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Abstract A monomial basis and a filtration of subalgebras for the universal enveloping algebra
$U(g() of a complex simple Lie algebra g; of type B; and C; are given, and the decomposition of
the Weyl module V() as a 4(gr)-module into a direct sum of Weyl modules V' (1)’s as U(gi—.)-
modules is described. In particular, a new multiplicity formula for the Weyl module V() is
obtained in this note.
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Let g; be a complex simple Lie algebra of type B; or C;, and i = ${(g;) its universal enveloping
algebra. For any dominant integral weight A € A™, V() denotes a finite dimensional irreducible
(gr)-module, the Weyl module. Following Littelmann [4], we define a monomial basis, and then
construct a filtration of subalgebras for $l(g;). Furthermore, we describe a monomial basis for
the Weyl module, and show how one can decompose the Weyl module V() as a 4(g;)-module
into a direct sum of Weyl modules as $l(g;—,)-modules. Finally, we obtain a new multiplicity
formula for the Weyl module V' (\) of £4(g).

The paper is organized as follows: In Section 1 we introduce some preliminaries; In Section
2 we construct a monomial basis and a filtration of subalgebras of $(g(); In Section our main
results concerning a Z-basis and a new multiplicity formula for the Weyl module V() of (g)
is given; In Section 4 two examples for g, being of type B3 and C3 are given. We shall freely use

the notations in Humphreys [1] without further comments.

1. Preliminaries
1.1. Let g be a semisimple Lie algebra over C, and 4 the universal enveloping algebra of g. Let

A =A{aj,az,...,q}
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be the set of simple roots of g, ® the set of roots, and ®T the set of positive roots of g. Let
A be the weight lattice of g, which is the Z-span of fundamental weights, where we denote by
wi (1 <@ <) the fundamental weights of g such that (w;,af) = d;;, the Kronecker delta, and
denote by A = (A1, A2, ..., A;) the weight A = Ajwi + Aows + -+ + Nw; with A\, Xa, ..., N € Z,
the integer ring. Let X (T') be the character group of T', which is also called the weight lattice of

g. Then the set of dominant weights is
AT = {()\1,/\2,...,/\1) S X(T) | Ay A,y A ZO}

Let W be the Weyl group of g. It is well-known that for A € A*, the Weyl module V (}) is
the finite dimensional irreducible g-module with the highest weight A\. We set ch () = ch (V(}))
for all A € A*. Moreover, ch ()) is given by the Weyl character formula, and for A € AT, one has

() - Swew det()e(wr + p)
> wew det(w)e(wp)
Let eq, fo, hi(a € ¥, i =1,2,...,1) be a Chevalley basis of g. The Kostant Z-form 7 of i

is the Z-subalgebra of il generated by the elements e = ek /K, f(gk) = f¥/k! for a € ®* and

k € N, the set of non-negative integers. Set

hi+c\  (hi+c)hi+c—1)---(hi+c—k+1)
< k )'_ k!

Then ("t°) € 8z, for i = 1,2,...,1,c € Z, k € N. Moreover, i := Uz ®, C. Let £}, 80,43 be

the positive part, negative part and zero part of iz, respectively. They are generated by e((lk),

é’“’ and (’,L;), respectively. By abuse of notations, the images in l of e((lk), f(gk), (’“,:' c), etc. will

be denoted by the same notations, respectively. The algebra i is a Hopf algebra, and 4l has also
a triangular decomposition 4 = U~U°YUF. Given an ordering in @, it is known that a Z-basis
for Uz has the form of

l
[T 11 (;) 10
i=1 !

acdt acdt

with aq, b;, co € N.
1.2. When g is of type B; with «y being the short simple root, we set
Qg =it oy, =it aj 1 =2(a Fag o) Fagp o 4,
1<i<l, 1<j<i<l

Then
fI)Jr:{ai,ozij,ozilj; ISZSZ, 1§]<Z§l}

is the set of positive roots which has [? elements. Fix an ordering of positive roots as follows:
Q1,021 1,02 1,02, .., Q1 1 [-1,00 1 1-2,---, X 12,011, 1, 2,...,% [—1,Q.

