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1. Introduction and main results

Suppose readers are familiar with the knowledge of value distribution and uniqueness theory

of meromorphic functions. Some basic notions, for example, T (r, f), m(r, f), N(r, f), N(r, f),

S(r, f), can be refered to [4, 5, 7, 8].

Some problems on the uniqueness of entire functions and their differential polynomials sharing

the value 1 CM have been studied and some important results were obtained in [2, 3, 7, 9, 10].

For example, Zhang, Chen and Lin [10] obtained the following result:

Theorem A ([10]) Let f and g be two nonconstant entire functions, and let n, m and k be

three positive integers with n ≥ 3m +2k +5, and let P (z) = amzm + am−1z
m−1 + · · ·+ a1z + a0

or P (z) ≡ c0, where a0 6= 0, a1, . . . , am−1, am 6= 0, c0 6= 0 are complex constants. If [fnP (f)](k)

and [gnP (g)](k) share 1 CM , then

(i) when P (z) = amzm + am−1z
m−1 + · · · + a1z + a0, either f ≡ tg for a constant t such

that td = 1, where d = (n + m, . . . , n + m− i, . . . , n), am−i 6= 0 for some i = 0, 1, . . . , m, or f and

g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) = ωn
1 (amωm

1 + am−1ω
m−1
1 + · · · +

a1ω1 + a0) − ωn
2 (amωm

2 + am−1ω
m−1
2 + · · · + a1ω2 + a0);

(ii) when P (z) ≡ c0, either f = c1/ n
√

c0e
cz, g = c2/ n

√
c0e

−cz, where c1, c2 and c are three

constants satisfying (−1)k(c1c2)
n(nc)2k = 1, or f ≡ tg for a constant t such that tn = 1.
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Recently, many mathematicians (such as Yi, Lahiri, Fang, Banerjee, Lin, and others) are

very interested in investigating the meromorphic functions sharing values with finite weight in

the field of complex analysis. So one may ask: In Theorem A, can the nature of sharing 1 CM

be further relaxed to finite weight?

In this paper the possible solutions of the above problem are investigated and the following

theorems which are the main results of the paper are obtained.

Theorem 1.1 Let f(z), g(z) be two transcendental entire functions and let n, k, m, l be four

positive integers with n > 19
3 m + 14

3 (k + 1). If El)(1; [fnP (f)](k)) = El)(1; [gnP (g)](k)) and

E1)(1; [fnP (f))](k)) = E1)(1; [gnP (g)](k)), where l ≥ 3, then the conclusion of Theorem A still

holds.

Theorem 1.2 Let f(z), g(z) be two transcendental entire functions and let n, k, m, l be four

positive integers with n > 5m+4k+4. If El)(1; [fnP (f)](k)) = El)(1; [gnP (g)](k)) and E2)(1; [fn

P (f)](k)) = E2)(1; [gnP (g)](k)), where l ≥ 4, then the conclusion of Theorem A still holds.

Though the standard definitions and notations of the value distribution theory are available

in [4, 6], we explain some definitions and notations which are used in the paper.

Definition 1.1 ([1]) Let k and r be two positive integers such that 1 ≤ r < k − 1 and for

a ∈ C, Ek)(a; f) = Ek)(a; g), Er)(a; f) = Er)(a; g). Let z0 be a zero of f − a of multiplicity p

and a zero of g− a of multiplicity q. We denote by NL(r, a; f)(NL(r, a; g)) the reduced counting

function of those a-points of f and g for which p > q ≥ r+1(q > p ≥ r+1), by N
(r+1

E (r, a; f) the

reduced counting function of those a-points of f and g for which p = q ≥ r + 1, by Nf>s(r, a; g)

the reduced counting functions of those a-points of f and g for which p > q = s, and by

Nf≥k+1(r, a; f |g 6= a)(N g≥k+1(r, a; g|f 6= a)) the reduced counting functions of those a-points of

f and g for which p ≥ k + 1 and q = 0 (q ≥ k + 1 and p = 0).

If r = 0 in Definition 1.1, then we use the same notations as in Definition 1.1 except for that

by N
1)

E (r, a; f) we mean the common simple a-points of f and g and by N
(2

E (r, a; f) we mean the

reduced counting functions of those a-points of f and g for which p = q ≥ 2.

