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1. Introduction

The classical binomial inversion formula states that

an =

n
∑

k=0

(−1)k

(

n

k

)

bk ⇐⇒ bn =

n
∑

k=0

(−1)k

(

n

k

)

ak.

We say that a sequence {an} of complex numbers is self-inverse or invariant if

n
∑

k=0

(−1)k

(

n

k

)

ak = an, n ≥ 0.

Sun [1] and Wang [2] studied those self-inverse sequences and gave some results of self-inverse

sequences. For general self-inverse pairs

an =

n
∑

k=0

A(n, k)bk ⇐⇒ bn =

n
∑

k=0

A(n, k)ak,

we have the infinite lower triangle matrix A = (A(n, k))∞n,k=0 satisfies A2 = I. A sequence {an}

is called a general self-inverse sequence if it satisfies

an =

n
∑

k=0

A(n, k)ak, n ≥ 0,

where A = (A(n, k)) is an infinite lower triangle matrix and A2 = I. We denote Am =

(A(n, k))m
n,k=0, then we have A2

m = Im. Therefore, we get |Am|2 = (
∏m

i=0 A(i, i))2 = 1 for
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all m ≥ 0. Thus we see that the diagonal entries of the matrix A are non-zero. Let

pn(x) =
n

∑

k=0

A(n, k)xk, n ≥ 0.

Then pn(x) is exactly a polynomial of degree n for all n ≥ 0. Following the inverse relation, we

get

xn =

n
∑

k=0

A(n, k)pk(x), n ≥ 0.

If qm(x) =
∑m

k=0 qm,kxk is another polynomial, we denote qm(p(x)) =
∑m

k=0 qm,kpk(x). With

this notation, we have pn(p(x)) = xn for all n ≥ 0.

For the self-inverse pair

an =
n

∑

k=0

n!

k!

(

n − 1

k − 1

)

(−1)kbk ⇐⇒ bn =
n

∑

k=0

n!

k!

(

n − 1

k − 1

)

(−1)kak,

we know that

Ln(x) =

n
∑

k=0

n!

k!

(

n − 1

k − 1

)

(−1)kxk, n ≥ 0

is the Laguerre polynomials, and Ln(L(x)) = xn. The Laguerre polynomials are of binomial

type. A sequence of polynomials pn(x) (n ≥ 0), where pn(x) is exactly of degree n for all n, is

said to be binomial type if it satisfies the infinite sequence of identities

pn(x + y) =
∑

k≥0

(

n

k

)

pk(x)pn−k(y), n = 0, 1, 2, . . . .

Let

pn(x) =

n
∑

k=0

A(n, k)xk, n ≥ 0

be a sequence of polynomials of binomial type and pn(p(x)) = xn. A sequence {an} is called a

self-inverse sequence related to the sequence of polynomials pn(x) of binomial type if

an =

n
∑

k=0

A(n, k)ak, n ≥ 0.

Henceforth, we say “{an} is a self-inverse sequence related to pn(x)” rather than “{an} is a

self-inverse sequence related to the sequence of polynomials pn(x) of binomial type”.

In this paper, we study the self-inverse sequences related to sequences of polynomials of

binomial type. In order to render this work self-contained, we list some important results of

sequences of polynomials of binomial type in Section 2, but we omit the proofs which can be

found in [3]. In Section 3, we give some general results of the self-inverse sequences related to

sequences of polynomials of binomial type. Moreover, we study the self-inverse sequences related

to the Laguerre polynomials in Section 4.
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2. Fundamentals

In this section, we list the main results of polynomials of binomial type which we shall use

in next section. These polynomials were studied by Mullin and Rota [3].

First, we give some definitions in the theory of binomial enumeration.

Definition 1 A linear operator T which commutes with all shift operators is called a shift-

invariant operator, i.e., TEa = EaT.

Definition 2 A delta operator usually denoted by the letter Q, is a shift-invariant operator for

which Qx is a non-zero constant.

