A New Multiplicity Formula for the Weyl Modules of Type B and C

Jia Chen YE*, Ben Sheng YUN, Jia ZHAN

Department of Mathematics, Tongji University, Shanghai 200092, P. R. China

Abstract A monomial basis and a filtration of subalgebras for the universal enveloping algebra $\mathfrak{U}(\mathfrak{g}_{\mathfrak{l}})$ of a complex simple Lie algebra $\mathfrak{g}_{\mathfrak{l}}$ of type B_{l} and C_{l} are given, and the decomposition of the Weyl module $V(\lambda)$ as a $\mathfrak{U}(\mathfrak{g}_{\mathfrak{l}})$ -module into a direct sum of Weyl modules $V(\mu)$'s as $\mathfrak{U}(\mathfrak{g}_{\mathfrak{l}-1})$ -modules is described. In particular, a new multiplicity formula for the Weyl module $V(\lambda)$ is obtained in this note.

Keywords simple Lie algebra; multiplicity formula; weight; irreducible module.

Document code A MR(2000) Subject Classification 17B10; 20G05 Chinese Library Classification O152.6

Let $\mathfrak{g}_{\mathfrak{l}}$ be a complex simple Lie algebra of type B_{l} or C_{l} , and $\mathfrak{U} = \mathfrak{U}(\mathfrak{g}_{\mathfrak{l}})$ its universal enveloping algebra. For any dominant integral weight $\lambda \in \Lambda^{+}$, $V(\lambda)$ denotes a finite dimensional irreducible $\mathfrak{U}(\mathfrak{g}_{\mathfrak{l}})$ -module, the Weyl module. Following Littelmann [4], we define a monomial basis, and then construct a filtration of subalgebras for $\mathfrak{U}(\mathfrak{g}_{\mathfrak{l}})$. Furthermore, we describe a monomial basis for the Weyl module, and show how one can decompose the Weyl module $V(\lambda)$ as a $\mathfrak{U}(\mathfrak{g}_{\mathfrak{l}})$ -module into a direct sum of Weyl modules as $\mathfrak{U}(\mathfrak{g}_{\mathfrak{l}-1})$ -modules. Finally, we obtain a new multiplicity formula for the Weyl module $V(\lambda)$ of $\mathfrak{U}(\mathfrak{g}_{\mathfrak{l}})$.

The paper is organized as follows: In Section 1 we introduce some preliminaries; In Section 2 we construct a monomial basis and a filtration of subalgebras of $\mathfrak{U}(\mathfrak{g}_{\mathfrak{l}})$; In Section our main results concerning a \mathbb{Z} -basis and a new multiplicity formula for the Weyl module $V(\lambda)$ of $\mathfrak{U}(\mathfrak{g}_{\mathfrak{l}})$ is given; In Section 4 two examples for $\mathfrak{g}_{\mathfrak{l}}$ being of type B_3 and C_3 are given. We shall freely use the notations in Humphreys [1] without further comments.

1. Preliminaries

1.1. Let \mathfrak{g} be a semisimple Lie algebra over \mathbb{C} , and \mathfrak{U} the universal enveloping algebra of \mathfrak{g} . Let

$$\Delta = \{\alpha_1, \alpha_2, \dots, \alpha_l\}$$

Received June 26, 2008; Accepted December 18, 2008

Supported by the National Natural Science Foundation of China (Grant No. 10671142).

* Corresponding author

E-mail: jcye@tongji.edu.cn (J. C. YE)

be the set of simple roots of \mathfrak{g} , Φ the set of roots, and Φ^+ the set of positive roots of \mathfrak{g} . Let Λ be the weight lattice of \mathfrak{g} , which is the \mathbb{Z} -span of fundamental weights, where we denote by ω_i $(1 \leq i \leq l)$ the fundamental weights of \mathfrak{g} such that $\langle \omega_i, \alpha_j^{\vee} \rangle = \delta_{ij}$, the Kronecker delta, and denote by $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l)$ the weight $\lambda = \lambda_1 \omega_1 + \lambda_2 \omega_2 + \cdots + \lambda_l \omega_l$ with $\lambda_1, \lambda_2, \ldots, \lambda_l \in \mathbb{Z}$, the integer ring. Let X(T) be the character group of T, which is also called the weight lattice of \mathfrak{g} . Then the set of dominant weights is

$$\Lambda^+ = \{(\lambda_1, \lambda_2, \dots, \lambda_l) \in X(T) \mid \lambda_1, \lambda_2, \dots, \lambda_l \ge 0\}.$$

Let W be the Weyl group of \mathfrak{g} . It is well-known that for $\lambda \in \Lambda^+$, the Weyl module $V(\lambda)$ is the finite dimensional irreducible \mathfrak{g} -module with the highest weight λ . We set $\operatorname{ch}(\lambda) = \operatorname{ch}(V(\lambda))$ for all $\lambda \in \Lambda^+$. Moreover, $\operatorname{ch}(\lambda)$ is given by the Weyl character formula, and for $\lambda \in \Lambda^+$, one has

$$\operatorname{ch}(\lambda) = \frac{\sum_{w \in W} \det(w) e(w(\lambda + \rho))}{\sum_{w \in W} \det(w) e(w\rho)}.$$

Let $e_{\alpha}, f_{\alpha}, h_{i}(\alpha \in \Phi^{+}, i = 1, 2, ..., l)$ be a Chevalley basis of \mathfrak{g} . The Kostant \mathbb{Z} -form $\mathfrak{U}_{\mathbb{Z}}$ of \mathfrak{U} is the \mathbb{Z} -subalgebra of \mathfrak{U} generated by the elements $e_{\alpha}^{(k)} := e_{\alpha}^{k}/k!, f_{\alpha}^{(k)} := f_{\alpha}^{k}/k!$ for $\alpha \in \Phi^{+}$ and $k \in \mathbb{N}$, the set of non-negative integers. Set

$$\binom{h_i+c}{k} := \frac{(h_i+c)(h_i+c-1)\cdots(h_i+c-k+1)}{k!}.$$

Then $\binom{h_i+c}{k} \in \mathfrak{U}_{\mathbb{Z}}$, for $i=1,2,\ldots,l,c\in\mathbb{Z}$, $k\in\mathbb{N}$. Moreover, $\mathfrak{U}:=\mathfrak{U}_{\mathbb{Z}}\otimes_{\mathbb{Z}}\mathbb{C}$. Let $\mathfrak{U}_{\mathbb{Z}}^+,\mathfrak{U}_{\mathbb{Z}}^-,\mathfrak{U}_{\mathbb{Z}}^c$ be the positive part, negative part and zero part of $\mathfrak{U}_{\mathbb{Z}}$, respectively. They are generated by $e_{\alpha}^{(k)}$, $f_{\alpha}^{(k)}$ and $\binom{h_i}{k}$, respectively. By abuse of notations, the images in \mathfrak{U} of $e_{\alpha}^{(k)}, f_{\alpha}^{(k)}, \binom{h_i+c}{k}$, etc. will be denoted by the same notations, respectively. The algebra \mathfrak{U} is a Hopf algebra, and \mathfrak{U} has also a triangular decomposition $\mathfrak{U}=\mathfrak{U}^-\mathfrak{U}^{\circ}\mathfrak{U}^+$. Given an ordering in Φ^+ , it is known that a \mathbb{Z} -basis for $\mathfrak{U}_{\mathbb{Z}}$ has the form of

$$\prod_{\alpha \in \Phi^+} f_{\alpha}^{(a_{\alpha})} \prod_{i=1}^{l} \binom{h_i}{b_i} \prod_{\alpha \in \Phi^+} e_{\alpha}^{(c_{\alpha})}$$

with $a_{\alpha}, b_i, c_{\alpha} \in \mathbb{N}$.

