability of

false alarm and asymptotic power one. Simulation results show that our monitoring procedure

performs well when change occurs shortly after the monitoring time. Such a formulation is, for

example, relevant to that there is a need to quickly detect a change in the variance of returns

which corresponds to a change in the behavior of the fluctuation of stock price or trading volume

from small to big, or vice versa. We also test our procedure’s performance for monitoring

regression coefficients change or both regression coefficients and variance change problem. The

simulation results show that our method is also sensitive for these change points.

The paper is organized as follows. In Section 2, we introduce our model assumptions and

sequential testing approach. The main results of the paper and some discussion about boundary

are given in Section 3. Section 4 reports simulation results. A simple conclusion is given in

Section 5 and all proofs of main results are gathered into Section 6.

2. Monitoring process and assumptions

We consider the linear regression model yi = xT
i βi + εi, 1 ≤ i < ∞, where xi is a p × 1

dimensional i.i.d. random vector, βi is a p× 1 dimensional random parameter vector and {εi} is

an i.i.d. error sequence with

Eεi = 0, Eε2
1 = σ2

0 < ∞, and Var(εi) = σ2
i < ∞. (1)

Since we are interested in monitoring variance change, we assume regression parameter as nui-

sance parameter and will not change, namely, βi = β0, 1 ≤ i < ∞.

First we give a “non-contamination assumption”, namely, there is no change in variance

during the first m observations, i.e.,

σ2
1 = · · · = σ2

m ≡ σ2
0 . (2)

Next, observing new data, we want to detect if a change occurs in the variance. That is, we want

to test the null hypothesis

H0 : σ2
i = σ2

0 , i = m + 1, m + 2, . . . , (3)

against the alternative

HA : there is a k∗ ≥ 1 such that σ2
i = σ2

0 , i = m + 1, m + 2, . . . , m + k∗,
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but σ2
i = σ2

A, i = m + k∗ + 1, m + k∗ + 2, . . . , with σ2
A 6= σ2

0 . (4)

The parameters σ2
0 , σ2

A and k∗, the so-called change-point, are assumed unknown.

The monitoring procedure presented in this paper uses a detector function Q(m, k) and a

boundary function g(m, k) which together define the stopping time

τ(m) = inf{k ≥ 1, |Q(m, k)| ≥ cg(m, k)}

(with the understanding that inf φ = ∞) which must satisfy

lim
m→∞

P{τ(m) < ∞} = α, under H0;

lim
m→∞

P{τ(m) < ∞} = 1, under HA. (5)

The index k labels the time elapsed after the monitoring has commenced. The probability

α ∈ (0, 1) controls the false alarm rate. In order to give our results, we need more assumptions

on the regression model:

{εi, 1 ≤ i < ∞} and {xi, 1 ≤ i < ∞} are independent. (6)

1

n

n
∑

i=1

xix
T
i −→ C > 0, a.s. (7)

3. Main results

From initial observations x1, . . . , xm, let

β̂m = (

m
∑

i=1

xix
T
i )−1

m
∑

j=1

xjyj

be the ordinary least squares estimator at time m. Then the resduials are

ε̂i = yi − xT
i β̂m, 1 ≤ i < ∞. (8)

We use the CUSUM of residual squares as the monitoring function

Q(m, k) =

m+k
∑

i=m+1

(ε̂2
i − θ̂2

m)

and

g(m, k) = m1/2(1 +
k

m
)(

k

m + k
)γ , 0 ≤ γ <

1

2

as our boundary function, in which θ̂2
m = m−1

∑m
i=1

ε̂2
i . Then we have following theorems.

Theorem 1 Assume (1), (6) and (7) hold. Then under the null hypothesis (i.e., (2)) we have

lim
m→∞

P
{

sup
1≤k<∞

|Q(m, k)|
σg(m, k)

≤ c
}

= P
{

sup
0≤t≤1

|W (t)|
tγ

≤ c
}

, (9)

where {W (t), 0 ≤ t < ∞} denotes a Wiener process, and c = c(α).