Delta operators possess many of the properties of the derivative operator D.

Definition 3 Let Q be a delta operator. A polynomial sequence pn(x) is called the sequence of

basic polynomials for Q if:

(1) p0(x) = 1;

(2) pn(0) = 0 whenever n > 0;

(3) Qpn(x) = npn−1(x).

It is not difficult to show that every delta operator has a unique sequence of basic polynomials

associated with it.

Now, we can give some general consequences of polynomials of binomial type as Lemmata.

These Lemmata can be found in [3].

Lemma 1 (a) If pn(x) is a basic sequence for some delta operator Q, then it is a sequence of

polynomials of binomial type. (b) If pn(x) is a sequence of polynomials of binomial type, then

it is a basic sequence for some delta operator.

Lemma 2 (Expansion Theorem) Let T be a shift-invariant operator, and let Q be a delta

operator with basic set pn(x). Then

T =
∑

k≥0

ak

k!
Qk,

where ak = [Tpk(x)]x=0.

Lemma 3 Let P be a ring of polynomials over a field K and Σ be the ring of shift-invariant

operators on P. Suppose that Q is a delta operator and F is the ring of formal power series in

the variable t over K. Then there exists an isomorphism from F onto Σ, which carries

f(t) =
∑

k≥0

ak

tk

k!
into

∑

k≥0

ak

k!
Qk.

Lemma 4 Let Q be a delta operator with basic polynomials pn(x), and let q(D) = Q. Let

q−1(t) be the inverse formal power series. Then

∑

n≥0

pn(x)

n!
un = exq−1(u).
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Lemma 5 If P and Q are delta operators with basic sequences pn(x) and qn(x), and expansions

P = p(D) and Q = q(D), then rn(x) = pn(q(x)) is the sequence of basic polynomials for the

delta operator R = p(q(D)).

Lemma 6 Let Q = g(D) be a delta operator with basic polynomials

pn(x) =
∑

k≥1

cn, kxk, n ≥ 1.

Then g = f−1, where

f(t) =
∑

k≥1

ck, 1
tk

k!
.

3. Main results

Throughout this section, let

pn(x) =
n

∑

k=0

A(n, k)xk, n ≥ 0 (1)

be of binomial type and satisfy pn(p(x)) = xn for all n. Using Lemma 1, we see that pn(x) is

a basic sequence for some delta operator Q. By Expansion Theorem and Lemma 3, we shall

denote Q = q(D), where

q(t) =
∑

k≥0

qk

tk

k!

is a formal power series, and the coefficients qk = [Qxk]x=0. Obviously, q0 = 0. Following the

definition of delta operator, we get q1 6= 0. Hence, a unique inverse formal power series q−1(t)

exists. We use Lemma 6 to get that

q−1(t) =
∑

k≥1

A(k, 1)
tk

k!
. (2)

By Lemma 5, we know that pn(p(x)) = xn is a basic sequence for the delta operator q(q(D)).

However, xn is the basic sequence for the derivative operator D. Thus we have q(q(t)) = t,

i.e., q(t) = q−1(t). Using Lemma 4, we get that pn(x) (n ≥ 0) have the following exponential

generating function:
∑

n≥0

pn(x)
tn

n!
= exq−1(t) = exq(t). (3)

From (1) and (3), we have

∑

n≥0

tn

n!

n
∑

k=0

A(n, k)xk =
∑

k≥0

xk
∑

n≥k

A(n, k)
tn

n!
=

∑

k≥0

xk (q(t))k

k!
.

Therefore, A(n, k) have a “vertical” generating function:

ϕk(t) =
∑

n≥k

A(n, k)
tn

n!
=

1

k!
(q(t))k. (4)
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Now we can give the main results of the self-inverse sequences related to sequences of poly-

nomials of binomial type.

For any sequence {an}, let the exponential generating function of {an} be

A(x) =
∑

n≥0

an

xn

n!
.

