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Abstract Let I be the 2 × 2 identity matrix, and M a 2 × 2 dilation matrix with M
2 = 2I .

First, we present the correlation of the scaling functions with dilation matrix M and 2I . Then

by relating the properties of scaling functions with dilation matrix 2I to the properties of scaling

functions with dilation matrix M , we give a parameterization of a class of bivariate nonseparable

orthogonal symmetric compactly supported scaling functions with dilation matrix M . Finally,

a construction example of nonseparable orthogonal symmetric and compactly supported scaling

functions is given.
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1. Introduction

In recent years, nonseparable wavelets, especially bivariate nonseparable wavelets, have at-

tracted the interest of many mathematicians. The details can be found in [1–6]. Although

separable wavelet bases have a lot of advantages, they have a number of drawbacks. They are

so special that they have very little design freedom, and separability imposes an unnecessary

product structure on the plane which is artificial for natural images. One way to avoid this is

through the construction of nonseparable wavelets.

Nonseparable wavelets have enough degrees of freedom to construct bases which have several

properties simultaneously such as orthogonality, symmetry and compact support which is not

possible for tensor-product scalar wavelets except for the Harr tensor. It is well-known that

the construction of nonseparable scaling functions with dilation matrix 2I is mature [2–4, 7]. Lai

and Roach [2] presented the complete solution of all bivariate nonseparable orthogonal symmetric

and compactly supported scaling functions with dilation matrix 2I and filter size up to 6 × 6.

Currently, it turns out that many researchers proceed to study the scaling function with dilation

matrix M satisfying M2 = 2I (see [1, 5, 6]). Such dilation matrices make the MRA involve

a unique wavelet which is easy to construct from the scaling function. Despite the success in
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constructing bivariate nonseparable orthogonal wavelets with arbitrarily high smoothness in [1],

the nonseparable orthogonal symmetric and compactly supported wavelet is still a challenging

problem. Obviously, if the dilation matrix M satisfies M2 = 2I, then a nonseparable orthogonal

symmetric scaling function with dilation matrixM must be a nonseparable orthogonal symmetric

scaling function with dilation matrix 2I. But the converse is not true.

In this paper, we first give the sufficient condition that a scaling function with dilation matrix

2I is also a scaling function with dilation matrix M . Then we study the nonseparable scaling

functions with dilation matrix M by the nonseparable scaling functions with dilation matrix

2I. Based on [2], we construct a complete parameterization of orthogonal symmetric scaling

functions with dilation matrix M and filter size up to 6 × 6. The wavelet is easy to construct

from the scaling function, so we deal mainly with the scaling functions.

2. Preliminaries and main results

Let M be an expanding 2 × 2 matrix, with integer entries such that | detM |= 2, and

the module of all eigenvalues are greater than 1. The key ingredients to an MRA with such a

dilation matrix M are two functions: a scaling function φ and a wavelet ψ. The scaling function

φ : R2 → R satisfies a dilation equation of the form

φ(x) = 2
∑

k∈Z2

p(k)φ(Mx− k), (2.1)

where
∑

k∈Z2 p(k) = 1, k = (k1, k2). The numbers p(k) are called the scaling coefficients of φ(x).

We assume that they are real and p(k) 6= 0 for only finitely many k ∈ Z2. A convenient way to

work with the scaling coefficients is to consider the coefficient mask (z-transform):

P (z1, z2) =
∑

(k1,k2)∈Z2

p(k1, k2)z
k1

1 zk2

2 ,

where(z1, z2) ∈ C2. By taking the Fourier transform on both sides of (2.1), we get

φ̂(MTω) = m(ω)φ̂(ω), ω = (ω1, ω2), (2.2)

where m(ω) =
∑

k∈Z2 p(k)eik·ω is called the mask symbol of the scaling function φ, and k · ω
denotes the Euclidean inner product. Then we have m(ω1, ω2) = P (eiω1 , eiω2). The condition

that all eigenvalues of the matrix M are greater than 1 means that limj→∞M−j = 0. As usual,

it is convenient to normalize φ such that φ̂(0) = 1. Then from (2.2) it follows that