1.2. When \mathfrak{g} is of type B_l with α_1 being the short simple root, we set

$$\alpha_{i \ j} = \alpha_i + \alpha_{i-1} + \dots + \alpha_j, \alpha_{i \ 1 \ j} = \alpha_{i \ 1} + \alpha_{j \ 1} = 2(\alpha_1 + \alpha_2 + \dots + \alpha_j) + \alpha_{j+1} + \dots + \alpha_i,$$

$$1 \le i \le l, \ 1 \le j < i \le l.$$

Then

$$\Phi^{+} = \{ \alpha_{i}, \alpha_{i j}, \alpha_{i 1 j}; 1 \le i \le l, 1 \le j < i \le l \}$$

is the set of positive roots which has l^2 elements. Fix an ordering of positive roots as follows:

$$\alpha_1, \alpha_{2\ 1\ 1}, \alpha_{2\ 1}, \alpha_{2\ 1}, \alpha_{2}, \dots, \alpha_{l\ 1\ l-1}, \alpha_{l\ 1\ l-2}, \dots, \alpha_{l\ 1\ 2}, \alpha_{l\ 1\ 1}, \alpha_{l\ 1}, \alpha_{l\ 2}, \dots, \alpha_{l\ l-1}, \alpha_{l\$$

For example, when l=3 the set of positive roots is $\{\alpha_1, \alpha_{2\ 1\ 1}=2\alpha_1+\alpha_2, \alpha_{2\ 1}=\alpha_1+\alpha_2, \alpha_{2\ 1}=\alpha_1+\alpha_2, \alpha_{3\ 1\ 2}=2(\alpha_1+\alpha_2)+\alpha_3, \alpha_{3\ 1\ 1}=2\alpha_1+\alpha_2+\alpha_3, \alpha_{3\ 1}=\alpha_1+\alpha_2+\alpha_3, \alpha_{3\ 2}=\alpha_2+\alpha_3, \alpha_3\}.$

1.3. When \mathfrak{g} is of type C_l with α_1 being the long simple root, we set $\alpha_{i,i} = \alpha_i$ and

$$\alpha_{i \ j} = \alpha_i + \alpha_{i+1} + \dots + \alpha_j, \alpha_{j \ i} = \alpha_{1 \ j} + \alpha_{2 \ i+1} = \alpha_1 + 2(\alpha_2 + \dots + \alpha_{i+1}) + \alpha_{i+2} + \dots + \alpha_j,$$

$$1 \le i \le l, 1 \le i < j \le l.$$

Then

$$\Phi^+ = \{ \alpha_{i \ j}; \quad 1 \le i, j \le l \}$$

is the set of positive roots which has l^2 elements. Fix an ordering of positive roots as follows:

$$\alpha_1, \alpha_{1}, \alpha_{2}, \alpha_{2}, \ldots, \alpha_{l-2}, \alpha_{l-2}, \alpha_{l-3}, \ldots, \alpha_{l-1}, \alpha_{1}, \alpha_{1}, \alpha_{l-1}, \alpha_{2}, \ldots, \alpha_{l-1}, \alpha_{l-1},$$

For example, when l=3 the set of positive roots is $\{\alpha_1, \alpha_{1\ 2} = \alpha_1 + \alpha_2, \alpha_{2\ 1} = \alpha_1 + 2\alpha_2, \alpha_2, \alpha_3, \alpha_1 = \alpha_1 + 2\alpha_2 + \alpha_3, \alpha_1, \alpha_2 = \alpha_1 + \alpha_2 + \alpha_3, \alpha_3, \alpha_2 = \alpha_1 + \alpha_2 + \alpha_3, \alpha_3, \alpha_3 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha$

1.4. Following Littelmann [3] and Littelmann [4], for $I = (i_1, i_2, \dots, i_{l^2}) \in \mathbb{N}^{l^2}$, we define

$$f^{I} = f_{1}^{(i_{1})} f_{2 \ 1}^{(i_{2})} f_{2 \ 1}^{(i_{3})} f_{2}^{(i_{4})} \cdots f_{l \ 1 \ l-1}^{(i_{l^{2}-2l+2})} \cdots f_{l \ 1 \ 1}^{(i_{l^{2}-l})} f_{l \ 1}^{(i_{l^{2}-l+1})} \cdots f_{l \ l-1}^{(i_{l^{2}-1})} f_{l}^{(i_{l^{2}-1})}$$

for \mathfrak{g} of type B_l , and

$$f^I = f_1^{(i_1)} f_{1\ 2}^{(i_2)} f_{2\ 1}^{(i_3)} f_2^{(i_4)} \cdots f_{l\ l-2}^{(i_{l^2-2l+2})} \cdots f_{l\ 1}^{(i_{l^2-l-1})} f_{1\ l}^{(i_{l^2-l})} f_{l\ l-1}^{(i_{l^2-l+1})} f_{2\ l}^{(i_{l^2-l+2})} \cdots f_{l-1\ l}^{(i_{l^2-1})} f_{l}^{(i_{l^2-l+2})} \cdots f_{l-1\ l}^{(i_{l^2-l+2})} f_{l-1\ l}^{(i_$$

for \mathfrak{g} of type C_l .

Note that $\{f^I|I\in\mathbb{N}^{l^2}\}$ is a \mathbb{Z} -basis of $\mathfrak{U}_{\mathbb{Z}}^-$. Here we write $f_i,f_{i\ j},f_{i\ j\ k}$ for f_{α} when $\alpha=\alpha_i,\alpha_{i\ j},\alpha_{i\ j\ k}$, respectively. In particular, one has $f^{\mathbf{0}}=1$ when $I=(0,0,\ldots,0)=\mathbf{0}$.

Moreover, we define an ordering " \prec " on \mathbb{N}^{l^2} as follows: for any $I, I' \in \mathbb{N}^{l^2}$, $I = (i_1, i_2, ..., i_{l^2})$ and $I' = (i'_1, i'_2, ..., i'_{l^2})$, if there exists a k with $1 \le k \le l^2$ such that $i_k < i'_k$ and $i_j = i'_j$ for all j > k, then we say $I \prec I'$; otherwise, one has I = I'. Therefore, we can define an ordering on the basis of $\mathfrak{U}_{\mathbb{Z}}^-$ " \prec " in the same way: we say $f^I \prec f^{I'}$ if and only if $I \prec I'$. Any element in \mathfrak{U}^- can be written uniquely in terms of $f = \sum_{I \in \mathbb{N}^{l^2}} a_I f^I$ with $a_I \in \mathbb{C}$.

2. Some commutator formulas and a class of special subalgebras in $\mathfrak{U}(\mathfrak{q}_l)$

2.1. For $1 \le i, j \le l$, one has the following commutator formulas [1].

(1)
$$e_i^{(a)} f_i^{(b)} = \sum_{k=0}^{\min(a,b)} f_i^{(b-k)} \binom{h_i - a - b + 2k}{k} e_i^{(a-k)};$$

(2)
$$h_i f_j^{(k)} = f_j^{(k)} h_i - k\alpha_j(h_i) f_j^{(k)};$$

(3)
$$\binom{h_i + a}{b} f_j^{(k)} = f_j^{(k)} \binom{h_i - k\alpha_j(h_i) + a}{b};$$

$$(4) \quad e_{i}f_{l}^{(a_{l})}\cdots f_{i}^{(a_{i})}\cdots f_{2}^{(a_{2})}f_{1}^{(a_{1})}f_{2}^{(a'_{2})}\cdots f_{i}^{(a'_{i})}\cdots f_{l}^{(a'_{i})}$$

$$= f_{l}^{(a_{l})}\cdots f_{i}^{(a_{i})}\cdots f_{2}^{(a_{2})}f_{1}^{(a_{1})}f_{2}^{(a'_{2})}\cdots f_{i}^{(a'_{i})}\cdots f_{l}^{(a'_{i})}e_{i}+$$

$$f_{l}^{(a_{l})}\cdots f_{i}^{(a_{i-1})}\left(h_{i}-a_{i}+1\right)f_{i-1}^{(a_{i-1})}\cdots f_{2}^{(a_{2})}f_{1}^{(a_{1})}f_{2}^{(a'_{2})}\cdots f_{i}^{(a'_{i})}\cdots f_{l}^{(a'_{i})}+$$

$$f_{l}^{(a_{l})}\cdots f_{i}^{(a_{i})}\cdots f_{2}^{(a_{2})}f_{1}^{(a_{1})}f_{2}^{(a'_{2})}\cdots f_{i}^{(a'_{i}-1)}\left(h_{i}-a'_{i}+1\right)f_{i+1}^{(a'_{i+1})}\cdots f_{l}^{(a'_{l})}$$

$$= f_l^{(a_l)} \cdots f_i^{(a_i)} \cdots f_2^{(a_2)} f_1^{(a_1)} f_2^{(a'_2)} \cdots f_i^{(a'_i)} \cdots f_l^{(a'_l)} e_i + f_l^{(a_l)} \cdots f_i^{(a_{i-1})} f_{i-1}^{(a_{i-1})} \cdots f_2^{(a_2)} f_1^{(a_1)} f_2^{(a'_2)} \cdots f_i^{(a'_i)} \cdots f_l^{(a'_i)} \cdots f_l^{(a'_l)} \left(h_i - a_i + 1 - \sum_{k=1}^{i-1} a_k \alpha_k(h_i) - \sum_{k=2}^{l} a'_k \alpha_k(h_i) \right) + f_l^{(a_l)} \cdots f_i^{(a_i)} \cdots f_2^{(a_2)} f_1^{(a_1)} f_2^{(a'_2)} \cdots f_i^{(a'_i-1)} f_{i+1}^{(a'_{i+1})} \cdots f_l^{(a'_l)} \left(h_i - a'_i + 1 - \sum_{k=i+1}^{l} a'_k \alpha_k(h_i) \right).$$

2.2. Let us construct a class of special subalgebras $\mathfrak{U}_{\mathbb{Z},i}$, $1 \leq i \leq l$, of $\mathfrak{U}_{\mathbb{Z}}$ as follows. Set

$$\mathfrak{U}_{\mathbb{Z},i} := \langle e_j^{(a_j)}, f_j^{(b_j)}, {h_j+c \choose k} \mid a_j, b_j, c, k \in \mathbb{N}, \ 1 \le j \le i \rangle.$$

Then one has

$$0 \subseteq \mathfrak{U}_{\mathbb{Z},1} \subseteq \mathfrak{U}_{\mathbb{Z},2} \subseteq \cdots \subseteq \mathfrak{U}_{\mathbb{Z},l} = \mathfrak{U}_{\mathbb{Z}}.$$

The set of positive roots in $\mathfrak{U}(\mathfrak{g}_i)$ is just that of the first i^2 roots according to the ordering of Φ^+ .