Theorem 2 Assume (1), (6) and (7) hold. Then under the alternative hypothesis (i.e., (3)) we
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have

lim
m→∞

sup
1≤k<∞

|Q(m, k)|
σg(m, k)

p−→ ∞. (10)

Since σ is unknown in practice, we could replace it by estimator

σ̂2 = m−1

m
∑

i=1

ε̂4
i − (m−1

m
∑

i=1

ε̂2
i )

2.

One can easily prove that

σ̂
p−→ σ. (11)

Then from the Slutsky theorem, the assertions of Theorems 1 and 2 still hold when σ is replaced

by σ̂.

The choice of the boundary function in sequential test is traditionally based on the mini-

mization of the average detection delay of the average run length (ARL). The paper’s boundary

b(t) = (1 + t)(t/(1 + t))γ is similar to Horváth et al. [14] and other related papers’. Chu et al. [1]

and Carsoule [10] used b1(t) =
√

t(a2 + log t) as their boundary, where t ≥ 1 and a2 = 7.78

and 6.25 for nominal level α = 0.05, 0.1, respectively. For dynamic econometric model, Zeileis

et al. [5] suggested boundary b2(t) = λ
√

log+(1 + t), where λ relies on the monitoring horizon.

Although the papers’ asymptotic distribution itself is not a Wiener process, in fact according to

the conclusion

{W 0(t), t > 1} d
= {(t − 1)W (

t

t − 1
), t > 1},

and a simple computation [10], we also could use Chu’s [1] boundary as our monitoring boundary.

Since boundary b2(t) is defined for “closed end” stopping rules, and our stopping rule is an “open

ended” problem, we use finite sample simulation to compare monitoring performance just only

for boundary b(t) and b1(t).

4. Simulations

In this section, we illustrate the theory developed in the previous section to assess the finite

sample performance of our monitoring schemes by 2500 replications. We consider the model

yi = βxi + εi, and generate innovation data from i.i.d.N(0, 1) random variables. We compute

the empirical crossing probabilities under H0 for historical sample sizes m = 50, 100, 200 and

300. The monitoring horizon q is set to be two, four and eight times the historical sample size.

Table 1 reports the empirical sizes of four different boundaries for nominal level α = 0.05, 0.1,

respectively. Where b1, b2 and b3 denote to choose γ = 0, 0.25, 0.49 in our boundary respectively,

and b4 denotes to use Chu’s [1] boundary b1(t).

From Table 1 one can easily find, in all cases, except for the 5 percent test with γ = 0.49,

the empirical sizes do not exceed the nominal sizes as predicted by the theory in the previous

sections. Furthermore the empirical sizes even for big monitoring horizon are very small for

relative smaller γ. That is to say, if the monitoring horizon takes place over interval of fixed

length, then the probability of false rejection is very small and reduces while increasing historical

size m or choosing γ close to zero.
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q = 2m q = 4m q = 8m

α m b1 b2 b3 b4 b1 b2 b3 b4 b1 b2 b3 b4

50 5.09 0.95 0.01 0.1 5.74 1.65 0.02 0.07 5.75 1.9 0.05 0.225

100 4.31 0.22 0 0.01 5.22 0.6 0.07 0.15 5.38 0.9 0.09 0.86
5%

200 4.7 0.38 0 0 5.59 0.46 0.01 0.06 5.17 0.62 0.04 0.16

300 5.9 0.8 0 0 5.92 0.18 0 0.02 5.26 0.39 0 0.17

50 6.87 1.96 0.2 0.19 7.12 2.88 0.8 1.38 7.63 3.66 1.23 3.55

100 6.68 1.2 0.04 0.08 6.55 1.1 0.03 0.15 7.56 3.05 0.69 1.38
10%

200 7.47 0.82 0.04 0.05 7.23 0.89 0 0.06 9.56 1.52 0.34 0.65

300 7.49 0.61 0 0 7.22 0.74 0.04 0.08 7.55 1.55 0.11 0.31

Table 1 Empirical size

To study the finite sample power of the test procedure, we simulate a variance change from

1 to 2 at k∗ = 3, (since our monitoring procedure is symmetric, if there is a decrease change in

variance, there will be similar test power and delay time for same change time and change size.