φ̂(ω) =
∞∏

j=1

m
(
(MT )−jω

)
. (2.3)

Since (MT )−2 = 1
2I, the infinite product (2.3) breaks into two parts:

∞∏

j=1

m
(
(MT )−jω

)
=

∞∏

j=1

m(2−jω)

∞∏

j=1

m(2−jMTω). (2.4)

An important task in wavelet theory is to relate the properties of the scaling function φ(x)

to the properties of the coefficient mask P (z1, z2). Our goal is to find coefficients in (2.1) that
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produce a scaling function with orthogonality, symmetry and compact support.

In what follows we need Lemma 2.1 formulated below [6].

Lemma 2.1 A 2 × 2 integer matrix M is a dilation matrix with M2 = 2I if and only if

M = ±
(
a b

c −a

)
for some a ∈ Z+, and some b, c ∈ Z satisfying bc = 2 − a2.

It is esay to check that a scaling function with dilation matrix M must be a scaling function

with dilation matrix 2I. Next we give the sufficient condition that a scaling function with dilation

matrix 2I is also a scaling function with dilation matrix M .

Theorem 2.2 Let M = ±
(
a b

c −a

)
, for some a ∈ Z+, and some b, c ∈ Z satisfying bc =

2 − a2. Let φ(x) be a scaling function satisfying the following dilation equation

φ(x) = 4
∑

k∈Z2

q(k)φ(2Ix − k). (2.5)

If the scaling coefficients q(k) satisfiy the following conditon:

q(k) =
∑

ℓ∈Z2

p(k)p(k −Mℓ),

where p(k) are the scaling coefficients given in (2.1), then φ(x) also satisfies the equation (2.1).

Proof First we assume that M =

(
a b

c −a

)
, where a, b and c are defined as above. According

to Lemma 2.1, we get M2 = 2I. Since φ(x) satisfies the dilation equation (2.5), by (2.3), we get

φ̂(ω) =
∏∞

j=1Q
(
ei((2I)T )−jω

)
. Since q(k) =

∑
ℓ∈Z2 p(k)p(k −Mℓ), we get

Q(z1, z2) = P (z1, z2)P (z1
az2

c, z1
bz2

(−a)), (2.6)

where P (z1, z2), Q(z1, z2) are the z-transform of scaling coefficients p(k) and q(k), respectively.

Applying (2.6) and (2.4), we get

φ̂(ω) =

∞∏

j=1

Q
(
ei((2I)T )−jω

)
=

∞∏

j=1

Q(ei2−jω1 , ei2−jω2)

=

∞∏

j=1

P (ei2−jω1 , ei2−jω2)

∞∏

j=1

P
(
ei2−j(aω1+cω2), ei2−j(bω1−aω2)

)

=

∞∏

j=1

P (ei2−jω)P (ei2−jMT ω) =

∞∏

j=1

P
(
ei(MT )−jω

)
,

where ω = (ω1, ω2). Applying (2.3) again, then φ(x) also satisfies the dilation equation (2.1).

Similarly, for M = −
(
a b

c −a

)
, where a, b, c are defined as above, Theorem 2.2 remains valid.

In the following, for simplicity, we assume that M =

(
0 2

1 0

)
.

Let Q(x, y) =
∑

0≤i,j≤5 q(i, j)x
iyj be a trigonometric polynomial with x = eiω1 , y = eiω2 ,



640 S. Z. YANG and Y. M. XUE

and q(i, j) satisfying (2.5). And Q(x, y) satisfies the following properties:

(i) Existence: Q(1, 1) = 1;

(ii) Orthogonality: | Q(x, y) |2 + | Q(−x, y) |2| Q(x,−y) |2| Q(−x,−y) |2 = 1;

(iii) Symmetry: Q(1/x, 1/y) = x−5y−5Q(x, y);

(iv) Vanishing moments: Q(x, y) = (x+1)
2

(y+1)
2 Q̃(x, y), where Q̃(x, y) is another trigonomet-

ric polynomial.