Definition 1.2 ([6]) Let a, b ∈ C∪{∞}. We denote by N(r, a; f |g = b) the counting function of

those a-points of f , counted according to multiplicity, which are b-points of g; by N(r, a; f |g 6= b)

the counting function of those a-points of f , counted according to multiplicity, which are not the

b-points of g.

2. Some lemmas

For the proof of our results we need the following lemmas.

Lemma 2.1 ([7]) Let f be a nonconstant meromorphic function and P (f) = a0 + a1f + a2f
2 +

· · · + anfn, where a0, a1, a2, . . . , an are constants and an 6= 0. Then

T (r, P (f)) = nT (r, f) + S(r, f).
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Lemma 2.2 ([4]) Let f(z) be a transcendental entire function, k a positive integer, and let c

be a non-zero finite complex number. Then

T (r, f) ≤ N(r, 0; f) + N(r, c; f (k)) − N(r, 0; f (k+1)) + S(r, f) (1)

≤ Nk+1(r, 0; f) + N(r, c; f (k)) − N0(r, 0; f (k+1)) + S(r, f), (2)

where N0(r, 0; f (k+1)) is the counting function which only counts those points such that f (k+1) =

0 but f(f (k) − c) 6= 0.

Lemma 2.3 ([4]) Let f(z) be a meromorphic function and α1(z), α2(z) be two meromorphic

functions such that T (r, αi) = S(r, f) (i = 1, 2). Then

T (r, f) ≤ N(r,∞; f) + N(r, α1(z); f) + N(r, α2(z); f) + S(r, f).

Lemma 2.4 Let f be a nonconstant entire function. Then

N(r, 0; f (k)) ≤ Nk(r, 0; f) + N(r, 0; f) + S(r, f).

Proof Since

N(r, 0; f (k)) ≤ N(r,
f

f (k)
) + N(r, 0; f) ≤ T (r,

f

f (k)
) + N(r, 0; f)

≤ T (r,
f (k)

f
) + N(r, 0; f) + S(r, f)

≤ N(r,
f (k)

f
) + m(r,

f (k)

f
) + N(r, 0; f) + S(r, f),

we estimate N(r, f(k)

f
) in the following.

Obviously, the poles of f(k)

f
may only occur at the zeros of f . If z0 is a q(q ≤ k) order zero

of f , then z0 is a at most q order pole of f(k)

f
, and if z0 is a q(q > k) order zero of f , then z0 is

a k order pole of f(k)

f
. Hence we have

N(r,
f (k)

f
) ≤ Nk(r, 0; f) + S(r, f),

i.e.,

N(r, 0; f (k)) ≤ Nk(r, 0; f) + N(r, 0; f) + S(r, f). 2

Lemma 2.5 ([1]) Let F , G be two nonconstant entire functions such that E1)(1; F ) = E1)(1; G)

and H 6≡ 0. Then

N
1)
E (r, 1; F ) ≤ N(r,∞; H) + S(r, F ) + S(r, G),

where H = (F ′′

F ′
− 2F ′

F−1 ) − (G′′

G′
− 2G′

G−1).

Lemma 2.6 ([1]) Let F , G be two nonconstant entire functions such that El)(1; F ) = El)(1; G),

E1)(1; F ) = E1)(1; G) and H 6≡ 0, where l ≥ 3. Then

N(r,∞; H) ≤N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + NL(r, 1; F ) + NL(r, 1; G)+

NF≥l+1(r, 1; F |G 6= 1) + NG≥l+1(r, 1; G|F 6= 1) + N0(r, 0; F ′)+
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N0(r, 0; G′),

where N0(r, 0; F ′) is the reduced counting function of those zeros of F ′ which are not the zeros

of F (F − 1) and N0(r, 0; G′) is similarly defined.

Lemma 2.7 ([1]) Let F , G be two nonconstant entire functions such that El)(1; F ) = El)(1; G),

E1)(1; F ) = E1)(1; G) and H 6≡ 0, where l ≥ 3. Then

2NL(r, 1; F ) + 2NL(r, 1; G) + N
(2

E (r, 1; F ) + lNG≥l+1(r, 1; G|F 6= 1) − NF>2(r, 1; G)

≤ N(r, 1; G) − N(r, 1; G).