For example, when | = 3 the set of positive roots is {a1,a2 11 = 201 + @z, a9 1 = a1 +

g, az,a31 2 =21 +ae)+as,az311=2a1+as+0a3, 031 =0 +az+az, a3 2 =ar+as, a3}



A new multiplicity formula for the Weyl modules of type B and C 677
1.3. When g is of type C; with «; being the long simple root, we set «; ; = o; and

Qi j =ittt aj,ap i =01 j g ip = o+ 2(ae o aipr) Faipe + 0+ ay,

1<i<i1<i<j<l
Then
<I>+:{ozij; 1<i,5 <1}
is the set of positive roots which has {2 elements. Fix an ordering of positive roots as follows:
Q1,01 2,02 1, Q2 « v vy O [ =2, O (=35 - -+, O 1, Q1 [, O [—1,002 15+, 01 [, 0.
For example, when | = 3 the set of positive roots is {a1,1 2 = a1 + az,a31 = a1 +

20, a9,a3 1 = a1 + 209 + a3, a1 3 = 1 +az + a3, a3 2 = a; +2(ae +a3z), a2 3 = az + a3, a3}

1.4. Following Littelmann [3] and Littelmann [4], for I = (i1, i, ...,i2) € N©', we define

(11 (is) p(ia) | (iL2—2l+2)”. (42 _y) (i1271+1) (42 1) p(i;2)
f f21121f 111-1 111 11 lllfl

for g of type Bj, and

i i3) £(i (412 _2142) (2_y—1) pl2_y) L0 ) ) (B2_1) 40
f[ (1 f23)f24) _.f“zi221+2 llﬂll lllzl llﬂllﬂ f2l2 2) l—lfll fl(l2)

for g of type C].
Note that {f7|I € N} is a Z-basis of 81;. Here we write fi, f; j, fi j & for fo when o =

oy, a4 §,04 § &, respectively. In particular, one has f®=1when I =(0,0,...,0)=0.
Moreover, we define an ordering “<”on NY as follows: for any I,I' € Nl2, I = (i1,12,..., 92)
and I’ = (i}, i, ...,i}»), if there exists a k with 1 <k < I? such that i, < i}, and i; = i for all

j >k, then we say I < I’; otherwise, one has I = I’. Therefore, we can define an ordering on
the basis of 4, “ <7 in the same way: we say 1= fIl if and only if I < I'. Any element in
U~ can be written uniquely in terms of f =37 2 a, ! with a, € C.

2. Some commutator formulas and a class of special subalgebras in $(g)

2.1. For 1 <i,j <1, one has the following commutator formulas [1].

min(a,b)
o (hi—a—b+2k\ (o
O S SRl e et
k=0
)

2) hif = fPhi — kay(h) £

(3) (hl l—)l— CL> fj( ) _ fj(k) <hi — koz;)(hi) + CL>;

(4) el oo f0) g o) gl ) pled
f(al> - f “l)...f2(“2)f1(“1)f ...fi(% l(a;)ei—i-
JE e fTD (g = g 1) L 5 ) [ gl e
J0 e ) e ) D (a1 g
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— fl(al) . fi(llz') . f2(112)f1(111)f2(‘12) . J(‘i(ai) . fl(al)€i+
fl(al) . fi(ai—l)fi(filfl) . f2(a2)f1(a1)f2(a2) o fi(u’i) . fl(az)
i—1 l
(hl- —ai+1-Y agap(hi) =Y a;ak(hi)> +
k=1 k=2
fl(al) L. fi(ai) L. f2(a2)fl(al)f2(a2) . fi(aifl)fi(iifl) . fl(al)
l
<hi—a;+1— Z aﬁgak(hi)> :
k=i+1
2.2. Let us construct a class of special subalgebras iz ;,1 <7 <, of 4z as follows. Set
LlZ,i = <e_§‘aj)7f]§bj)7 (hj]jc) | ajabjacvk € N7 1 S] < ’L>
Then one has
0CHUz 1 Clzo T Clly =g,
The set of positive roots in U(g;) is just that of the first i2 roots according to the ordering of ®+.