According to the symmetric condition (iii), we can write the q(i, j) in their polyphase form

as shown below.

[q(i, j)]0≤i,j≤5 =




a0 b0 a1 b1 a2 b2

b8 a8 b7 a7 b6 a6

a3 b3 a4 b4 a5 b5

b5 a5 b4 a4 b3 a3

a6 b6 a7 b7 a8 b8

b2 a2 b1 a1 b0 a0




. (2.7)

In the following, the coefficients of trigonometric polynomials Q(x, y) which satisfy properties

(i)–(iv) are parameterized [2].

Lemma 2.3 Let Q(x, y) =
∑

0≤i,j≤5 q(i, j)x
iyj , where q(i, j) is defined in (2.7). For any β,

γ ∈ [0, 2π], let α = 2(β−γ)+π/4 or α = π/4. Denote p = 1
16 − 1

8
√

2
cosα and q = 1

16 − 1
8
√

2
sinα.

If

a0 = [−p(1 + cos(β − γ)) − q sin(β − γ) −
√
p2 + q2(cosβ + cos γ)]/4,

a2 = [−p(1 − cos(β − γ)) + q sin(β − γ) −
√
p2 + q2(cosβ − cos γ)]/4,

a6 = [−p(1 − cos(β − γ)) + q sin(β − γ) +
√
p2 + q2(cosβ − cos γ)]/4,

a8 = [−p(1 + cos(β − γ)) − q sin(β − γ) +
√
p2 + q2(cosβ + cos γ)]/4,

b0 = [−q(1 + cos(β − γ)) + p sin(β − γ) −
√
p2 + q2(sinβ + sin γ)]/4,

b2 = [−q(1 − cos(β − γ)) − p sin(β − γ) −
√
p2 + q2(sinβ − sin γ)]/4,

b6 = [−q(1 − cos(β − γ)) − p sin(β − γ) +
√
p2 + q2(sinβ − sin γ)]/4,

b8 = [−q(1 + cos(β − γ)) + p sin(β − γ) +
√
p2 + q2(sinβ + sin γ)]/4,

a1 =
p

2
+

1

2

√
p2 + q2 cosβ, b1 =

q

2
+

1

2

√
p2 + q2 sinβ,

a3 =
p

2
+

1

2

√
p2 + q2 cos γ, b3 =

q

2
+

1

2

√
p2 + q2 sinγ,

a5 =
p

2
− 1

2

√
p2 + q2 cos γ, b5 =

q

2
− 1

2

√
p2 + q2 sinγ,

a7 =
p

2
− 1

2

√
p2 + q2 cosβ, b7 =

q

2
− 1

2

√
p2 + q2 sinβ,

a4 =
1

4
− p, b4 =

1

4
− q,

then Q(x, y) satisfies properties (i)–(iv). On the other hand, if Q(x, y) satisfies properties (i)–(iv),
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and the conditions

a1 + a4 + a7 = 1/4, a3 + a4 + a5 = 1/4 (2.8)

hold, where av, v = 0, . . . , 5, is defined in (2.7), then the coefficients av, bv, v = 0, . . . , 5, of

Q(x, y) can be expressed in the above format.

According to [2], the solutions of av, bv, v = 0, . . . , 5, in Lemma 2.3 can generate a nonsepa-

rable orthogonal symmetric scaling function.

Theorem 2.4 Let M =

(
0 2

1 0

)
. Let φ be a scaling function with dilation matrix 2I

satisfying the dilation equation (2.5). If the mask symbol of φ has the form

Q(x, y) =
∑

0≤i,j≤5

∑

0≤m,n≤5

p(m,n)p(i− 2n, j −m)xiyj , (2.9)

then P (x, y) =
∑

0≤i,j≤5 p(i, j)x
iyj can generate the scaling function φ with dilation matrix M .