Lemma 2.8 Let F , G be two nonconstant entire functions such that El)(1; F ) = El)(1; G),

E1)(1; F ) = E1)(1; G), where l ≥ 3. Then

NF>2(r, 1; G) + 2NF≥l+1(r, 1; F |G 6= 1) ≤ 2

3
N(r, 0; F ) − 2

3
N0(r, 0; F ′) + S(r, F ).

Proof We note that any 1-point of F with multiplicity ≥ 3 is counted at most twice. Hence we

see that

NF>2(r, 1; G) + 2NF≥l+1(r, 1; F |G 6= 1) ≤ 2

3
N(r, 0; F ′|F = 1)

≤ 2

3
N(r, 0; F ′|F 6= 0) − 2

3
N0(r, 0; F ′) ≤ 2

3
N(r, 0; F ) − 2

3
N0(r, 0; F ′) + S(r, F ).

This completes the proof of the lemma. 2

Lemma 2.9 Let F ∗, G∗ be two nonconstant entire functions and El)(1; (F ∗)(k)) = El)(1; (G∗)(k)),

E1)(1; (F ∗)(k)) = E1)(1; (G∗)(k)) and H∗ 6≡ 0, where l ≥ 3. Then

T (r, F ∗) ≤5

3
N(r, 0; F ∗) +

5

3
Nk(r, 0; F ∗) + Nk+1(r, 0; F ∗) + N(r, 0; G∗)+

Nk(r, 0; G∗) + Nk+1(r, 0; G∗) + S(r, F ∗) + S(r, G∗),

where

H∗ ≡
[ (F ∗)(k+2)

(F ∗)(k+1)
− 2(F ∗)(k+1)

(F ∗)(k) − 1

]

−
[ (G∗)(k+2)

(G∗)(k+1)
− 2(G∗)(k+1)

(G∗)(k) − 1

]

.

Proof Let F = (F ∗)(k) and G = (G∗)(k). Then the condition of this lemma is El)(1; F ) =

El)(1; G), E1)(1; F ) = E1)(1; G) and H∗ = H 6≡ 0. Using Lemmas 2.5 and 2.7, we get

N(r, 1; F ) + N(r, 1; G) ≤ N(r, 1; F | = 1) + NL(r, 1; F ) + NL(r, 1; G) + N
(2

E (r, 1; F )+

NF≥l+1(r, 1; F |G 6= 1) + N(r, 1; G)

≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + NL(r, 1; F ) + NL(r, 1; G)+

NF≥l+1(r, 1; F |G 6= 1) + NG≥l+1(r, 1; G|F 6= 1)+

NL(r, 1; F ) + NL(r, 1; G) + N
(2

E (r, 1; F )+

NF≥l+1(r, 1; F |G 6= 1) + T (r, G) − m(r, 1; G)+

O(1) − 2NL(r, 1; F ) − 2NL(r, 1; G) − N
(2

E (r, 1; F )−
lNG≥l+1(r, 1; G|F 6= 1) + NF>2(r, 1; G) + N0(r, 0; F ′)+
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N0(r, 0; G′) + S(r, F ) + S(r, G)

≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + T (r, G) − m(r, 1; G)+

2NF≥l+1(r, 1; F |G 6= 1) + NF>2(r, 1; G)−
(l − 1)NG≥l+1(r, 1; G|F 6= 1) + N0(r, 0; F ′)+

N0(r, 0; G′) + S(r, F ) + S(r, G).

From Lemma 2.8, we can get

N(r, 1; F ) + N(r, 1; G) ≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + T (r, G) − m(r, 1; G)+

2

3
N(r, 0; F ) − (l − 1)NG≥l+1(r, 1; G|F 6= 1)+

N0(r, 0; F ′) + N0(r, 0; G′) + S(r, F ) + S(r, G). (3)

Using Lemma 2.2 for F ∗ and G∗, we get

T (r, F ∗) ≤ Nk+1(r, 0; F ∗) + N(r, 1; F ) − N0(r, 0; F ′) + S(r, F ∗), (4)

T (r, G∗) ≤ Nk+1(r, 0; G∗) + N(r, 1; G) − N0(r, 0; G′) + S(r, G∗). (5)