2.3. Let
$$K = (k_l^l, k_{l-1}^{l-1}, k_l^{l-1}, k_{l+1}^{l-1}, \dots, k_{l-i+1}^{l-i+1}, k_{l-i+2}^{l-i+1}, \dots, k_{l-1}^{l-i+1}, k_l^{l-i+1}, k_l^{l-i+1}, k_l^{l-i+1}, \dots, k_{l+1}^{l-i+1}, \dots, k_{l+i-2}^{l-i+1}, \dots, k_{l+i-2}^{l-i+1}, \dots, k_1^1, k_2^1, \dots, k_{l-1}^1, k_l^1, k_{l+1}^1, \dots, k_{2l-2}^1, k_{2l-1}^1) \in \mathbb{N}^{l^2}$$
. Define an index set

$$\Pi := \{ K \in \mathbb{N}^{l^2} | 2k_{l-i+1}^{l-i+1} \ge 2k_{l-i+2}^{l-i+1} \ge \cdots \ge 2k_{l-1}^{l-i+1} \ge k_l^{l-i+1} \ge 2k_{l+1}^{l-i+1} \ge \cdots \ge 2k_{l+i-2}^{l-i+1} \ge 2k_{l+i-1}^{l-i+1}, \quad 1 \le i \le l \}$$

for \mathfrak{g} of type B_l , and

$$\Pi := \{ K \in \mathbb{N}^{l^2} \mid k_{l-i+1}^{l-i+1} \ge k_{l-i+2}^{l-i+1} \ge \cdots \ge k_{l-1}^{l-i+1} \ge k_l^{l-i+1} \ge k_{l+1}^{l-i+1} \ge \cdots$$

$$\ge k_{l+i-2}^{l-i+1} \ge k_{l+i-1}^{l-i+1}, \quad 1 \le i \le l \}$$

for \mathfrak{g} of type C_l .

For any $K \in \Pi$, one has such a monomial

$$\theta^K = f_1^{(k_l^l)} f_2^{(k_{l-1}^{l-1})} f_1^{(k_{l-1}^{l-1})} f_2^{(k_{l-1}^{l-1})} \cdots f_i^{(k_{l-i+1}^{l-i+1})} f_{i-1}^{(k_{l-i+1}^{l-i+1})} \cdots f_1^{(k_{l-i+2}^{l-i+1})} \cdots f_i^{(k_{l+i-2}^{l-i+1})} f_i^{(k_{l+i-1}^{l-i+1})} \cdots f_i^{(k_{l+i-2}^{l-i+1})} f_i^{(k_{l+i-1}^{l-i+1})} \cdots f_i^{(k_{l+i-1}^{l-i+1})} f_i^{(k_{l-i+1}^{l-i+1})} \cdots f_i^{(k_{l-i+1}^{l-i+1})} f_i^{(k_{l-i+1}^{l-i+1})} f_i^{(k_{l-i+1}^{l-i+1})} \cdots f_i^{(k_{l-i+1}^{l-i+1})} f_i^{(k_{l-i+1}^{l-i+1})} f_i^{(k_{l-i+1}^{l-i+1})} \cdots f_i^{(k_{l-i+1}^{l-i+1})} f_i^{(k_{l-i+1}^{l-i+1})} \cdots f_i^{(k_{l-i+1}^{l-i+1})} f_i^{(k_{l-i+1}^{l-i+1})} \cdots f_i^{(k_{l-i+1}^{l-i+1})} f_i^{(k_{l-i+1}^{l-i+1})} \cdots f_i^{(k_{l-i+1}^{l-i+1})} f_i^$$

The following theorem was first proved in Littelmann [4, Theorem 4.2].

Theorem 2.4 The set $\{\theta^K | K \in \Pi\}$ forms a \mathbb{Z} -basis of $\mathfrak{U}_{\mathbb{Z}}^-$.

2.5. Moreover, we define

$$\Pi_{l-1} := \{ K \in \Pi \mid k_j^1 = 0, 1 \le j \le 2l - 1 \} \subseteq \Pi,$$

$$\Pi' = \{ K \in \Pi \mid k_i^i = 0, 1 < i \le l, i \le j \le 2l - i \}.$$

Then the set $\{\theta^K \mid K \in \Pi_{l-1}\}$ forms a \mathbb{Z} -basis of $\mathfrak{U}_{\mathbb{Z},l-1}^-$. If we define the ordinary vector addition in Π , one has the following claims:

- (1) $\Pi = \Pi_{l-1} \oplus \Pi'$;
- (2) If $K_2 \in \Pi_{l-1}$ and $K_1 \in \Pi'$, then $\theta^{K_2} \theta^{K_1} = \theta^{K_2 + K_1}$;

(3) If $K_1, K_1' \in \Pi'$ with $K_1 \prec K_1'$, then $K_2 + K_1 \prec K_1'$ for any $K_2 \in \Pi_{l-1}$.

3. A new multiplicity formula of the Weyl module $V(\lambda)$

3.1. It is known that the irreducible \mathfrak{g} -module $V(\lambda)$ has a \mathbb{Z} -lattice $V(\lambda)_{\mathbb{Z}}$. Let $\mathfrak{U}_{\mathfrak{i}} = \mathfrak{U}_{\mathbb{Z},i} \otimes_{\mathbb{Z}} \mathbb{C}$ for $1 \leq i \leq l$.

Let E be the real vector space spanned by $\alpha_1, \alpha_2, \ldots, \alpha_l$. It is well known that $\alpha_1^\vee, \alpha_2^\vee, \ldots, \alpha_l^\vee$ again form a basis of E, and $\omega_1, \omega_2, \ldots, \omega_l$ form the dual basis relative to the inner product on E: $(\omega_i, \alpha_j^\vee) = \frac{2(\omega_i, \alpha_j)}{(\alpha_j, \alpha_j)} = \delta_{ij}$. If we restrict ourselves to consider the (l-1)-dimensional subspaces E' of E spanned by $\alpha_1, \alpha_2, \ldots, \alpha_{l-1}$, then $\alpha_1^\vee, \alpha_2^\vee, \ldots, \alpha_{l-1}^\vee$ and $\omega_1, \omega_2, \ldots, \omega_{l-1}$ remain the dual bases of E' relative to the inner product on E. Therefore, we can consider the restriction of $\mathfrak{U}_{\mathfrak{l}}$ to $\mathfrak{U}_{\mathfrak{l}-1}$, and the restriction of $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l)$ as a weight of $\mathfrak{U}_{\mathfrak{l}}$ to $\lambda_{\mathfrak{U}_{\mathfrak{l}-1}} = (\lambda_1, \lambda_2, \ldots, \lambda_{l-1})$ as a weight of $\mathfrak{U}_{\mathfrak{l}-1}$. Moreover, let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l) \in \Lambda^+$ be a dominant weight, and v a maximal vector of weight λ of the Weyl module $V(\lambda)$ of $\mathfrak{U}_{\mathfrak{l}}$. Then $V(\lambda)|_{\mathfrak{U}_{\mathfrak{l}-1}}$ denotes the restriction of $V(\lambda)$ to a $\mathfrak{U}_{\mathfrak{l}-1}$ -module.