We have:

Theorem 1 {an} is a self-inverse sequence related to pn(x) if and only if A(x) = A(q(x)).

Proof Using the exponential generating function of {an}, we have

an =

n
∑

k=0

A(n, k)ak ⇐⇒

A(x) =
∑

n≥0

xn

n!

n
∑

k=0

A(n, k)ak =
∑

k≥0

ak

∑

n≥k

A(n, k)
xn

n!
=

∑

k≥0

ak

(q(x))k

k!
= A(q(x)).

Corollary 1 If {an} is a self-inverse sequence related to pn(x), then

am+1 =

m
∑

l=0

(

m

l

)

A(m − l + 1, 1)

l
∑

n=0

an+1A(l, n), m ≥ 0. (5)

Proof Differentiating the exponential generating function of {an}, we get

A′(x) =
∑

m≥0

am+1
xm

m!
.

On the other hand,

(A(q(x)))′ =
∑

n≥0

an+1
(q(x))n

n!
q′(x) =

∑

n≥0

an+1

∑

l≥0

A(l, n)
xl

l!
q′(x)

=
(

∑

l≥0

xl

l!

n
∑

l=0

an+1A(l, n)
)(

∑

k≥0

A(k + 1, 1)
xk

k!

)

=
∑

m≥0

xm

m!

m
∑

l=0

(

m

l

)

A(m − l + 1, 1)

l
∑

n=0

an+1A(l, n).

The result leads to Theorem 1, immediately. 2

Obviously, if {an} and {bn} are self-inverse sequences related to pn(x), then {αan + βbn} is

a self-inverse sequence related to pn(x), where α and β are arbitrary constants.

Sun [1] gave some transformation formulas for self-inverse sequences. Similarly, we have the

following theorem.

Theorem 2 Let {an} be a self-inverse sequence related to pn(x), and cn =
∑n

k=0

(

n

k

)

akbn−k.

Then {cn} is a self-inverse sequence related to pn(x) if and only if {bn} is a self-inverse sequence

related to pn(x).
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Proof Let C(x) =
∑

n≥0 cn
xn

n! and B(x) =
∑

n≥0 bn
xn

n! . Then

C(x) =
∑

n≥0

xn

n!

n
∑

k=0

(

n

k

)

akbn−k =
∑

k≥0

ak

xk

k!

∑

n≥k

bn−k

xn−k

(n − k)!
= A(x)B(x).

Because A(x) = A(q(x)), we have

C(x) = C(q(x)) ⇐⇒ B(x) = B(q(x)). 2

Now we give some methods by which we can create the self-inverse sequences related to pn(x).

Theorem 3 {an} is a self-inverse sequence related to pn(x) if and only if there exists a sequence

{λn} such that

an =

n
∑

k=0

A(n, k)λk + λn, n ≥ 0.

Proof Suppose that {an} is a self-inverse sequence related to pn(x). Then an =
∑n

k=0 A(n, k)ak.

Let λn = an

2 . We have
n

∑

k=0

A(n, k)
ak

2
+

an

2
=

an

2
+

an

2
= an.

Conversely, let Λ(x) =
∑

k≥0 λk
x

k

k! . Then

A(x) =
∑

n≥0

(

n
∑

k=0

A(n, k)λk + λn

)xn

n!
=

∑

k≥0

λk

∑

n≥k

A(n, k)
xn

n!
+

∑

n≥0

λn

xn

n!

=
∑

k≥0

λk

(q(x))k

k!
+

∑

n≥0

λn

xn

n!
= Λ(q(x)) + Λ(x).

Thus we have

A(q(x)) = Λ(q(q(x))) + Λ(q(x)) = Λ(x) + Λ(q(x)) = A(x). 2

Corollary 2 Let a0 = 0, a1 = A(1, 1)+1, and an = A(n, 1) (n ≥ 2). Then {an} is a self-inverse

sequence related to pn(x).