_ ol =1 pl—1 -1 I—i+1 =i+l I—i+1 l—it+1 pl—itl l—it1
2.3. Let K = (kj, k;_1, k; T S Y S PP ./ S R R A A
I—i+1 1 7.1 1 1 7.1 1 1 12 :
kyfity, oo ki ko oo kg kg K, ooy ko kg ) € NUL Define an index set
— 1?19 pl—i+1 I—i+1 I—i+1 1—i+1 1—i+1
Mm:={KeN |2kl—i+122kl—i+22"'22kl—1 >k >2k >
I—it1 I—it1 .
>2k T 22k 0, 1< < 1}

for g of type By, and
o 12 I—i+1 I—i+1 l—i+1 I—it+1 I—it+1
H.—{KEN |klﬂ.+12klﬂ.+22---2k171 >k 2k1+1 >

l—it1 I—i+1 .
z ki 2k, 1si<i}

for g of type Cj.
For any K € II, one has such a monomial

D () (D | EIED (HED 0l e

% i—1 i—1

K2

k) 4
0% =",
k1) p(kd ki kg -
fl( 1)fl(—21)"'f1( L)...fl( 31-1) € 4.
The following theorem was first proved in Littelmann [4, Theorem 4.2].
Theorem 2.4 The set {6 |K € II} forms a Z-basis of 4l .
2.5. Moreover, we define
Iy :={Kell | kj=0,1<j<20-1}CII,
I'={Kell |k,=0,1<i<li<j<2l—i}.

Then the set {#% | K € II;_1} forms a Z-basis of Uz ;1. If we define the ordinary vector
addition in II, one has the following claims:

(1) I =1, &II;

(2) If Ky € II;_; and K, € IT, then %2951 = gK2H+K1,
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(3) If Kl, Ki e II' with K < Ki, then Ky + K7 < K{ for any Ky e II;_+.
3. A new multiplicity formula of the Weyl module V' ())

3.1. It is known that the irreducible g-module V() has a Z-lattice V(\)z. Let 4; = 4z ,;®,C
forl1 <i<I|.

Let E be the real vector space spanned by v, as, . .., a;. It is well known that o, o, . .., @)
again form a basis of FE, and wi,wo,...,w; form the dual basis relative to the inner product on
E: (wi,af) = % = 0;;. If we restrict ourselves to consider the (I —1)-dimensional subspaces
E’ of E spanned by a1, g, ...,a;—1, then of , o, ...,y ; and wi,ws, ..., w;—1 remain the dual
bases of E’ relative to the inner product on E. Therefore, we can consider the restriction of {; to
$li—;, and the restriction of A = (A1, Ag,..., ;) as a weight of {; to Ag,_, = (A1, A2,..., 1) as
a weight of U;_,. Moreover, let A = (A1, A2,...,\;) € AT be a dominant weight, and v a maximal
vector of weight A of the Weyl module V' (A) of t;. Then V(A)|y,_, denotes the restriction of

V(M) to a 4_;-module.

3.2. Following Littelmann [4, §6], we define A for g as follows. Set A}, , = A, and ki =0, if
i4+j>2l Foralll<i<l,4i<j<I, X is defined to be hj_j 1w = Njw, where

<k;’-+1>_”f2<k%71>fl<k;>f2<kz;1> flkzz D fmf(k) LD <kézf2>fl<k;z,1>v

g i+1 -1
and
_ _ i—1 _ i—1 i
Aj = N—j1 +k§z—j+1+z (kjy + kg ja) =2k ;=2 Z (k" + kgl—j)"’Z (k1 + ek 1).
n=1 n=1 n=1

)‘él—j is defined to be hy_j 1w = )\gl_jm where

w_fl koi—ji1 flkzz j+2) . f(kéz 1) fl(ki)fl(fél) (k) . (k31 _5) p(kd; 1)

Jj+2 Jj+3 l—i+1 1 -1 l
and
i—1 i—1 i—1
Ay_j = N—jt1 tky_jq + Z (Kj_y + k1) — 2 Z (k] + k) + Z (K + chyy_j_q).
n=1 n=1 n=1

A! is defined to be hyw = Nw, where

7
k2l z

1 1 1
_ f2( z+1)f kiyo) | N N "fl(ki) . f2(k171)f1(k11)f2(k1+1) o fl(kzzfﬁv

and
) . 1—1 1—1
No=MAdki +dY (K k) -2 K
n=1 n=1

Where d and c are defined as follows: when g is of type B;, d=2and c=0if j=l—1lorc=1
otherwise; and when g is of type Cj, d =1 and ¢ = 1.