3.2. Following Littelmann [4, §6], we define λ_i^j for \mathfrak{g} as follows. Set $\lambda_{2l-1}^1 = \lambda_l$ and $k_j^i = 0$, if i+j>2l. For all $1 \leq i \leq l$, $i \leq j < l$, λ_j^i is defined to be $h_{l-j+1}w = \lambda_j^i w$, where

$$w = f_{l-j}^{(k_{j+1}^i)} \cdots f_2^{(k_{l-1}^i)} f_1^{(k_l^i)} f_2^{(k_{l+1}^i)} \cdots f_{l-i+1}^{(k_{2l-i}^i)} \cdots f_l^{(k_1^1)} f_{l-1}^{(k_2^1)} \cdots f_1^{(k_1^1)} \cdots f_l^{(k_{2l-2}^1)} f_l^{(k_{2l-1}^1)} v$$

and

$$\lambda_{j}^{i} = \lambda_{l-j+1} + k_{2l-j+1}^{i} + \sum_{n=1}^{i-1} \left(k_{j-1}^{n} + k_{2l-j+1}^{n} \right) - 2k_{2l-j}^{i} - 2\sum_{n=1}^{i-1} \left(k_{j}^{n} + k_{2l-j}^{n} \right) + \sum_{n=1}^{i} \left(k_{j+1}^{n} + ck_{2l-j-1}^{n} \right).$$

 λ_{2l-j}^i is defined to be $h_{l-j+1}w = \lambda_{2l-j}^i w$, where

$$w = f_{l-j+2}^{(k_{2l-j+1}^i)} f_{l-j+3}^{(k_{2l-j+2}^i)} \cdots f_{l-i+1}^{(k_{2l-i}^i)} \cdots f_l^{(k_1^1)} f_{l-1}^{(k_2^1)} \cdots f_1^{(k_l^1)} \cdots f_l^{(k_{2l-2}^1)} f_l^{(k_{2l-1}^1)} v$$

and

$$\lambda_{2l-j}^{i} = \lambda_{l-j+1} + k_{2l-j+1}^{i} + \sum_{n=1}^{i-1} (k_{j-1}^{n} + k_{2l-j+1}^{n}) - 2\sum_{n=1}^{i-1} (k_{j}^{n} + k_{2l-j}^{n}) + \sum_{n=1}^{i-1} (k_{j+1}^{n} + ck_{2l-j-1}^{n}).$$

 λ_l^i is defined to be $h_1 w = \lambda_l^i w$, where

$$w = f_2^{(k_{l+1}^i)} f_3^{(k_{l+2}^i)} \cdots f_{l-i+1}^{(k_{2l-i}^i)} \cdots f_l^{(k_1^1)} \cdots f_2^{(k_{l-1}^1)} f_1^{(k_l^1)} f_2^{(k_{l+1}^1)} \cdots f_l^{(k_{2l-1}^1)} v$$

and

$$\lambda_l^i = \lambda_1 + dk_{l+1}^i + d\sum_{n=1}^{i-1} (k_{l-1}^n + k_{l+1}^n) - 2\sum_{n=1}^{i-1} k_l^n.$$

Where d and c are defined as follows: when \mathfrak{g} is of type B_l , d=2 and c=0 if j=l-1 or c=1 otherwise; and when \mathfrak{g} is of type C_l , d=1 and c=1.

Moreover, we define two index sets Π_{λ} and Π'_{λ} , which are related to λ , as follows:

$$\Pi_{\lambda}=\Pi_{l,\lambda}:=\{K\in\Pi|0\leq k^i_j\leq \lambda^i_j,\ 1\leq i\leq l, i\leq j\leq 2l-i\}.$$

Let $P = (0, \dots, 0, p_l, p_{l-1}, \dots, p_2, p_1, \overline{p}_2, \dots, \overline{p}_l) \in \Pi'$. For \mathfrak{g} of type B_l , we set $\overline{p}_1 = \overline{p}_{l+1} = 0$, and define

 $\Pi'_{\lambda} := \{ P \in \Pi' | p_1 - 2\overline{p}_2 \le \lambda_1, \overline{p}_i - \overline{p}_{i+1} \le \lambda_i, \ p_i + 2\overline{p}_i - (p_{i-1} + \overline{p}_{i-1}) - \overline{p}_{i+1} \le \lambda_i, \ 2 \le i \le l \},$ and for \mathfrak{g} of type C_l , we set $\overline{p}_{l+1} = 0, \overline{p}_1 = p_1$, and define

$$\Pi'_{\lambda} := \{ P \in \Pi' | \overline{p}_i - \overline{p}_{i+1} \le \lambda_i, 1 \le i \le l, \ p_j + 2\overline{p}_j - p_{j-1} - \overline{p}_{j-1} - \overline{p}_{j+1} \le \lambda_j, \ 2 \le j \le l \}.$$
Let $\lambda - \sum_{i=2}^{l} (p_i + \overline{p}_i) \alpha_i - p_1 \alpha_1 = \lambda - P \alpha.$

3.3. It is easy to see that Π_{λ} is a finite set. We shall show that the set $\{\theta^K v | K \in \Pi_{\lambda}\}$ forms a \mathbb{Z} -basis of $V(\lambda)_{\mathbb{Z}}$. Also, we shall see that Π'_{λ} is also a finite set, and it becomes an index set of highest weights of irreducible components of $V(\lambda)$ to be viewed as a $\mathfrak{U}_{\mathfrak{l}-1}$ -module.

Denote by $\Pi(\lambda)$ the set of weights of the Weyl module $V(\lambda)$. For $P = (0, \ldots, 0, p_l, p_{l-1}, \ldots, p_2, p_1, \overline{p}_2, \ldots, \overline{p}_l) \in \Pi'_{\lambda}$, we say $P\alpha = p_1\alpha_1 + \sum_{i=2}^l (p_i + \overline{p}_i)\alpha_i \ll \sum_{i=1}^l a_i\alpha_i$ if and only if $p_l + \overline{p}_l = a_l$, $p_i + \overline{p}_i \leq a_i$, $i = 2, \ldots, l-1$, and $p_1 \leq a_1$.

3.4. Let V be a \mathfrak{U}_1 -module. We say a vector $v \in V$ to be a primitive vector of V, if there are two submodules V_1 , V_2 with $V_2 \subset V_1 \subseteq V$ such that $v \in V_1$, $v \notin V_2$, and all e_i with $1 \leq i \leq l$ kill the canonical image of v in V_1/V_2 .

The following Lemmas can be proved as in Ye and Zhou [5, Lemmas 4.3 and 4.5].

Lemma 3.5 Let w be a primitive vector of weight λ in V. Then V has a composition factor isomorphic to $V(\lambda)$.

Lemma 3.6 Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l) \in \Lambda^+$ be a dominant weight. Let V be a finite dimensional \mathfrak{U}_{l} -module generated by a maximal vector v of weight λ of V. Then one has $V \simeq V(\lambda)$.

Moreover, one has the following lemma (Humphreys $[1,\S21.4]$).

Lemma 3.7 Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l) \in \Lambda^+$ be a dominant weight, and v a maximal vector of weight λ of $V(\lambda)$. Then one has

$$f_i^{(\lambda_i+1)}v = 0, \quad 1 \le i \le l.$$

Then one has the following theorems.

Theorem 3.8 Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l) \in \Lambda^+$ be a dominant weight. As a $\mathfrak{U}_{\mathfrak{l}-1}$ -module, the irreducible $\mathfrak{U}_{\mathfrak{l}}$ -module $V(\lambda)$ has the following direct sum decomposition

$$V(\lambda)|_{\mathfrak{U}_{\mathfrak{l}-1}} = \bigoplus_{P \in \Pi'_{\lambda}} V\left((\lambda - P\alpha)_{\mathfrak{U}_{\mathfrak{l}-1}}\right).$$

Proof By definition, Π'_{λ} is a finite set. Let $|\Pi'_{\lambda}| = t$. We can arrange elements of Π'_{λ} according to the ordering of Π'_{λ} defined in §1.4. Then one has

$$\Pi_{\lambda}' = \{ \mathbf{0} = P_1 \prec P_2 \prec \cdots \prec P_t \}.$$

$$M_{P_s} = \sum_{K \in \Pi, K \prec P_{s+1}} \mathbb{C}\theta^K v, \quad 1 \le s \le t - 1,$$

 Set

where v is a maximal vector of $V(\lambda)$ and $M_{P_*} = V(\lambda)$. Then one has

$$0 \subseteq M_{P_1} \subseteq M_{P_2} \subseteq \cdots \subseteq M_{P_*} = V(\lambda).$$

First of all, we can show that M_{P_s} , $1 \leq s \leq t$, is a $\mathfrak{U}_{\mathfrak{l}-1}$ -submodule of $V(\lambda)$. In order do so, we need only to show that M_{P_s} is stable under actions of e_i , h_i and f_i with $1 \leq i \leq l-1$, and then M_{P_s} is a $\mathfrak{U}_{\mathfrak{l}-1}$ -module.