Adding (4) and (5) gives

T (r, F ∗) + T (r, G∗) ≤Nk+1(r, 0; F ∗) + Nk+1(r, 0; G∗) + N(r, 1; F ) + N(r, 1; G)−
N0(r, 0; F ′) − N0(r, 0; G′) + S(r, F ∗) + S(r, G∗). (6)

Since

T (r, G) = T (r, (G∗)(k)) ≤ T (r, G∗) + S(r, G∗), (7)

from (3), (6), (7) and S(r, F ) = S(r, F ∗), S(r, G) = S(r, G∗), it follows

T (r, F ∗) ≤Nk+1(r, 0; F ∗) + Nk+1(r, 0; G∗) + N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2)−

m(r, 1; G) +
2

3
N(r, 0; F ) + S(r, F ∗) + S(r, G∗). (8)

Since F = (F ∗)(k) and G = (G∗)(k), from Lemma 2.4, (8) becomes

T (r, F ∗) ≤Nk+1(r, 0; F ∗) +
5

3
N(r, 0; F ∗) +

5

3
Nk(r, 0; F ∗) + Nk+1(r, 0; G∗)+

N(r, 0; G∗) + Nk(r, 0; G∗) + S(r, F ∗) + S(r, G∗). (9)

Lemma 2.10 Let F ∗, G∗ be two transcendental entire functions and El)(1; (F ∗)(k)) = El)(1;

(G∗)(k)), E1)(1; (F ∗)(k)) = E1)(1; (G∗)(k)) where l ≥ 3. If

∆1l =
5

3
Θ(0, F ∗) +

5

3
δk(0; F ∗) + δk+1(0; F ∗) + Θ(0, G∗) + δk(0; G∗) + δk+1(0; G∗) >

19

3
,

Then (F ∗)(k)(G∗)(k) ≡ 1 or F ∗ ≡ G∗.

Proof From Lemma 2.9, we first suppose that H 6≡ 0. Without loss of generality, we suppose

that there exists a set I with infinite measure such that T (r, G∗) ≤ T (r, F ∗) for r ∈ I. From

Lemma 2.9 we get

T (r, F ∗) ≤{22

3
− δk+1(0; F ∗) − 5

3
Θ(0, F ∗) − 5

3
δk(0; F ∗) − δk+1(0; G∗)−
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Θ(0, G∗) − δk(0; G∗) + ε}T (r, F ∗) + S(r, F ∗), (10)

for r ∈ I and 0 < ε < ∆1l − 19
3 , that is, {∆1l − 19

3 − ε}T (r, F ∗) ≤ S(r, F ∗), i.e., ∆1l − 19
3 ≤ 0,

i.e.,

∆1l ≤
19

3
,

which is a contradiction to the condition of Lemma 2.10.

Therefore, we have H ≡ 0, then

(F ∗)(k+2)

(F ∗)(k+1)
− 2(F ∗)(k+1)

(F ∗)(k) − 1
≡ (G∗)(k+2)

(G∗)(k+1)
− 2(G∗)(k+1)

(G∗)(k) − 1
. (11)

From this equation we get

(G∗)(k) =
(b + 1)(F ∗)(k) + (a − b − 1)

b(F ∗)(k) + (a − b)
, (12)

where a (6= 0), b are two constants. Then by the same argument of Lemma 4 in [3], we can

deduce that (F ∗)(k)(G∗)(k) ≡ 1 or (F ∗)(k) ≡ (G∗)(k).

Suppose that (F ∗)(k) ≡ (G∗)(k). Thus, we obtain

F ∗ = G∗ + p(z),

where p(z) is a polynomial, then T (r, F ∗) = T (r, G∗) + S(r, F ∗). If p(z) 6≡ 0, then by Lemma

2.3, we have

T (r, F ∗) ≤ N(r, 0; F ∗) + N(r, p; F ∗) + S(r, F ∗)

≤ N(r, 0; F ∗) + N(r, 0; G∗) + S(r, F ∗). (13)

Hence, by the condition of this lemma we deduce easily that T (r, F ∗) ≤ S(r, F ∗), r ∈ I, a

contradiction. Therefore, we deduce that p(z) ≡ 0, that is, F ∗ ≡ G∗.