We omit the simulation results here). When there is a change, we need to quickly give an alarm

(small average run length), so we set monitoring horizon q to be 1

4
, 1

2
and one times the historical

sample size. According to Table 2 we could easily find, when shift occurs at the beginning time of

monitoring procedure, it will be more sensitive to choose relatively bigger γ, and bigger historical

sample size gives higher asymptotic powers. It is clear to see that our boundary always performs

better than Chu’s in asymptotic power and delay time.

q = 1

4
m q = 1

2
m q = m

α m b1 b2 b3 b4 b1 b2 b3 b4 b1 b2 b3 b4

50 2.7 0.03 0 0 21.7 9.7 0.12 0 49.7 45.6 28.3 27.4

100 21.9 3.82 0 0 53.2 40.7 12.9 4.72 73.5 67.2 53.2 50
5%

200 55.3 33.9 0.21 0 74.4 63.2 42.2 34.8 86.1 80.4 69.6 65.9

300 67.7 48.1 12.2 0.6 82.3 72.2 53.7 47.1 91.4 85.9 76.6 73.1

50 4.34 0.72 0 0 26.1 19.1 1 0.46 54.5 52.6 38.6 34.4

100 30.1 10.7 0 0 58.6 49.7 26.7 15.8 75.8 71.7 59.6 54.9
10%

200 59.1 42.2 5.27 0 77 68.4 50.1 41.2 87.8 83.6 74.6 69.6

300 70.2 55.2 24.9 9.76 84.5 76.6 60.4 52.7 91.9 88 80.2 76.3

Table 2 Asymptotic power when variance changes from 1 to 2 at k
∗ = 3

Since regression coefficients, variance or both of these parameters in the model may change

in practical problems, we now test procedure’s performance for monitoring these changes by

simulation. To save the space, we just only report some results for nominal level α = 0.1. Table

3 gives the asymptotic power when regression coefficient β changes from 2 to 2.8 at k∗ = 3. The
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results show the procedure can also be used to monitor change point of regression coefficients,

but the alarm time will be longer, namely, it has bigger average run length. Table 4 presents the

simulation results when both variance changes from 1 to 2 and coefficient changes from 2 to 2.8

at k∗ = 3. In this case the procedure can get a similar asymptotic power by a smaller monitoring

delay time.

q = 1

2
m q = m q = 2m

m b1 b2 b3 b4 b1 b2 b3 b4 b1 b2 b3 b4

50 22.1 14.9 5.3 3.1 35.9 31.3 18.6 15.7 49.6 49.3 39.6 41.6

100 35.9 25.3 10.1 6.35 53.3 48.1 32.7 28.7 69.8 69.6 59.6 59.9

200 56.9 42.7 21.8 14.6 74.8 68.5 53.8 48.9 86.8 84.3 76.3 74.1

300 69.2 56.4 33.7 25.1 83.9 77.8 65.4 60.3 91.5 88.4 82.1 79.6

Table 3 Asymptotic power when regression coefficient changes from 2 to 2.8 at k
∗

q = 1

2
m q = 3

4
m q = m

m b1 b2 b3 b4 b1 b2 b3 b4 b1 b2 b3 b4

50 52.6 46.8 29.5 22.8 67.3 63.9 51.4 45.7 74.7 72.1 62.1 57.8

100 75.6 69.2 53.9 46.5 82.9 78.7 68.5 63.6 86.8 83.7 75.7 72.2

200 87.3 81.7 69.7 63.9 91.5 87.8 79.4 75.3 93.3 90.4 84.3 81.3

300 91.3 86.3 75.8 70.9 94.1 90.8 83.9 80.4 95.6 93.1 87.8 85.2

Table 4 Asymptotic power when both coefficient and variance change at k
∗ = 3

In summary, if a process is to be monitored for long time and type I error is to be avoided,

we could choose γ close to 0. On the other hand, if it is important to detect a change as

soon as possible and if this change can be expected to occur shortly after the beginning time of

monitoring and some false alarms is acceptable, then it is better to choose γ close to 0.5, and

for all of these case, a bigger history samples give a higher power. The procedure can also be

used to monitor regression coefficients change point or all of them, but delay time when there

just occurs coefficients change will be longer than when there only occurs variance change.