For any $\theta^K v \in M_{P_s}$ with $K \prec P_{s+1}$, it is still a weight vector, and for any h_i with $1 \leq i \leq l$, one has by § 2.1 (2)

$$h_i \theta^K v = a_{i_K} \theta^K v \in M_{P_s} \text{ with } a_{i_K} \in \mathbb{Z}.$$

By § 2.5 (1), $K = K_1 + K_2$ with $K_1 \in \Pi'$ and $K_2 \in \Pi_{l-1}$. Therefore, one has for any $f_i \in \mathfrak{U}(\mathfrak{g}_{l-1})$ with $1 \leq i \leq l-1$,

$$f_{i}\theta^{K}v = f_{i}\theta^{K_{1}+K_{2}}v = f_{i}\left(\theta^{K_{2}}\theta^{K_{1}}\right)v \text{ by } \S 2.5 (2)$$

$$= \left(f_{i}\theta^{K_{2}}\right)\theta^{K_{1}}v = \left(\sum_{K' \in \Pi_{l-1}} a_{K'}\theta^{K'}\right)\theta^{K_{1}}v$$

$$= \sum_{K' \in \Pi_{l-1}} a_{K'}\theta^{K'+K_{1}}v \text{ with } a_{K'} \in \mathbb{Z}.$$

Note the fact that $K = K_1 + K_2 \prec P_{s+1}$, one has $K_1 \prec P_{s+1}$, and $K' + K_1 \prec P_{s+1}$ for any $K' \in \Pi_{l-1}$. Therefore,

$$f_i \theta^K v = \sum_{K' \in \Pi_{l-1}} a_{K'} \theta^{K' + K_1} v \in M_{P_s}.$$

Furthermore, one has for any e_i with $1 \le i \le l$,

$$\begin{split} e_i \theta^K v = & e_i f_1^{(k_l^l)} f_2^{(k_{l-1}^{l-1})} f_1^{(k_{l-1}^{l-1})} f_2^{(k_{l+1}^{l-1})} \cdots f_i^{(k_{l-i+1}^{l-i+1})} f_{i-1}^{(k_{l-i+1}^{l-i+1})} \cdots f_1^{(k_{l-i+2}^{l-i+1})} \cdots f_i^{(k_{l+i-2}^{l-i+1})} \\ & f_i^{(k_{l+i-1}^{l-i+1})} \cdots f_l^{(k_1^l)} f_{l-1}^{(k_2^l)} \cdots f_1^{(k_l^l)} \cdots f_{l-1}^{(k_{l-i}^{l-1})} f_l^{(k_{2l-1}^{l-1})} v \\ = & \theta^k e_i v + \sum_{n=1}^{l-i+1} f_1^{(k_l^l)} f_2^{(k_{l-1}^{l-1})} f_1^{(k_l^{l-1})} f_2^{(k_{l-1}^{l-1})} \cdots f_i^{(k_{l-i}^{l-1})} (h_i - k_{l-i+1}^n + 1) \\ & f_{i-1}^{(k_{l-i+2}^n)} \cdots f_1^{(k_l^n)} \cdots f_{i-1}^{(k_{l+i-2}^n)} f_i^{(k_{l+i-1}^n)} \cdots f_l^{(k_{l-i+1}^n)} \cdots f_l^{(k_l^1)} f_{l-1}^{(k_2^1)} \cdots f_1^{(k_l^1)} \cdots f_l^{(k_{l-i+2}^n)} v + \\ & \sum_{n=1}^{l-i+1} f_1^{(k_l^l)} f_2^{(k_{l-1}^{l-1})} f_1^{(k_l^{l-1})} f_2^{(k_{l+1}^{l-1})} \cdots f_i^{(k_{l-i+1}^n)} f_{i-1}^{(k_{l-i+1}^n)} \cdots f_1^{(k_l^n)} \cdots f_i^{(k_{l+i-2}^n)} \\ & f_i^{(k_{l+i-1}^n-1)} (h_i - k_{l+i-1}^n + 1) \cdots f_l^{(k_1^1)} f_{l-1}^{(k_2^1)} \cdots f_1^{(k_l^1)} \cdots f_l^{(k_{2l-2}^1)} f_l^{(k_{2l-1}^1)} v \text{ by § 2.1(4)} \\ & = \sum_{n=1}^{l-i+1} (a_n \theta^{K-K_n} v + \overline{a}_n \theta^{K-\overline{K}_n} v), \end{split}$$

where

$$a_n = \lambda_i - k_{l-i+1}^n + 1 - b \sum_{r=1}^{n-1} (k_{l-i+1}^r + k_{l+i-1}^r) - 2k_{l+i-1}^n + \sum_{r=1}^n (k_{l-i+2}^r + ck_{l+i-2}^r) + d \sum_{r=1}^{n-1} (k_{l-i}^r + k_{l+i}^r) \in \mathbb{Z},$$

$$\overline{a}_n = \lambda_i - k_{l+i-1}^n + 1 - b \sum_{r=1}^{n-1} (k_{l-i+1}^r + k_{l+i-1}^r) + \sum_{r=1}^{n-1} (k_{l-i+2}^r + ck_{l+i-2}^r) + d \sum_{r=1}^{n-1} (k_{l-i}^r + k_{l+i}^r) \in \mathbb{Z},$$

and b = 1, d = 2 if i = 1 or b = 2, d = 1 otherwise, and c = 0 if i = 2 or c = 1 otherwise for \mathfrak{g} of type B_l ; and b = 1 if i = 1 or b = 2 otherwise and c = 1, d = 1 for \mathfrak{g} of type C_l .

 $K_n=(0,\ldots,0,1,0,\ldots,0)\in \mathbb{N}^{l^2}$ with 1 occurring in the place where k_{l-i+1}^n lies in the corresponding $K, \overline{K}_n=(0,\ldots,0,1,0,\ldots,0)\in \mathbb{N}^{l^2}$ with 1 occurring in the place where k_{l+i-1}^n lies in the corresponding K. Since $K-K_n\prec K\prec P_{s+1}$ and $K-\overline{K}_n\prec K\prec P_{s+1}$, one has

$$e_i \theta^K v = \sum_{n=1}^{l-i+1} a_n \theta^{K-K_n} v + \sum_{n=1}^{l-i+1} \overline{a}_n \theta^{K-\overline{K}_n} v \in M_{P_s}.$$

It shows that M_{P_s} is stable under actions of e_i , h_i with $1 \le i \le l$ and f_i with $1 \le i \le l-1$, and M_{P_s} is a \mathfrak{U}_{l-1} -module.

Secondly, we show that $\theta^{P_s}v$, $1 \leq s \leq t$, is a primitive vector in $V(\lambda)$ when $V(\lambda)$ is viewed as a $\mathfrak{U}_{\mathfrak{l}-1}$ -module. We show first that $\theta^{P_s}v \neq 0$. Let $P_s = (0, \ldots 0, p_l, p_{l-1}, \ldots, p_2, p_1, \overline{p}_2, \ldots, \overline{p}_l) \in \Pi'_{\lambda}$. One has

$$\begin{split} e_{l}^{[\overline{p}_{l}]} &\cdots e_{2}^{[\overline{p}_{2}]} e_{l}^{(p_{1})} e_{2}^{(p_{2})} \cdots e_{l-1}^{(p_{l-1})} e_{l}^{(p_{l})} \theta^{P_{s}} v \\ &= e_{l}^{[\overline{p}_{l}]} \cdots e_{2}^{[\overline{p}_{2}]} e_{1}^{(p_{1})} e_{2}^{(p_{2})} \cdots e_{l-1}^{(p_{l-1})} e_{l}^{(p_{l})} f_{l}^{(p_{l})} f_{l-1}^{(p_{l-1})} \cdots f_{2}^{(p_{2})} f_{1}^{(p_{1})} f_{2}^{(\overline{p}_{2})} \cdots f_{l}^{(\overline{p}_{l})} v \\ &= e_{l}^{[\overline{p}_{l}]} \cdots e_{2}^{(\overline{p}_{2})} e_{1}^{(p_{1})} e_{2}^{(p_{2})} \cdots e_{l-1}^{(p_{l-1})} \left(\sum_{k=0}^{p_{l}} f_{l}^{(p_{l}-k)} \left(h_{l} - 2p_{l} + 2k \right) e_{l}^{(p_{l}-k)} \right) \\ f_{l-1}^{(p_{l-1})} \cdots f_{2}^{(p_{2})} f_{1}^{(p_{1})} f_{2}^{(\overline{p}_{2})} \cdots f_{l}^{(\overline{p}_{l})} v \quad \text{by } \S \ 2.1(1) \\ &= e_{l}^{[\overline{p}_{l})} \cdots e_{2}^{(\overline{p}_{2})} e_{1}^{(p_{1})} e_{2}^{(p_{2})} \cdots e_{l-1}^{(p_{l-1})} \left(h_{l} \right) f_{l-1}^{(p_{l-1})} \cdots f_{2}^{(p_{2})} f_{1}^{(p_{1})} f_{2}^{(\overline{p}_{2})} \cdots f_{l}^{(\overline{p}_{l})} v \\ &= e_{l}^{[\overline{p}_{l})} \cdots e_{2}^{(\overline{p}_{2})} e_{1}^{(p_{1})} e_{2}^{(p_{2})} \cdots e_{l-1}^{(p_{l-1})} f_{l-1}^{(p_{l-1})} \left(h_{l} - p_{l-1} \alpha_{l-1} (h_{l}) \right) \\ f_{l-2}^{(p_{l-2})} \cdots f_{2}^{(p_{2})} f_{1}^{(p_{1})} f_{2}^{(\overline{p}_{2})} \cdots f_{l}^{(\overline{p}_{l})} v \\ &= e_{l}^{[\overline{p}_{l})} \cdots e_{2}^{(\overline{p}_{2})} e_{1}^{(p_{1})} f_{2}^{(\overline{p}_{2})} \cdots e_{l-1}^{(p_{l-1})} f_{l-1}^{(p_{l-1})} \cdots f_{2}^{(p_{2})} f_{1}^{(p_{1})} f_{2}^{(\overline{p}_{2})} \cdots f_{l}^{(\overline{p}_{l})} \\ \left(h_{l} - \sum_{k=1}^{l-1} p_{k} \alpha_{k} (h_{l}) - \sum_{k=2}^{l} \overline{p}_{k} \alpha_{k} (h_{l}) \right) v \\ &= e_{l}^{[\overline{p}_{l})} \cdots e_{2}^{(\overline{p}_{2})} e_{1}^{(p_{1})} e_{2}^{(p_{2})} \cdots e_{l-1}^{(p_{l-1})} f_{l-1}^{(p_{l-1})} \cdots f_{2}^{(p_{2})} f_{1}^{(p_{1})} f_{2}^{(\overline{p}_{2})} \cdots f_{l}^{(\overline{p}_{l})} \\ \left(\lambda_{l} + p_{l-1} - 2\overline{p}_{l} + \overline{p}_{l-1} \right) v = \cdots \\ &= \prod_{k=2}^{l} \left(\lambda_{k} + \overline{p}_{k+1} \right) \left(\lambda_{1} + c\overline{p}_{2} \right) \prod_{k=2}^{l} \left(\lambda_{k} + p_{k-1} - 2\overline{p}_{k} + \overline{p}_{k-1} + \overline{p}_{k+1} \right) v, \end{split}$$