Moreover, we define two index sets ITy and II4, which are related to A, as follows:

M= :={Kel0<kl <X, 1<i<li<j<2l—i}.
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Let P =(0,...,0,p1, Pi—1,---,D2, P1,Da,---,P;) € II'. For g of type By, we set p; = py1 =0,

and define
Ni={Pell'lpr — 2D, < M,D; — Diy1 < Niy pi +2D; — (Pic1 +Di—1) — Dig1 < Niy 2 <1 <1},
and for g of type Cj, we set p;,; = 0,P; = p1, and define
Ni=A{P el'[p; = Pis1 <N, 1 <0 <1, pj +2p; —pj—1 —Dj_1 — Pjp1 < Ny 255 <1}

Let A— S\, (pi +Pi)oi — prag = A — Pav.
3.3. It is easy to see that IIy is a finite set. We shall show that the set {#¥v|K € II,} forms a
Z-basis of V(X)z. Also, we shall see that IT} is also a finite set, and it becomes an index set of
highest weights of irreducible components of V() to be viewed as a {;_;-module.

Denote by II(\) the set of weights of the Weyl module V(\). For P = (0,...,0,p;, pi—1,- .., D2,

_ _ l _ l . . _
P1, Do - - -, D) € 114, we say Pa = pron + ), o (pi+D;)oi < Y, ajoy if and only if p;+7; = ay,
pi—i_z_?igaiai:27"'7l_17andpl <a.

3.4. Let V be a ;-module. We say a vector v € V to be a primitive vector of V', if there are
two submodules Vy, V5 with Vo C V3 C V such that v € Vi, v ¢ Vs, and all e; with 1 < ¢ <[ kill
the canonical image of v in V3 /Va.

The following Lemmas can be proved as in Ye and Zhou [5, Lemmas 4.3 and 4.5].

Lemma 3.5 Let w be a primitive vector of weight A in V. Then V has a composition factor

isomorphic to V(A).

Lemma 3.6 Let A = (A1, \a,..., ) € AT be a dominant weight. Let V be a finite dimensional
$l-module generated by a maximal vector v of weight A of V. Then one has V ~ V().
Moreover, one has the following lemma (Humphreys [1,§21.4]).

Lemma 3.7 Let A = (A1, Aa,...,\) € AT be a dominant weight, and v a maximal vector of
weight A of V/(X\). Then one has

FR Dy 0, 1<i<l
Then one has the following theorems.

Theorem 3.8 Let A = (A, Ae,...,\) € AT be a dominant weight. As a $4(_,-module, the

irreducible U;-module V (X) has the following direct sum decomposition

V. = P V(- Pa)y,_, )

Pelly

Proof By definition, II} is a finite set. Let |II}| = ¢. We can arrange elements of IT} according
to the ordering of IT} defined in §1.4. Then one has

&:{0:P1<P2<"'<Pt}.

Set MPS:ZK€H1K<PS+1(C9K’U, 1<s<t—1,
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where v is a maximal vector of V(\) and Mp, = V(A). Then one has
0C Mp, CMp, C---C Mp, =V(N).

First of all, we can show that Mp_, 1 < s <, is a {_,-submodule of V(A). In order do so,
we need only to show that Mp, is stable under actions of e;, h; and f; with 1 <7 <[ —1, and
then Mp_ is a $;_,-module.

For any 0%v € Mp, with K < P,y1, it is still a weight vector, and for any h; with 1 < i <1,
one has by § 2.1 (2)

hi0Kv = aiKﬂKv € Mp, with a,, € Z.

By § 2.5 (1), K = K; + Ko with K; € II' and Ky € II;_;. Therefore, one has for any
fi € Ll(g[_l) with 1 <i<[-—1,
fi0%v = f,0 20 = £, (07265 ) v by § 2.5 (2)
= (") 00 = (Y a0 )eR
K'ell;_1
= Z aK,HK/JrKlv with ag: € Z.
K'ell,_,
Note the fact that K = K7 + K5 < Ps11, one has K1 < Psy1, and K' + K1 < Psy1 for any
K’ € II;_;. Therefore,

’
f:i0%0 = § a, 0% 5w e Mp,.
K'ell;_4

Furthermore, one has for any e; with 1 <14 </,

eioKv :eifl f2 ki1 flkz 1)f2 Hi) ) "fi(ktm)fz(ké Zi;) o 1(ki7i+1) N fz(l_cfl+z+;)
fiwigti) , ,,f mf > --'fl(k’l’ . l(féllﬁ)fl(kézfl)v