Proof Let λ0 = 0, λ1 = 1 and λn = 0 (n ≥ 2) in Theorem 3. 2

Corollary 3 Let an = pn(a) + an, where a is an arbitrary constant. Then {an} is a self-inverse

sequence related to pn(x).

Proof Let λn = an (n ≥ 0) in Theorem 3. 2

Theorem 4 Suppose {fn} is an arbitrary sequence, and let

an =

n
∑

l=0

(

n

l

)

fn−l

l
∑

k=0

A(l, k)fk.

Then {an} is a self-inverse sequence related to pn(x).
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Proof Let f(x) =
∑

k≥0 fk
xk

k! . Then

A(x) =
∑

n≥0

n
∑

l=0

(

n

l

)

fn−l

l
∑

k=0

A(l, k)fk

xn

n!
=

∑

m≥0

fm

xm

m!

∑

l≥0

xl

l!

l
∑

k=0

A(l, k)fk

=
∑

m≥0

fm

xm

m!

∑

k≥0

fk

∑

l≥k

A(l, k)
xl

l!
= f(x)

∑

k≥0

fk

(q(x))k

k!
= f(x)f(q(x)).

Moreover, we have

A(q(x)) = f(q(x))f(q(q(x))) = f(q(x))f(x) = A(x). 2

Corollary 4 Let a0 = 0, a1 = 0 and an = nA(n − 1, 1) (n ≥ 2). Then {an} is a self-inverse

sequence related to pn(x).

Proof Let f0 = 0, f1 = 1 and fn = 0 (n ≥ 2) in Theorem 4. 2

Corollary 5 Let an =
∑

l = 0n
(

n

l

)

pl(a)an−l, where a is an arbitrary constant. Then {an} is a

self-inverse sequence related to pn(x).

Proof Let fn = an (n ≥ 0) in Theorem 4. 2

Theorem 3 has an equivalent form:

Theorem 5 {an} is a self inverse sequence related to pn(x) if and only if there exists a function

f : Z → C such that

an =

n
∑

k=0

(

n

k

)

pn−k(1)pk(∆)f(0) + f(n) .

Proof Following the string of identities:

n
∑

k=0

(

n

k

)

pn−k(1)pk(∆)f(0) =
[(

n
∑

k=0

(

n

k

)

pn−k(1)pk(∆)
)

f(x)
]

x=0

= [pn(∆ + I)f(x)]x=0 = [pn(E)f(x)]x=0 = [

n
∑

k=0

A(n, k)Ekf(x)]x=0 =

n
∑

k=0

A(n, k)f(k),

we get the result. 2

The following theorem is shown by operator method.

Theorem 6 Suppose that rn(x) =
∑n

k=0 rn, kxk is a basic sequence for delta operator R = r(D).

And let qn(x) = rn(p(x)) =
∑n

k=0 qn, kxk. If {an} is a self-inverse sequence related to pn(x),

then we have the following identity:

n
∑

k=0

rn, kak =

n
∑

k=0

qn, kak.

Proof By Lemma 5, we know that qn(x) is a basic sequence for delta operator r(q(D)). Let T

be a linear operator such that Txn = an. Then

Tpn(x) = T

n
∑

k=0

A(n, k)xk =

n
∑

k=0

A(n, k)Txk =

n
∑

k=0

A(n, k)ak = an.
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Therefore, we have Txn = Tpn(x). If f(x) is a polynomial, then we get Tf(x) = Tf(p(x)) by

linearity. Let f(x) = rn(x). Immediately, we have

Trn(x) = Trn(p(x)) = Tqn(x),

i.e.,
n

∑

k=0

rn, kTxk =

n
∑

k=0

qn, kTxk.

The result follows Txk = ak. 2

4. Self-inverse sequences related to the Laguerre

The Laguerre polynomials

Ln(x) =

n
∑

k=1

n!

k!

(

n − 1

k − 1

)

(−1)kxk

is a basic sequence for the delta operator Q = q(D) = D
D−I

. If an =
∑n

k=1
n!
k!