where for \mathfrak{g} of type B_l , c=2, $\overline{p}_1=\overline{p}_{l+1}=0$, the last third equality is because $\alpha_j(h_i)\neq 0$ if and only if $|i-j|\leq 1$, and $\alpha_2(h_1)=-2$, $\alpha_k(h_{k\pm 1})=-1$, $(2\leq k\leq l)$, $\alpha_j(h_j)=2$, $(1\leq j\leq l)$; and for \mathfrak{g} of type C_l , c=1, $\overline{p}_1=p_1$, $\overline{p}_{l+1}=0$, the last third equality is because $\alpha_j(h_i)\neq 0$ if and only if

$$|i-j| \le 1$$
, $\alpha_1(h_2) = -2$, $\alpha_k(h_{k\pm 1}) = -1$, $(2 \le k \le l)$, $\alpha_j(h_j) = 2$, $(1 \le j \le l)$.

Note that $\overline{p}_k - \overline{p}_{k+1} \leq \lambda_k, p_1 - 2\overline{p}_2 \leq \lambda_1, p_k + 2\overline{p}_k - (p_{k-1} + \overline{p}_{k-1}) - \overline{p}_{k+1} \leq \lambda_k$, one has $0 \leq \overline{p}_k \leq \lambda_k + \overline{p}_{k+1}, \ 0 \leq p_1 \leq \lambda_1 + 2\overline{p}_2, \ 0 \leq p_k \leq \lambda_k + p_{k-1} + \overline{p}_{k-1} + \overline{p}_{k+1} - 2\overline{p}_k$, and then $\binom{\lambda_1 + 2\overline{p}_2}{p_1} \neq 0, \binom{\lambda_k + \overline{p}_{k+1}}{\overline{p}_k} \neq 0, \binom{\lambda_k + p_{k-1} - 2\overline{p}_k + \overline{p}_{k-1} + \overline{p}_{k+1}}{p_k} \neq 0, 2 \leq k \leq l$, i.e.,

$$e_l^{(\overline{p}_l)} \cdots e_2^{(\overline{p}_2)} e_1^{(p_1)} e_2^{(p_2)} \cdots e_{l-1}^{(p_{l-1})} e_l^{(p_l)} \theta^{P_s} v \neq 0$$

for \mathfrak{g} of type B_l ; and $\overline{p}_k - \overline{p}_{k+1} \leq \lambda_k$, $1 \leq k \leq l$, $p_k - p_{k-1} - \overline{p}_{k-1} + 2\overline{p}_k - \overline{p}_{k+1} \leq \lambda_k$, $2 \leq k \leq l$, one has $\overline{p}_k \leq \overline{p}_{k+1} + \lambda_k$, $1 \leq k \leq l$, $p_k \leq p_{k-1} + \overline{p}_{k-1} - 2\overline{p}_k + \overline{p}_{k+1} + \lambda_k$, $2 \leq k \leq l$, and then $\prod_{n=1}^l \binom{\lambda_n + \overline{p}_{n+1}}{p_n} \neq 0$, $\prod_{k=2}^l \binom{\lambda_k + p_{k-1} + \overline{p}_{k-1} - 2\overline{p}_k + \overline{p}_{k+1}}{p_k} \neq 0$, i.e.

$$e_l^{(\overline{p}_l)} \cdots e_2^{(\overline{p}_2)} e_1^{(p_1)} e_2^{(p_2)} \cdots e_{l-1}^{(p_{l-1})} e_l^{(p_l)} \theta^{P_s} v \neq 0$$

for \mathfrak{g} of type C_l .

This shows that $\theta^{P_s}v \neq 0$. By our construction, it is easy to see that $\theta^{P_s}v \in M_{P_s}$ but $\theta^{P_s}v \notin M_{P_{s-1}}$. So we need only to prove that $e_i\theta^{P_s}v \in M_{P_{s-1}}$ for $1 \leq i \leq l-1$, and then we can conclude that $\theta^{P_s}v$ is a primitive vector in $V(\lambda)$. In fact

$$\begin{split} e_i \theta^{P_s} v &= e_i f_l^{(p_l)} f_{l-1}^{(p_{l-1})} \cdots f_2^{(p_2)} f_1^{(p_1)} f_2^{(\overline{p}_2)} \cdots f_l^{(\overline{p}_l)} v \\ &= \theta^{P_s} e_i v + f_l^{(p_l)} \cdots f_i^{(p_{i-1})} (h_i - p_i + 1) f_{i-1}^{(p_{i-1})} \cdots f_2^{(p_2)} f_1^{(p_1)} f_2^{(\overline{p}_2)} \cdots f_l^{(\overline{p}_l)} v + \\ & f_l^{(p_l)} f_{l-1}^{(p_{l-1})} \cdots f_2^{(p_2)} f_1^{(p_1)} f_2^{(\overline{p}_2)} \cdots f_i^{(\overline{p}_i - 1)} (h_i - \overline{p}_i + 1) f_{i+1}^{(\overline{p}_{i+1})} \cdots f_l^{(\overline{p}_l)} v \quad \text{by § 2.1 (4)} \\ &= (\lambda_i - p_i + 1 + p_{i-1} + \overline{p}_{i-1} - 2\overline{p}_i + \overline{p}_{i+1}) f_l^{(p_l)} \cdots f_i^{(p_{i-1})} f_{i-1}^{(p_{i-1})} \cdots f_2^{(p_2)} f_1^{(p_1)} f_2^{(\overline{p}_2)} \cdots \\ & f_l^{(\overline{p}_l)} v + (\lambda_i - \overline{p}_i + 1 + \overline{p}_{i+1}) f_l^{(p_l)} f_{l-1}^{(p_{l-1})} \cdots f_2^{(p_2)} f_1^{(p_1)} f_2^{(\overline{p}_2)} \cdots f_i^{(\overline{p}_i - 1)} \\ & f_{i+1}^{(\overline{p}_{i+1})} \cdots f_l^{(\overline{p}_l)} v \quad \text{by § 2.1 (2)} \end{split}$$

Note that $(0,\ldots,0,p_l,\ldots,p_{i+1},p_i-1,p_{i-1},\ldots,p_1,\overline{p}_2,\ldots,\overline{p}_l) \prec P_s, (0,\ldots,0,p_l,\ldots,p_2,p_1,\overline{p}_2,\ldots,\overline{p}_{i-1},\overline{p}_i-1,\overline{p}_{i+1},\ldots,\overline{p}_l) \prec P_s$, one has $e_i\theta^{P_s}v \in M_{P_{s-1}}$.

Thirdly, we show that $M_{P_s} = M_{P_{s-1}} + \mathfrak{U}_{\mathfrak{l}-1}\theta^{P_s}v$. " \supseteq " is easy to be proved by definition of M_{P_s} and §2.5. Here we only prove " \subseteq ". For any $K \in \Pi$ with $K \prec P_{s+1}$, one has a unique decomposition $K = K_2 + K_1$ with $K_2 \in \Pi'_{\lambda}$ and $K_1 \in \Pi_{l-1}$. If $K \prec P_s$, then $\theta^K v \in M_{P_{s-1}}$. Otherwise, when $P_s \preceq K \prec P_{s+1}$, we must have $K_2 = P_s$. Then

$$\theta^K v = \theta^{K_1 + K_2} v = \theta^{K_1} \theta^{P_s} v \in \mathfrak{U}_{l-1} \theta^{P_s} v$$

as required.