—1 -1 n _
—9k61v+ Z f(kz) (k= 1)f11€ )fz L+1 _.’fi(klfwrl 1)(hi—klnfi+1 _|_1)

fi(lefwz . f(k ) f kzl+z 2)Jc(kl+w 1) . 'fl(k%)fl(fél 1(k O l(félzfz) l(kél—l)v_F

l—i+1

Z fl l 1 fl )f L+1) f(kl 1+1)f(le ”2)"'fl(k?)mfi(l_c?id)

g 1 1 1 1 1
f(klﬂ 1 1)(hi K1) fl(kl)fl(fi) . fl(kl) . l(lezfz)fl(kzzfﬂv by § 2.1(4)

l—i+1 o
= Z (anﬁKfK"v —|—En9K7K"v),
n=1
where
n—1
. n r r n
an =X — ki’ +1-0 Z(kl—iﬂ + k1) — 2k
r=1
n n—1

Z(klrfiq% + cki ;o) +d Z(klrfz + kiyi) € Z,

r=1 r=1



682 J. C. YE, B.S. YUN and J. ZHAN

n—1
@y =N — ki +1— bZ(le—i-H + ki)t
r=1
n—1 n—1
Z(klr—i—ﬂ +ckipio) +d Z(klr—i +kiyi) € Z,
r=1 r=1

andb=1,d=2ifi=10or b=2,d =1 otherwise, and ¢ =0 if i = 2 or ¢ = 1 otherwise for g of
type By; and b=1if ¢ =1 or b = 2 otherwise and ¢ =1, d = 1 for g of type Cj.

K, = (0,...,0,1,0,...,0) € N with 1 occurring in the place where k' ; ;| lies in the
corresponding K, K, = o,...,0,1,0,...,0) € N with 1 occurring in the place where k7', ;
lies in the corresponding K. Since K — K, < K < P47 and K — K, <K< P,41, one has

l—it1 l—it1 -
;050 = E anf8Eny 4+ E [ AN Mp,.
n=1 n=1

It shows that Mp, is stable under actions of e;, h; with 1 < i <[ and f; with 1 <4 <[ —1, and
Mp, is a ;_,-module.
Secondly, we show that §Fsv, 1 < s < ¢, is a primitive vector in V() when V() is viewed as a
$U;—,-module. We show first that 67=v #£ 0. Let Py = (0,...0,p1, Di—1,- - - P2, D1, Das - - -, 7y) € 114
One has

el@z) . .eéﬁz)egpl)eél&) . el(gll 1) l( )HPS’U
_ el(fz) . egﬁz)egpl)eépz) . el(pll 1) ( )fl( )f pL-1) f(:Dz f f (P2) . fl(iﬁz),u
5 5 ey fhi—2 2k _
CNRECANCONCN ,,eggfn(zfl(pl k)( ! iz + >el<pl k))

k=0
fl(—pllil) . f2(172)f1(171)f2(252) . fl@l)’U by § 2.1(1)
— _ h _ _
o) (PP ) i) (pll>fl<mll> e gl plon) (B P,
= el@l) .. egﬁz)egpl)eépz) . elpll 1)f(:Dl 1 <hl - pl;lo‘ll(hl))

l(—pl272) o f2(172)f1(171)f2(252) .. fl@l)’U

_ el@z) . ,eéﬁz)egpl)eém) o el(gllil)fl(fpllil) o f2(102)f1(101)f2(?2) . fl(ﬁz)
(hl = S e (he) = Yy pko‘k(hl>)v

b
— el@l) . .egﬁz)egpl)eéi&) . Pl l)f(ZDl 1) .f2(202)f1(201)f2(ﬁ2) .. fl(ﬁz)
</\l +pi-1 — 2P +§z1>v _
Yz
1 _ _ l _ _
_ H ()\k +Pk+1) ()\1 + sz) H (Ak + Pr—1 — 2Py, + Pr—1 +Pk+1)v
Pt DL P1 Pl Pk ’

where for g of type By, ¢ = 2, p; = Py, = 0, the last third equality is because a;(h;) # 0 if and
only if |i —j| < 1, and ae(h1) = =2, ag(hrx1) = —1,(2 < k <1),a;j(h;) = 2,(1 < j <1); and for
g of type Cy, ¢ =1, p; = p1,D;41 = 0, the last third equality is because «;(h;) # 0 if and only if
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li =3l <1, ar(he) = =2, ag(hgs1) = —1, (2 <k < 1), a;(hy) =2, (1 < j <1).
Note that Py, — Pri1 < Mk, p1 — 2D < A1, Pk + 2P, — (Pk—1 + Pp_1) — Dpy1 < Ak, one has
0 <D <A+ DPrt1> 0 <p1 <A +2Py, 0 < pp < A+ pr—1+ D1+ Dpy1 — 2Dy, and then