If Q(x, y) satisfies properties (i)–(iv), and (2.8) holds, then φ defined in (2.1) is a nonseparable

orthogonal symmetric and compactly supported scaling function with dilation matrix M . Fur-

thermore, the scaling coefficients p(i, j), i, j = 0, 1, . . . , 5, can be expressed with two parameters.

Proof Since φ satisfies the dilation equation (2.5) and Q(x, y) satisfies (2.9), according to The-

orem 2.2, φ also satisfies the dilation equation (2.1) with the coefficient mask P (x, y). Since

Q(x, y) satisfies properties (i)–(iv) and (2.8) holds, by Lemma 2.3, we know that φ defined in

(2.5) is nonseparable orthogonal symmetric and compactly supported. So φ defined in (2.1) is

also a nonseparable orthogonal symmetric scaling function. By comparing the coefficients of

Q(x, y) in Lemma 2.3 and in (2.9), we can obtain a group of nonlinear equations about the

scaling coefficients p(i, j), i, j = 0, 1, . . . , 5, and the equations must have solutions which can be

expressed with two parameters β and γ in Lemma 2.3. We can select proper β, γ ∈ [0, 2π] such

that a0 > 0. Then we get p(0, 0) = ±√
a0. Consequently, we get p(1, 0) = b8/p(0, 0) = ±b8/

√
a0,

and p(0, 1) =
(
b0 − p(1, 0)p(0, 0)

)
/p(0, 0) = ±(b0 − b8)/

√
a0. Step by step, we can get the

complete solutions of p(i, j), 0 ≤ i, j ≤ 5 which are expressed with two parameters β and γ.

For M = ±
(
a b

c −a

)
as defined in Lemma 2.1, we have the similar conclusion.

Remark Since the scaling function φ(x) with dilation matrix M satisfies |det(M)| = 2, we know

that there exists a unique wavelet ψ(x) associated with φ(x). It is known that if the wavelet

coefficients d(k) are given by

d(k) = (−1)k1p(e− k),

where k = (k1, k2), and e = (1, 0), then the wavelet ψ(x) = 2
∑

k∈Z2 d(k)φ(Mx−k) is orthogonal

to {φ(x− k), k ∈ Z2}, and its translations and dilations form an orthogonal basis of L2(R2) (see

[8, 9]).
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3. Example

Example According to Theorem 2.4, we choose β = π/2, γ = 2π/3 and get a group solution

[p(i, j)]0≤i,j≤5 =




0.1800 −0.4582 −0.2751 1.1263 −0.6067 0.7347

0.0237 0.0541 −0.0513 −0.1497 −0.0718 −0.0534

0.2719 −0.8066 1.4555 2.5312 −3.2966 −0.4522

0.0849 0.1786 0.7224 0.9768 −1.3491 −2.7910

0.9736 −2.9277 2.0109 10.4391 −4.2024 −9.3260

0.2040 0.3754 2.0362 1.2152 −4.4585 −4.1597




.

If choosing β = π/2, γ = 5π/6, we get another group solution

[p(i, j)]0≤i,j≤5 =




0.2243 −0.5119 −0.2838 1.2375 −0.5173 0.3912

−0.0295 −0.0752 0.0186 0.2050 0.2003 0.0513

0.3047 −0.5529 0.1849 2.3593 0.0445 −0.6655

0.0916 0.2145 0.3035 0.9500 0.1575 −2.4067

0.9622 −1.6585 −0.9509 7.2236 3.9714 −6.0578

0.0423 0.1206 1.6741 3.1986 −0.5290 −7.4962




.

Then according to Theorem 2.4, P (x, y) =
∑

0≤i,j≤5 p(i, j)x
iyj can generate a nonseparable

orthogonal symmetric and compactly supported scaling function.
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