Finally, we show that $M_{P_s}/M_{P_{s-1}} \simeq V\left((\lambda-P_s\alpha)_{\mathfrak{U}_{\mathfrak{l}_{-1}}}\right)$. Let w be the canonical image of $\theta^{P_s}v$ in $M_{P_s}/M_{P_{s-1}}$. Then one has $M_{P_s}/M_{P_{s-1}} \simeq \mathfrak{U}_{\mathfrak{l}_{-1}}\mathfrak{w}$. Since $\theta^{P_s}v$ is a primitive vector in $V(\lambda)$, w becomes a maximal vector of weight $(\lambda-P_s\alpha)_{\mathfrak{U}_{\mathfrak{l}_{-1}}}$. Note the fact that $V(\lambda)$ is a finite dimensional module, and $M_{P_s}/M_{P_{s-1}}$ is also finite dimensional and generated by a maximal vector w, we must have $M_{P_s}/M_{P_{s-1}} \simeq V\left((\lambda-P_s\alpha)_{\mathfrak{U}_{\mathfrak{l}_{-1}}}\right)$ by Lemma 3.6.

Using the complete reducibility, we prove Theorem 3.8. \square

The following theorem was first proved in Littlemann [4] Corollary 6 of Theorem 6.1. We use induction on the rank of \mathfrak{g} to give a different proof.

Theorem 3.9 Let v be a maximal vector of $V(\lambda)$. Then $\{\theta^K v \mid K \in \Pi_{\lambda}\}$ forms a \mathbb{Z} -basis of $V(\lambda)_{\mathbb{Z}}$.

Proof We use induction on l. When l=2, one has for any $\lambda=(\lambda_1,\lambda_2)\in\Lambda^+$, by the Weyl character formula,

$$\dim V(\lambda) = \frac{1}{6}(\lambda_1 + 1)(\lambda_2 + 1)(\lambda_1 + \lambda_2 + 2)(\lambda_1 + 2\lambda_2 + 3),$$

for \mathfrak{g} of type B_2 , and

$$\dim V(\lambda) = \frac{1}{6}(\lambda_1 + 1)(\lambda_2 + 1)(\lambda_1 + \lambda_2 + 2)(2\lambda_1 + \lambda_2 + 3),$$

for \mathfrak{g} of type C_2 . Let

$$\Pi_{\lambda} = \{ K = (k_2^2, k_1^1, k_2^1, k_3^1) | k_3^1 \le \lambda_2, 2k_3^1 \le k_2^1 \le \lambda_1 + 2k_3^1, \frac{1}{2}k_2^1 \le k_1^1 \le \lambda_2 + k_2^1 - 2k_3^1, k_2^2 \le \lambda_1 + 2k_1^1 - 2k_2^1 + 2k_3^1 \}$$

for \mathfrak{g} of type B_2 , and

$$\Pi_{\lambda} = \{ K = (k_2^2, k_1^1, k_2^1, k_3^1) | k_3^1 \le \lambda_2, k_3^1 \le k_2^1 \le \lambda_1 + k_3^1, k_2^1 \le k_1^1 \le \lambda_2 + 2k_2^1 - 2k_3^1, k_2^2 \le \lambda_1 + k_1^1 - 2k_2^1 + k_3^1 \}$$

for \mathfrak{g} of type C_2 . Now we need only to show that the number of Π_{λ} is equal to $\dim V(\lambda)$, i.e., $\{\theta^K v | K \in \Pi_{\lambda}\}$ forms a \mathbb{Z} -basis of the \mathbb{Z} -form of $V(\lambda)$ and spans $V(\lambda)$ over \mathbb{C} . However, it could be done easily by an elementary but prolix calculation. We omit the detail here.

Assume that our theorem holds for l-1, and then we have to show that the theorem holds for l. Let us use the same notations as in the proof of Theorem 3.9, and construct the bases of M_{P_s} for $1 \leq s \leq t$. For s=1, one has $M_{P_1} \simeq V(\lambda_{\mathfrak{U}_{\mathfrak{l}-1}})$ as $\mathfrak{U}_{\mathfrak{l}-1}$ -module, and $\{\theta^K v \mid K \in \Pi_{l-1,\lambda_{\mathfrak{U}_{\mathfrak{l}-1}}}\}$ is a \mathbb{Z} -basis of M_{P_1} by the induction hypothesis. When s=2, note the following facts:

- i) $\theta^{K+P_2}v \in M_{P_2}$ if $K \in \Pi_{l-1,(\lambda-P_2\alpha)_{\mathfrak{U}_{l-1}}}$ by § 2;
- ii) The number of $\{\theta^K \mid K \in \Pi_{l-1,(\lambda-P_2\alpha)_{\mathfrak{g}_{l-1}}}\}$ is equal to $\dim V\left((\lambda-P_2\alpha)_{\mathfrak{g}_{l-1}}\right)$ by the induction hypothesis;
 - iii) $M_{P_2}/M_{P_1} \simeq V\left((\lambda P_2\alpha)_{\mathfrak{g}_{l-1}}\right).$

Therefore, we see that

$$\{\theta^K v | K \in \Pi_{l-1,\lambda_{\mathfrak{q}_l}} \} \left[\left. \left. \left. \left\{ \theta^K \theta^{P_2} v = \theta^{K+P_2} v | K \in \Pi_{l-1,(\lambda-P_2\alpha)_{\mathfrak{q}_l}} \right. \right. \right\} \right] \right]$$

forms a \mathbb{Z} -basis of M_{P_2} .

In this way, the set of

$$\{\theta^{K}v|K\in\Pi_{l-1,\lambda_{\mathfrak{g}_{l-1}}}\}\bigcup\{\theta^{K+P_{2}}v|K\in\Pi_{l-1,(\lambda-P_{2}\alpha)_{\mathfrak{g}_{l-1}}}\}\bigcup\cdots\bigcup\{\theta^{K+P_{t}}v|K\in\Pi_{l-1,(\lambda-P_{t}\alpha)_{\mathfrak{g}_{l-1}}}\}$$

forms a \mathbb{Z} -basis of $M_{P_t} = V(\lambda)$. Note that elements in both the above set and the set of $\{\theta^K v | K \in \Pi_{\lambda}\}$ are the same, this proves our theorem. \square

Theorem 3.10 Let $\mu \in \Pi(\lambda)$ be a weight of $V(\lambda)$. Then the multiplicity $m_{\lambda}(\mu)$ of μ in $V(\lambda)$

is equal to

$$\begin{split} m_{\lambda}(\mu) &= \dim V(\lambda)_{\mu} = \sum_{P \in \Pi_{\lambda}', \ P\alpha \ll \lambda - \mu} \dim V \left((\lambda - P\alpha)_{\mathfrak{U}_{\mathfrak{l}_{-1}}} \right)_{\mu_{\mathfrak{U}_{\mathfrak{l}_{-1}}}} \\ &= \sum_{P \in \Pi_{\lambda}', \ P\alpha \ll \lambda - \mu} m_{(\lambda - P\alpha)_{\mathfrak{U}_{\mathfrak{l}_{-1}}}} \left(\mu_{\mathfrak{U}_{\mathfrak{l}_{-1}}} \right). \end{split}$$

Proof Let us use the same notations as in the proof of Theorem 3.8, and let $\lambda - \mu = a_1 \alpha_1 + a_2 \alpha_2 + \cdots + a_l \alpha_l$ with all $a_i \geq 0$, i = 1, 2, ..., l. Let \mathcal{M} be the set of the basis elements in the weight space of μ of $V(\lambda)$. They satisfy the following conditions:

$$\mathcal{M} = \{ \theta^K v \mid K = (k_l^l, k_{l-1}^{l-1}, k_l^{l-1}, k_{l+1}^{l-1}, \dots, k_{l-i+1}^{l-i+1}, \dots, k_{l-1}^{l-i+1}, k_l^{l-i+1}, k_{l+1}^{l-i+1}, \dots, \\ k_{l+i-1}^{l-i+1}, \dots, k_1^1, k_2^1, \dots, k_{l-1}^1, k_l^1, k_{l+1}^1, \dots, k_{2l-1}^1) \in \Pi_{\lambda}, \text{ with } k_1^1 + k_{2l-1}^1 = a_l, \\ k_2^1 + k_{2l-2}^1 + k_2^2 + k_{2l-2}^2 = a_{l-1}, \dots, k_{l-1}^1 + k_{l+1}^1 + \dots + k_{l-1}^{l-1} + k_{l+1}^{l-1} = a_2, \\ k_l^1 + k_l^2 + \dots + k_l^l = a_1 \}.$$

Then the number of \mathcal{M} is equal to $m_{\lambda}(\mu)$. If we divide \mathcal{M} into a disjoint union of \mathcal{M}_i , where $\mathcal{M}_i = \{\theta^K v \mid K \in \mathcal{M} \text{ with } P_i \prec K \prec P_{i+1}\}$. From Theorem 3.9, we see that $\mathcal{M}_i \subseteq M_{P_i}$, and the number of \mathcal{M}_i is equal to $m_{(\lambda - P_i \alpha)}(\mu_{\mathfrak{U}_{\mathfrak{l}-1}})$. Theorem 3.10 follows from Theorem 3.8. \square