5. Conclusions

In this paper we proposed a sequential monitoring procedure to examine a structural break

in the variance of linear regression model with i.i.d. innovations. We showed through simulations

that our procedure has good empirical size, power properties and relatively small delay time when

change occurs at the early stage of monitoring and is still feasible when regression coefficients

occur break or both regression coefficients and variance change.

Testing for breaks is closely connected with model specification analysis as the forecasting.

Out-of-sample prediction is typically based on the maintained assumption of model (parame-

ter) stability. Sequential analysis is therefore a desirable tool when out-of-sample analysis is
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performed since it allows for real-time monitoring of prediction models. Moreover, monitoring

financial risk can be considered as a useful statistical result showing our method is useful. How-

ever, defining a boundary powerful for all monitoring time is still a hard job. Delay time of

monitoring and distribution of stopping times for this problem is meaningful and we will study

it in latter articles.

6. Proof of main results

Proof of Theorem 1 Since β̂m is the OLS of β0, we have that
√

m(β̂m − β0) = Op(1). (12)

From (8) we could easily find that

Q(m, k) =

m+k
∑

i=m+1

(ε̂2
i − θ̂2

m) =

m+k
∑

i=m+1

[εi − xT
i (β̂m − β0)]

2 − k

m

m
∑

i=1

[εi − xT
i (β̂m − β0)]

2

=
(

m+k
∑

i=m+1

ε2
i −

k

m

m
∑

i=1

ε2
i

)

+
(

m+k
∑

i=m+1

[xT
i (β̂m − β0)]

2 − k

m

m
∑

i=1

[xT
i (β̂m − β0)]

2

)

−

2
(

m+k
∑

i=m+1

(β̂m − β0)
Txiεi −

k

m

m
∑

i=1

(β̂m − β0)
Txiεi

)

.

Then

sup
1≤k<∞

|Q(m, k)|/{σg(m, k)} ≤ I1 + I2 + 2I3, (13)

where

I1 = sup
1≤k<∞

∣

∣

∣

m+k
∑

i=m+1

ε2
i −

k

m

m
∑

i=1

ε2
i

∣

∣

∣
/{σg(m, k)},

I2 = sup
1≤k<∞

∣

∣

∣

m+k
∑

i=m+1

[xT
i (β̂m − β0)]

2 − k

m

m
∑

i=1

[xT
i (β̂m − β0)]

2

∣

∣

∣
/{σg(m, k)},

I3 = sup
1≤k<∞

∣

∣

∣

m+k
∑

i=m+1

(β̂m − β0)
Txiεi −

k

m

m
∑

i=1

(β̂m − β0)
Txiεi

∣

∣

∣
/{σg(m, k)}.

By (7) and (12),

I2 ≤ sup
1≤k<∞

(

m+k
∑

i=m+1

||xi||2||β̂m − β0||2 +
k

m

m
∑

i=1

||xi||2||β̂m − β0||2
)2

/{σg(m, k)}

= sup
1≤k<∞

(

m+k
∑

i=1

||xi||2||β̂m − β0||2 +
m + k

m

m
∑

i=1

||xi||2||β̂m − β0||2
)2

/{σg(m, k)}

= Op(1) sup
1≤k<∞

2(m + k)/m

m1/2(1 + k
m )( k

m+k )γ
= op(1). (14)

By the central limit theorem and (6), we get as m → ∞ that

m
∑

i=1

xiεi = Op(m
1/2). (15)
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Then according to (12), (15) and proposition 6.1.1 of Brockwell and Davis [17] we have