A1+2D Ae+D A _1—2D,+P D :
(M3272) # 0, () £ 0, (WP T I T £0,2 <k < e,

el(ﬁz) o eéﬁz)egpl)e;m) o el(gll—l)el(m)gPsv £0

for g of type By; and P, —Pryq < Ak, 1 <k <1, pp —pr—1 —Dp—1 + 2D —Prg1 < Ak, 2< k <,
one has pk < pk-‘,—l + )‘ku 1 < k < lu Pk < Pk—1 +]3]g—1 - 21_9k +1_9k+1 + )‘ku 2 < k < lu and then

l il 1 = o= 1= .
Hn:1 ()\n ;fn+l) 7& 0, Hk:Q (Ak+Pk71+P;?D;1 2;Dk+10k+1) 75 0, i.e.

el(ﬁz) L. eéﬁz)egpl)eépz) L. el(glfl)el(Pz)ePsv £0

for g of type Cj.
This shows that #7sv # 0. By our construction, it is easy to see that 67:v € Mp, but
0Fsv ¢ Mp, ,. So we need only to prove that e;0F:v € Mp,_ for 1 <i <[l—1, and then we can

conclude that #7=v is a primitive vector in V/(\). In fact
0P — e fO0 FPI) L pB) plo0) (Ba) B,
_ GPSel_v + fl(:Dz) . fi(:Di—l)(hi —pi + 1)f-(plfl) . f2(172)f1(171)f2(252) .. 'fl@l)’U—F

i—

fl(m)fl(lefl) L f2(P2)f1(P1)f2(52) L fi(@—l)(hi — P+ 1)fl(ii1+l) o fl(ﬁz)v by § 2.1 (4)

K2

=\ =Pt LDt + B,y — 25, + By ) f7 - fPTV R ) e g
f[(pl)v + (N =D, +1 +ﬁi+l)fl(pl)fl(fl171) . f2(172)f1(171)f2(1’2) . fi(ZDifl)

fi(fifrl) . fl@z)v by §21(2)

Note that (0,...,0,p1,...,Pi+1,Pi — 1, Piz1,---,D01,P9,---,0;) < Ps, (0,...,0,p1,...,D2, P1, D,
3 Pie1,P; — 1,Diyq, -, Dy) < Ps, one has ei0v e Mp,_,.

Thirdly, we show that Mp, = Mp, |, + $_, 0 v. “D”is easy to be proved by definition of
Mp, and §2.5. Here we only prove “C”. For any K € II with K < Psy;, one has a unique
decomposition K = Ky + K; with Ky € II} and Ky € II;_;. If K < P, then 0%y € Mp,_,.
Otherwise, when Py <= K < P,41, we must have K9 = P;. Then

Oy = gF K2y = 9KigPsy € g1, 1070

as required.

Finally, we show that Mp /Mp, , ~V ((/\ - Pso‘)ux,l)' Let w be the canonical image of
6Fsv in Mp, /Mp, ,. Then one has Mp, /Mp,_ , ~ $h_ 1. Since §Fv is a primitive vector in
V(A), w becomes a maximal vector of weight (A — Psa)y . Note the fact that V(}) is a finite
dimensional module, and Mp,/Mp, , is also finite dimensional and generated by a maximal
vector w, we must have Mp /Mp, , ~V (()\ - Psoa)u[ﬂ) by Lemma 3.6.

Using the complete reducibility, we prove Theorem 3.8. O

The following theorem was first proved in Littlemann [4] Corollary 6 of Theorem 6.1. We

use induction on the rank of g to give a different proof.
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Theorem 3.9 Let v be a maximal vector of V(\). Then {#%v | K € T1,} forms a Z-basis of
V(N)z.