Thus we complete the proof of Lemma 2.10. 2

Lemma 2.11 Let F , G be two nonconstant entire functions such that El)(1; (F ∗)(k)) =

El)(1; (G∗)(k)), E2)(1; (F ∗)(k)) = E2)(1; (G∗)(k)) and H∗ 6≡ 0, where l ≥ 4. Then

T (r, F ∗) + T (r, G∗) ≤2Nk+1(r, 0; F ∗) + 2N(r, 0; F ∗) + 2Nk(r, 0; F ∗) + 2Nk+1(r, 0; G∗)+

2N(r, 0; G∗) + 2Nk(r, 0; G∗) + S(r, F ∗) + S(r, G∗),

where H∗ is defined as Lemma 2.9.

Proof Let F = (F ∗)(k) and G = (G∗)(k). Then El)(1; F ) = El)(1; G), E2)(1; F ) = E2)(1; G).

Since H∗ 6≡ 0, by Lemma 2.2 and 2.6 we get

T (r, F ∗) + T (r, G∗)

≤ Nk+1(r, 0; F ∗) + Nk+1(r, 0; G∗) + N(r, 1; (F ∗)(k)) + N(r, 1; (G∗)(k))−
N0(r, 0; (F ∗)(k+1)) − N0(r, 0; (G∗)(k+1)) + S(r, F ∗) + S(r, G∗)

≤ Nk+1(r, 0; F ∗) + Nk+1(r, 0; G∗) + N(r, 1; (F ∗)(k)| = 1) + N(r, 1; (F ∗)(k)| ≥ 2)+

N(r, 1; (G∗)(k)) − N0(r, 0; (F ∗)(k+1)) − N0(r, 0; (G∗)(k+1)) + S(r, F ∗) + S(r, G∗)
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≤ Nk+1(r, 0; F ∗) + Nk+1(r, 0; G∗) + N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2)+

NL(r, 1; F ) + NL(r, 1; G) + NF≥l+1(r, 1; F |G 6= 1) + N(r, 1; G)+

NG≥l+1(r, 1; G|F 6= 1) + N(r, 1; F | ≥ 2) + S(r, F ∗) + S(r, G∗).

Since N(r, 1; F | = l; G| = l − 1) + · · ·+ N(r, 1; F | = l; G| = 3) ≤ N(r, 1; F | = l) and N(r, 1; G| =

l; F | = l − 1) + · · ·+ N(r, 1; G| = l; F | = 3) ≤ N(r, 1; G| = l), it is easy to see that NL(r, 1; F ) +

NL(r, 1; G) + NF≥l+1(r, 1; F |G 6= 1) + NG≥l+1(r, 1; G|F 6= 1) + N(r, 1; F | ≥ 2) + N(r, 1; (G) ≤
1
2 [N(r, 1; F ) + N(r, 1; G)] ≤ 1

2 [T (r, F ) + T (r, G)].

Since

T (r, F ) = T (r, (F ∗)(k)) ≤ T (r, F ∗) + S(r, F ∗); T (r, G) = T (r, (G∗)(k)) ≤ T (r, G∗) + S(r, G∗).

Then by Lemma 2.4, we can get

T (r, F ∗) + T (r, G∗) ≤2Nk+1(r, 0; F ∗) + 2N(r, 0; F ∗) + 2Nk(r, 0; F ∗) + 2Nk+1(r, 0; G∗)+

2N(r, 0; G∗) + 2Nk(r, 0; G∗) + S(r, F ∗) + S(r, G∗).

This completes the proof of the lemma. 2

Lemma 2.12 Let F ∗, G∗ be two transcendental entire functions and El)(1; (F ∗)(k)) = El)(1;

(G∗)(k)), E2)(1; (F ∗)(k)) = E2)(1; (G∗)(k)), where l ≥ 4. If

ΘF∗(0) >
5

2
, ΘG∗(0) >

5

2
,

where Θf (0) = Θ(0; f) + δk(0; f) + δk+1(0; f), then (F ∗)(k)(G∗)(k) ≡ 1 or F ∗ ≡ G∗.