(

n−1
k−1

)

(−1)kak +

a0 (n ≥ 1), we say that {an} is a self-inverse sequence related to Ln(x). From Theorem 1, we

have:

Proposition 1 {an} is a self-inverse sequence related to Ln(x) if and only if the exponential

generating function A(x) =
∑

n≥0 an
xn

n! satisfies A(x) = A( x
x−1 ).

Obviously, using Corollary 2, we have the sequence {an}, which satisfies a0 = a1 = 0 and

an = −n! (n ≥ 2), is a self-inverse sequence related to Ln(x). Moreover, by Corollary 3, the

sequence {an}, which satisfies a0 = 2 and

an = Ln(−1) + (−1)n =

n
∑

k=1

n!

k!

(

n − 1

k − 1

)

+ (−1)n =

n
∑

k=1

Ln, k + (−1)n

where Ln, k are known as the signless Lah numbers, is a self-inverse sequence related to Ln(x).

From Corollary 5, we have the sequence {an}, which satisfies a0 = 1 and

an =
n

∑

l=0

(

n

l

)

Ll(−1)(−1)n−l =
n

∑

l=1

(

n

l

)

(−1)n−l

l
∑

k=1

Ll, k + (−1)n,

is also a self-inverse sequence related to Ln(x).

Applying Theorem 2, we have the following proposition.

Proposition 2 Let c0 = c1 = 0 and cn = −
∑n

k=2
n!

(n−k)! bn−k. Then {cn} is a self-inverse

sequence related to Ln(x) if and only if {bn} is a self-inverse sequence related to Ln(x).

Proof Let a0 = a1 = 0 and an = −n! (n ≥ 2) in Theorem 2. 2

For the Laguerre polynomials Ln(x), Theorems 3, 4 and 5 can be restated as follows.

Proposition 3 {an} is a self-inverse sequence related to Ln(x) if and only if there exists a
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sequence {λn} such that a0 = 2λ0 and

an =

n
∑

k=1

n!

k!

(

n − 1

k − 1

)

(−1)kλk + λn, n ≥ 1.

Proposition 4 Suppose {fn} is an arbitrary sequence, and let a0 = f2
0 and

an =

n
∑

l=1

(

n

l

)

fn−l

l
∑

k=1

l!

k!

(

l − 1

k − 1

)

(−1)kfk + fnf0, n ≥ 1.

Then {an} is a self-inverse sequence related to Ln(x).

Proposition 5 {an} is a self-inverse sequence related to Ln(x) if and only if there exists a

function f : Z → C such that

an =

n
∑

k=0

(

n

k

)

Ln−k(1)Lk(∆)f(0) + f(n).

By Corollary 1 and Theorem 6, we get:

Proposition 6 If {an} is a self-inverse sequence related to Ln(x), then we have the following

identities:

am+1 = −

m
∑

l=1

(

m

l

)

(m − l + 1)!

l
∑

n=1

an+1
l!

n!

(

l − 1

n − 1

)

(−1)n − (m + 1)!a1, m ≥ 1, (6)

and
n−1
∑

k=0

(

2n

k

)

(−1)n−k(n − 1)kan−k =

n−1
∑

k=0

(

−n

k

)

(−1)k(n − 1)kan−k, n ≥ 1. (7)

Proof (6) holds from Corollary 1.

Using Theorem 6, we can get (7). By the closed forms for basic polynomials [3], we have that

the delta operator r(D) = D − D2 has a unique sequence of basic polynomials r0(x) = 1 and

rn(x) =

n−1
∑

k=0

(

−n

k

)

(−1)k(n − 1)kxn−k, n ≥ 1.

Denote by qn(x) the basic sequence for delta operator r(q(D)) = − D
(D−I)2 . Then we have

qn(x) =

n−1
∑

k=0

(

2n

k

)

(−1)n−k(n − 1)kxn−k.

(7) is immediate from Theorem 6. 2
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