Proof We use induction on I. When | = 2, one has for any A = (A, \2) € AT, by the Weyl

character formula,
1
dim V()\) = 6()\1 + 1A+ 1)()\1 + Ao+ 2)()\1 + 2Xo + 3),
for g of type B3, and
1
dimV(A) = 6()\1 + 1Az + 1)(A1 4+ A2 +2)(2M\1 + A2 + 3),
for g of type Cs. Let
1
) = {K = (k3, ki, k3, k3)| k3 < Xa, 23 < k3 < Ay + 2K3, 51@% < ki < X0+ ki — 2k,
k3 < A1+ 2ki — 2k3 + 2k}
for g of type B3, and
k3 <M\ + ki —2ky + K3}

for g of type Cy. Now we need only to show that the number of II, is equal to dim V(}), i.e.,
{#%v|K € I} forms a Z-basis of the Z-form of V()\) and spans V(\) over C. However, it could
be done easily by an elementary but prolix calculation. We omit the detail here.

Assume that our theorem holds for [ — 1, and then we have to show that the theorem holds for
l. Let us use the same notations as in the proof of Theorem 3.9, and construct the bases of Mp,
for 1 < s <t. For s = 1, one has Mp, ~ V(\y,_,) as {;_,-module, and {#%v | K € Hl*LAuI,l}
is a Z-basis of Mp, by the induction hypothesis. When s = 2, note the following facts:

i) oE+P2y Mp, it K € Hl—lx(k—Pza)u[,L by § 2;

ii) The number of {#¥ | K € Ii—1,(A-Pra),,_, } is equal to dim V' (A = P2a)g,_,) by the
induction hypothesis;

iii) Mp,/Mp, =~V (A= P2)q,_,).

Therefore, we see that
{0%v|K e Ty 5, } U{9K9P2v =052 0|K € -1 (A~ Pya)y, , }

forms a Z-basis of Mp,.

In this way, the set of

{0%v|K ey, H O 20K € Ty 6o pyayy, U U
{9K+PtU|K S Hl*LO‘*Pﬁa)gl,l}

forms a Z-basis of Mp, = V(\). Note that elements in both the above set and the set of

{#%v|K € I} are the same, this proves our theorem. O

Theorem 3.10 Let p € II(\) be a weight of V(X). Then the multiplicity my(u) of p in V()
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is equal to

mk(u):dlm‘/()\)” = Z dimV(()\—Pa)uPJ
PETT,, PakA—pu Py

= Z "T"()\—I—_’oz)uPl (/Luxil)'

Pell}, PaA—p

Proof Let us use the same notations as in the proof of Theorem 3.8, and let A — p = ayy +
asas + -+ apop with all a; > 0,7 =1,2,...,1. Let M be the set of the basis elements in the
weight space of u of V/(A). They satisfy the following conditions:

_ K _ I 7.0—1 701—1 710-1 l—i+1 l—i+1 l—i+1 l—i+1
M= (050 | K = (kLKL R R Rl gl gl

I—i+1 1 1.1 1 1 1.1 1 : 1 1 _
kl+i71,. ..7k1,k2,...,kl_1,kl 7kl+17"'7k2l—1) S H)\, Wlth kl +k2l—1 = ap,

ky 4 ky o+ k3 + k3 o=ai1,.. Kl ki, kiZ1+ kll;% = a2,

ki + kP +- +kl=ai}.
Then the number of M is equal to m(u). If we divide M into a disjoint union of M;, where

M; = {6Fv | K € M with P, < K < P;41}. From Theorem 3.9, we see that M; C Mp,, and
the number of M; is equal to m_p,a)(tg,_, ). Theorem 3.10 follows from Theorem 3.8. O