Proof We omit the proof since the proof can be carried out in the line of proof of Lemma 2.10

by using the Lemma 2.11. This completes the proof of the lemma. 2

Proof of Theorem 1.1 (i) P (z) = amzm + am−1z
m−1 + · · · + a1z + a0. By the assumptions

of Theorem 2.1 and Lemma 5 in [10], we know that f and g are transcendental entire functions.

Let F = fnP (f) and G = gnP (g). From the condition of Theorem 2.1, we have El)(1; F (k)) =

El)(1; G(k)) and E1)(1; F (k)) = E1)(1; G(k)).

By Lemma 2.1 we can get easily

Θ(0, F ) = 1 − lim
r→∞

N(r, 0; F )

T (r, F )
= 1 − lim

r→∞

N(r, 0; fnP (f))

(n + m)T (r, f)

= 1 − lim
r→∞

N(r, 0; f) + N(r, 0; P (f))

(n + m)T (r, f)
,

i.e.,

Θ(0, F ) ≥ 1 − m + 1

n + m
=

n − 1

n + m
. (14)

Similarly, we have

Θ(0, G) ≥ n − 1

n + m
. (15)



694 H. Y. XU and T. B. CAO

Next, by the definition of Nk(r, a; f) we have

δk(0, F ) = 1 − lim
r→∞

Nk(r, 0; fnP (f))

T (r, F )
.

Therefore

δk(0, F ) ≥ 1 − lim
r→∞

(m + k)T (r, f)

(n + m)T (r, f)
=

n − k

n + m
. (16)

Similarly we get

δk(0, G) ≥ n − k

n + m
(17)

and

δk+1(0, F ) ≥ n − k − 1

n + m
, δk+1(0, G) ≥ n − k − 1

n + m
. (18)

From (14)–(18), we can get

∆1l = δk+1(0; F ) +
5

3
Θ(0, F ) +

5

3
δk(0; F ) + δk+1(0; G) + Θ(0, G) + δk(0; G)

≥ n − k − 1

n + m
+

5

3

2n − k − 1

n + m
+

3n − 2k − 2

n + m
.

By n > 19
3 m + 14

3 (k + 1), we have

∆1l = δk+1(0; F ) +
5

3
Θ(0, F ) +

5

3
δk(0; F ) + δk+1(0; G) + Θ(0, G) + δk(0; G) >

19

3
.

Therefore by Lemma 2.10, we deduce either F (k) · G(k) ≡ 1 or F ≡ G.

If F (k) · G(k) ≡ 1, that is

[fn(amfm + am−1f
m−1 + · · · + a0)]

(k)[gn(amgm + am−1g
m−1 + · · · + a0)]

(k) ≡ 1, (19)

then by the assumptions of Theorem 1.1 and Proposition 1 in [10] we can get a contradiction.

Hence, we deduce that F ≡ G, that is

fn(amfm + am−1f
m−1 + · · · + a0) = gn(amgm + am−1g

m−1 + · · · + a0). (20)

Let h = f/g. If h is a constant, then substituting f = gh into (20), we deduce

amgn+m(hn+m − 1) + am−1g
n+m−1(hn+m−1 − 1) + · · · + a0g

n(hn − 1) = 0,

which implies hd = 1, where d = (n+m, . . . , n+m− i, . . . , n), am−i 6= 0 for some i = 0, 1, . . . , m.

Thus f ≡ tg for a constant t such that td = 1, where d = (n+m, . . . , n+m− i, . . . , n), am−i 6= 0

for some i = 0, 1, . . . , m.

If h is not a constant, then we know by (20) that f and g satisfy the algebraic equation

R(f, g) = 0, where R(ω1, ω2) = ωn
1 (amωm

1 +am−1ω
m−1
1 +· · ·+a1ω1+a0)−ωn

2 (amωm
2 +am−1ω

m−1
2 +

· · · + a1ω2 + a0). This proves (i) of Theorem 1.1.

(ii) P (z) ≡ c0. From Theorem A, we can easily see that the case (ii) of Theorem 1.1 holds.

Thus, we complete the proof of Theorem 1.1. 2

Proof of Theorem 1.2 By the conditions of Theorem 1.2 and Lemma 2.12, using the same

argument as in Theorem 1.1, one can easily prove Theorem 1.2.
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