4. Examples

When $\mathfrak{g}_{\mathfrak{l}}$ is of type C_3 , for any $\lambda = \lambda_1 \omega_1 + \lambda_2 \omega_2 + \lambda_3 \omega_3 = (\lambda_1, \lambda_2, \lambda_3) \in \Lambda^+$, one has the following index sets:

$$\begin{split} \Pi = & \{ (k_3^3, k_2^2, k_3^2, k_4^2, k_1^1, k_2^1, k_3^1, k_4^1, k_5^1) | k_2^2 \ge k_3^2 \ge k_4^2, k_1^1 \ge k_2^1 \ge k_3^1 \ge k_4^1 \ge k_5^1 \} \subseteq \mathbb{N}^9; \\ \Pi' = & \{ (0, \dots, 0, k_1^1, k_2^1, k_3^1, k_4^1, k_5^1) | k_1^1 \ge k_2^1 \ge k_3^1 \ge k_4^1 \ge k_5^1 \} \subseteq \mathbb{N}^9; \\ \Pi_{\lambda} = & \{ (k_3^3, k_2^2, k_3^2, k_4^2, k_1^1, k_2^1, k_3^1, k_4^1, k_5^1) \in \Pi | k_5^1 \le \lambda_3, k_4^1 \le \lambda_2 + k_5^1, k_3^1 \le \lambda_1 + k_4^1, \\ k_2^1 \le \lambda_2 + 2k_3^1 - 2k_4^1 + k_5^1, k_1^1 \le \lambda_3 + k_2^1 + k_4^1 - 2k_5^1, k_4^2 \le \lambda_2 + k_1^1 - 2k_2^1 + 2k_3^1 - 2k_4^1 + k_5^1, k_3^2 \le \lambda_1 + k_4^2 + k_2^1 - 2k_3^1 + k_4^1, k_2^2 \le \lambda_2 + 2k_3^2 - 2k_4^2 + k_1^1 - 2k_2^1 + 2k_3^1 - 2k_3^1 - 2k_4^1 + k_5^1, k_3^3 \le \lambda_1 + k_2^2 - 2k_3^2 + k_4^2 + k_2^1 - 2k_3^1 + k_4^1 \}; \\ \Pi'_{\lambda} = & \{ (0, \dots, 0, p_3, p_2, p_1, \overline{p}_2, \overline{p}_3) \in \Pi' | \overline{p}_3 \le \lambda_3, \overline{p}_2 \le \lambda_2 + \overline{p}_3, p_1 \le \lambda_1 + \overline{p}_2, \\ p_2 \le \lambda_2 + 2p_1 - 2\overline{p}_2 + \overline{p}_3, p_3 \le \lambda_3 + p_2 + \overline{p}_2 - 2\overline{p}_3 \}. \end{split}$$

Take $\lambda = \omega_1 + \omega_2 + \omega_3 = (1, 1, 1)$, then one has

$$\begin{split} \Pi_{\lambda} = & \{ (k_3^3, k_2^2, k_3^2, k_4^2, k_1^1, k_2^1, k_3^1, k_4^1, k_5^1) \mid k_5^1 \leq 1, \ k_4^1 \leq 1 + k_5^1, k_3^1 \leq 1 + k_4^1, \\ & k_2^1 \leq 1 + 2k_3^1 - 2 \ k_4^1 + k_5^1, \ k_1^1 \leq 1 + k_2^1 + k_4^1 - 2k_5^1, \ k_4^2 \leq 1 + k_1^1 - 2k_2^1 + \\ & 2k_3^1 - 2k_4^1 + k_5^1, \ k_3^2 \leq 1 + k_4^2 + k_2^1 - 2k_3^1 + k_4^1, \ k_2^2 \leq 1 + 2k_3^2 - 2k_4^2 + \\ & k_1^1 - 2k_2^1 + 2k_3^1 - 2k_4^1 + k_5^1, \ k_3^3 \leq 1 + k_2^2 - 2k_3^2 + k_4^2 + k_2^1 - 2k_3^1 + k_4^1 \} \subseteq \Pi, \\ & \Pi_{\lambda}' = & \{ P_1 = (0, \dots, 0, 0, 0, 0, 0, 0, 0) \prec P_2 = (0, \dots, 0, 1, 0, 0, 0, 0) \prec P_3 = (0, \dots, 0, 1, 1, 0, 0, 0) \\ & \prec P_4 = (0, \dots, 0, 2, 1, 0, 0, 0) \prec P_5 = (0, \dots, 0, 1, 1, 1, 0, 0) \prec P_6 = (0, \dots, 0, 2, 1, 1, 0, 0) \end{split}$$

Therefore, one has the following \mathfrak{U}_2 -module isomorphisms:

$$\begin{split} &M_{P_1}\simeq V(1,1), \qquad M_{P_2}/M_{P_1}\simeq V(1,2), \quad M_{P_3}/M_{P_2}\simeq V(2,0), \\ &M_{P_4}/M_{P_3}\simeq V(2,1), \quad M_{P_5}/M_{P_4}\simeq V(0,2), \quad M_{P_6}/M_{P_5}\simeq V(0,3), \\ &M_{P_7}/M_{P_6}\simeq V(1,1), \quad M_{P_8}/M_{P_7}\simeq V(1,2), \quad M_{P_9}/M_{P_8}\simeq V(2,0), \\ &M_{P_{10}}/M_{P_9}\simeq V(2,1), \quad M_{P_{11}}/M_{P_{10}}\simeq V(1,0), M_{P_{12}}/M_{P_{11}}\simeq V(1,1), \\ &M_{P_{13}}/M_{P_{12}}\simeq V(1,2), M_{P_{14}}/M_{P_{13}}\simeq V(0,1), M_{P_{15}}/M_{P_{14}}\simeq V(0,2), \\ &M_{P_{16}}/M_{P_{15}}\simeq V(0,3), M_{P_{17}}/M_{P_{16}}\simeq V(1,0), M_{P_{18}}/M_{P_{17}}\simeq V(1,1), \\ &M_{P_{19}}/M_{P_{18}}\simeq V(1,2), M_{P_{20}}/M_{P_{19}}\simeq V(1,1), M_{P_{21}}/M_{P_{20}}\simeq V(2,0), \\ &M_{P_{22}}/M_{P_{21}}\simeq V(0,2), M_{P_{23}}/M_{P_{22}}\simeq V(1,1), M_{P_{24}}/M_{P_{23}}\simeq V(2,0), \\ &M_{P_{25}}/M_{P_{24}}\simeq V(1,0), M_{P_{26}}/M_{P_{25}}\simeq V(1,1), M_{P_{27}}/M_{P_{26}}\simeq V(0,1), \\ &M_{P_{28}}/M_{P_{27}}\simeq V(0,2), M_{P_{29}}/M_{P_{28}}\simeq V(1,0), M_{P_{30}}/M_{P_{29}}\simeq V(1,1). \end{split}$$

Moreover, $V(\omega_1 + \omega_2 + \omega_3)|_{\mathfrak{U}_2} \simeq \bigoplus_{i=1}^{30} V(\lambda - P_i \alpha)|_{\mathfrak{U}_2}$. Take $\mu = \omega_1 + \omega_3 = (1, 0, 1)$, one has $m_{\lambda}(\mu) = 6$, $\lambda - \mu = \alpha_1 + 2\alpha_2 + \alpha_3$. Using Theorem 3.11, one has

$$m_{\lambda}(\mu) = m_{(\lambda - P_{2}\alpha)_{\mathfrak{U}_{2}}}(\mu_{\mathfrak{U}_{2}}) + m_{(\lambda - P_{3}\alpha)_{\mathfrak{U}_{2}}}(\mu_{\mathfrak{U}_{2}}) + m_{(\lambda - P_{5}\alpha)_{\mathfrak{U}_{2}}}(\mu_{\mathfrak{U}_{2}}) + m_{(\lambda - P_{11}\alpha)_{\mathfrak{U}_{2}}}(\mu_{\mathfrak{U}_{2}})$$

$$= m_{(1,2)}(1,0) + m_{(2,0)}(1,0) + m_{(0,2)}(1,0) + m_{(1,0)}(1,0) = 3 + 1 + 1 + 1 = 6.$$

References

- [1] HUMPHREYS J E. Introduction to Lie Algebras and Representation Theory [M]. Springer-Verlag, New York-Berlin, 1972.
- [2] JANTZEN J C. Representations of Algebraic Groups [M]. Second edition. American Mathematical Society, Providence, RI, 2003.
- [3] LITTELMANN P. An algorithm to compute bases and representation matrices for SL_{n+1} -representations [J]. J. Pure Appl. Algebra, 1997, 117/118: 447–468.
- [4] LITTELMANN P. Cone, crystal and pattern [J]. Transform. Groups, 1998, 3(2): 145–179.
- [5] YE Jiachen, ZHOU Zhongguo. A new multiplicity formula for the Weyl modules of type A [J]. Comm. Algebra, 2005, **33**(12): 4361–4373.