I3 = sup
1≤k<∞

∣

∣

∣

m+k
∑

i=1

(β̂m − β0)
Txiεi −

m + k

m

m
∑

i=1

(β̂m − β0)
Txiεi

∣

∣

∣
/{σg(m, k)}

≤ sup
1≤k<∞

(∣

∣

∣

m+k
∑

i=1

(β̂m − β0)
Txiεi

∣

∣

∣
− m + k

m

∣

∣

∣

m
∑

i=1

(β̂m − β0)
Txiεi

∣

∣

∣

)

/{σg(m, k)}

= Op(1) sup
1≤k<∞

√

(m + k)/m + (m + k)/m

m1/2(1 + k
m )( k

m+k )γ
= op(1). (16)

By (1) we have

{
m+k
∑

i=m+1

(ε2
i − σ2

0), 1 ≤ k < ∞} and {
m

∑

i=1

(ε2
i − σ2

0)} are indenpendent for each m.

Hence by the functional center limit theorem we can find two independent Wiener processes

{W1,m(t)} and {W2,m(t)} such that

m−1/2

m+k
∑

i=m+1

(ε2
i − σ2

0)
d−→ σW1,m(

k

m
), m → ∞,

and

m−1/2

m
∑

i=1

(ε2
i − σ2

0)
d−→ σW2,m(1), m → ∞.

Then
m+k
∑

i=m+1

ε2
i −

k

m

m
∑

i=1

ε2
i

d−→ m1/2σ
(

W1,m(
k

m
) − k

m
W2,k(1)

)

,

which leads to

I1

d−→ sup
1≤t<∞

|W1(t) − tW2(1)|
(1 + t)( t

1+t )
γ

.

Berkes et al. [2] showed that for all m,

sup
1≤t≤∞

|W1(t) − tW2(1)|
(1 + t)( t

1+t )
γ

d−→ sup
1≤t≤1

|W (t)|
tγ

. (17)

Therefore, Theorem 1 follows immediately from (13), (14), (16) and (17). 2

Proof of Theorem 2 Let k̃ = k∗ + m. Then

Q(m, k̃)

m
=

1

m

(

m+k̃
∑

i=m+1

ε2
i −

k̃

m

m
∑

i=1

ε2
i

)

− 2

m

(

m+k̃
∑

i=m+1

(β̂m − β0)
Txiεi −

k̃

m

m
∑

i=1

(β̂m − β0)
Txiεi

)

+

1

m

(

m+k̃
∑

i=m+1

[xT
i (β̂m − β0)]

2 − k̃

m

m
∑

i=1

[xT
i (β̂m − β0)]

2

)

= I4 + I5 + I6. (18)

Since regression parameter as a nuisance parameter will not change, from the proof of Theorem

1 we have

I5 = − 2

m

(

m+k̃
∑

i=m+1

(β̂m − β0)
T

xiεi −
k̃

m

m
∑

i=1

(β̂m − β0)
T

xiεi

)

= op(1), (19)
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I6 =
1

m

(

m+k̃
∑

i=m+1

[xT
i (β̂m − β0)]

2 − k̃

m

m
∑

i=1

[xT
i (β̂m − β0)]

2
)

= op(1). (20)

By (1), (4) and the invariance principle, we have

I4 = m−1

(

m+k̃
∑

i=m+1

ε2
i −

k̃

m

m
∑

i=1

ε2
i

)

= m−1

(

m+k∗

∑

i=m+1

(ε2
i − σ2

0) +
m+k̃
∑

i=m+k∗+1

(ε2
i − σ2

A) − k̃

m

m
∑

i=1

(ε2
i − σ2

0)
)

+ (σ2
A − σ2

0)

= (σ2
A − σ2

0) + op(1). (21)

Combining (18)–(21), we conclude

lim inf
m→∞

|Q(m, k̃)|
m(1 + k/m)(k/(m + k))

γ > 0.

This completes the proof of Theorem 2. 2
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