4. Examples

When gy is of type Cs, for any A = Ajwi + Aawa + Asws = (A1, A2, A3) € AT, one has the
following index sets:
L ={(k5, k3, k3, ki, ki kg, kg, ki, ks ) K3 > k3 > ki, ki > ky > kg > ki > k3} C© N,
I ={(0,...,0, ki, ky, k3, ki, ki)|ki > kg > k3 > ki > ki } C N,
Iy ={(k3, k3, k3, k3, ki, k. ks, ki ks ) € kg < Xg, k< Ao+ ks, ks < Ax+ ki,
ky < Ao+ 2k3 — 2k; + k3, ki < A3+ ks + ki — 2k3, k3 < Xo + ki — 2k + 2k3—
i + ki, k2 <M 4+ kT4 ki — 2k 4+ ki k2 < N+ 2k2 — 22 4 ki — 2k3+
2k3 — 2k + ki k3 < Ay + kI — 2k3 + k2 + ki — 2k3 + ki)
N ={(0,...,0,p3,p2,p1,P2,P3) € I[P < A3,D5 < A2 + D3, p1 < A1+ Do,
P2 < Ao+ 2p1 — 2Py + D3, p3 < A3+ p2 + Py — 2P3}-
Take A = w1 + wo +ws = (1,1, 1), then one has
Iy ={(k3, k3, k3, ki, ki, ka, ki ki ks) | ks <1, ki <1+ks k3 <1+k;,
kY <1+2ki —2ky+ki, ki <1+ky+ky—2k3, ki <1+kf—2ki+
k3 — 2k} + ki, k2 <14 k2 4+ k) — 2k} + kL k2 <14 2k2 2K+
ki — 2k3 + 2k3 — 2ki + ki, kS <1+ k3 —2k3 + k3 + kg —2k3 +kj} CII,
L ={P, =(0,...,0,0,0,0,0,0) < P, = (0,...,0,1,0,0,0,0) < Ps = (0,...,0,1,1,0,0,0)
<Py =(0,...,0,2,1,0,0,0) < Ps = (0,...,0,1,1,1,0,0) < Ps = (0,...,0,2,1,1,0,0)
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<P;=(0,...,0,2,2,1,0,0) < Ps =(0,...,0,3,2,1,0,0) < Py = (0,...,0,3,3,1,0,0)
= (0,...,0,4,3,1,0,0) < P;; = (0,...,0,1,1,1,1,0) < P = (0,...,0,2,1,1,1,0)
=(0,...,0,3,1,1,1,0) < P4, = (0,...,0,2,2,2,1,0) < P15 = (0,...,0,3,2,2,1,0)
=(0,...,0,4,2,2,1,0) < P = (0,...,0,3,3,2,1,0) < Pis = (0,...,0,4,3,2,1,0)
<Pg=1(0,...,0,5,3,2,1,0) < Poo = (0,...,0,1,1,1,1,1) < P»; = (0,...,0,2,2,1,1,1)
<Py =(0,...,0,2,2,2,1,1) < Po3 = (0,...,0,3,3,2,1,1) < Py = (0,...,0,4,4,2,1,1)
<Py; =(0,...,0,2,2,2,2,1) < Pog = (0,...,0,3,2,2,2,1) < Py = (0,...,0,3,3,3,2,1)
0,...,0,4,3,3,2,1) < Pog = (0,...,0,4,4,3,2,1) < P3o = (0,...,0,5,4,3,2,1)}.
Therefore, one has the following l,-module isomorphisms:
Mp, ~V(1,1), Mp,/Mp, ~V(1,2), Mp,/Mp, ~V(2,0
Mp,/Mp, ~V(2,1), Mp,/Mp, ~V(0,2), Mp,/Mp, ~ V(0,3
Mp,/Mp, ~V(1,1), Mp,/Mp, ~V(1,2), Mp,/Mp, ~V (2,0
Mp,,/Mp, ~V(2,1), Mp,, /Mp,, ~V
Mp,,/Mp, ~V(1,2), Mp,,/Mp,, ~V
Mp,/Mp,, =~V
Mp,y /Mpy =V
Mp,,/Mp,, =~V
v
v

)

(1
) 0,
), Mp,,/Mp,, ~V(1,
), Mp,, /Mp,, ~V(1,
), Mp,, /Mp,, ~ V(1
), Mp,s /Mp,, ~V(1,

(1

) )7MP29/MP28 ~V(1, ) MP%O/MP29 =

Mp,. /Mp,, ~
Mp,, /Mp,, ~
Moreover, V(w + ws 4 w3)|u, =~ @22, V(A — Pia)ly,. Take p = wy + w3 = (1,0,1), one has
mx(n) =6, A — u = a1 + 2as + a3. Using Theorem 3.11, one has
ma() = Mo-pa), () +MO-Payy, (B,) M- Pa)y, (Ba,) + M- Py, (Ha,)
m(1,2)(1,0) 4+ my2,0)(1,0) +mg,2)(1,0) +m(1,0)(1,0) =3 +1+1+1=6.
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