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the examples show that the conditions of theorem are necessary.
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1. Introduction and main results

In this paper, it is assumed that the reader is familiar with the notations of Nevanlinna

theory of meromorphic functions, for instance,

T (r, f), N(r, f), m(r, f), N(r, f), . . . .

We denote by S(r, f) any function satisfying S(r, f) = o{T (r, f)}, as r → +∞, possibly outside

of a set with finite measure in R.

Let D be a domain in C, and let F be a family of meromorphic functions defined in D. The

family F is said to be normal in D, in the sense of Montel, if each sequence {fn} ⊂ F contains a

subsequence {fnj
} that converges, spherically locally uniformly in D, to a meromorphic function

or ∞ ([2, 6, 8]).

Now let F be a family of meromorphic functions on D. Schwick proved in [7] that if there

exist three distinct finite values a1, a2, a3 ∈ C such that f(z) and f ′(z) share aj (j = 1, 2, 3)

for each f(z) ∈ F, then F is normal in D. The corresponding statement in which f(z) and f ′(z)

share two distinct finite values a1, a2 ∈ C remains valid, as is shown by Pang and Zalcman [4].

Chang, Fang and Zalcman [10] gave a simplified proof of a result of Pang and Zalcman.

Recently, Zhang and Qin [9] have proved the following theorem.

Theorem A Let F be a family of meromorphic functions in a domain D, and let a, b and c

be three distinct finite complex numbers. If, for every f(z) ∈ F, f(z) = a whenever f ′(z) = a,

f(z) = b whenever f ′(z) = b, f ′(z) = c whenever f(z) = c, then F is normal in D.
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On the other hand, Fang [1] extended Schwick’s result in the view of shared sets. Actually,

he proved the following theorem.

Theorem B Let F be a family of holomorphic functions in a domain D, and let a1, a2, and

a3 be three distinct finite complex numbers. If, for every f(z) ∈ F, f(z) and f ′(z) share the set

S = {a1, a2, a3}, then F is normal in D.

Very recently, generalizing Theorem A from families of holomorphic functions to families of

meromorphic functions, Liu and Pang [3] obtained the following result.

Theorem C Let F be a family of meromorphic functions in a domain D, and let a1, a2, and

a3 be three distinct finite complex numbers. If, for every f(z) ∈ F, f(z) and f ′(z) share the set

S = {a1, a2, a3}, then F is normal in D.

It is natural to ask what can be stated if f ′(z) is replaced by f (k)(z) in Theorem C. In this

paper, we prove the following theorem.

Theorem 1 Let F be a family of meromorphic functions in D, k be a positive integer, M be a

real constant, a, b and c be three distinct finite complex numbers and S = {a, b}. If, for every

f(z) ∈ F, all zeros of f − c are of multiplicity at least k, f(z) ∈ S whenever f (k)(z) ∈ S, and

|f (k)(z)| ≤ M whenever f(z) = c, then F is normal in D.

As immediate consequences of Theorem 1, we have the following sharp results.

Corollary 1 Let F be a family of meromorphic functions in a domain D, a, b and c be three

distinct finite complex numbers and S = {a, b}. If, for every f(z) ∈ F, f(z) ∈ S whenever

f ′(z) ∈ S, and f ′(z) = c whenever f(z) = c, then F is normal in D.

Corollary 2 Let F be a family of meromorphic functions in a domain D, a and b be two

nonzero distinct finite complex numbers and S = {a, b}. If, for every f(z) ∈ F, f(z) ∈ S

whenever f ′(z) ∈ S, and all zeros of f(z) are of multiplicity at least 2, then F is normal in D.

Remark Notice that the conditions f(z) = a whenever f ′(z) = a, and f(z) = b whenever

f ′(z) = b imply f(z) ∈ S whenever f ′(z) ∈ S. Therefore, our results improve the Theorem A.

The examples below show that the conditions of Theorem 1 are necessary, and show that the

Corollaries 1 and 2 are sharp.

Example 1 Let S = {1,−1}, and let k be a positive odd number. Set

F = {fn(z) : n = 2, 3, 4, . . .},

where

fn(z) =
nk + 1

2nk
enz +

nk − 1

2nk
e−nz, D = {z : |z| < 1}.

Then, for any fn ∈ F, we have

f (k)
n (z) =

nk + 1

2
enz −

nk − 1

2
e−nz, f (k+1)

n (z) = nk+1[
nk + 1

2nk
enz +

nk − 1

2nk
e−nz],

and so n2k[f2
n(z) − 1] = [f

(k)
n (z)]2 − 1. Thus fn and f

(k)
n share the set S = {1,−1}, but F is not
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normal in D, which implies that the condition “|f (k)(z)| ≤ M whenever f(z) = c” in Theorem

1 is necessary.

Example 2 Set

F = {
n + (nz − 1)2

n(nz − 1)
+ 2, n = 2, 3, 4, . . .}, D = {z : |z| < 1}.

Then for every f(z) ∈ F ,f ′(z) = (nz−1)2−n

(nz−1)2 .

Notice that f(z) and f ′(z) share value 2, and f ′(z) 6= 1. But F is not normal in D, which

shows that Theorem 1 is not valid when a = b.

The following example shows that the condition “all zeros of f − c are of multiplicity at least

k” in Theorem 1 is necessary.

Example 3 Let k ≥ 2 be a positive integer such that λk
i = 1, where i = 1, 2, and λ1 6= λ2. Set

F = {fn(z) : n = 1, 2, 3, . . .}, where

fn(z) = n(eλ1z − eλ2z), D = {z : |z| < 1}.

Then, for any fn ∈ F, we have

fn(z) = f (k)
n (z), f (k+1)

n (z) = n(λ1e
λ1z − λ2e

λ2z).

However, F is not normal in D.

2. Some lemmas

Lemma 1 ([5]) Let F be a family of functions meromorphic on the unit disc, all of whose

zeros have multiplicity at least k, and suppose that there exists A ≥ 1 such that |f (k)(z)| ≤ A

whenever f(z) = 0, f ∈ F. Then if F is not normal, there exist, for each 0 ≤ α ≤ k,

(a) a number 0 < r < 1,

(b) points zn, |zn| < r,

(c) functions fn ∈ F, and

(d) positive numbers ρn → 0

such that
fn(zn + ρnξ)

ρα
n

= gn(ξ) → g(ξ)

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic

function on C, all of whose zeros have multiplicity at least k, such that g♯(ξ) ≤ g♯(0) = kA + 1.

Moreover, g has order at most two. In particular, if F is a family of holomorphic functions, then

g has order at most one.

Here, as usual, g♯(z) = |g′(z)|/(1 + |g(z)|2) is the spherical derivative.

Lemma 2 Let f be a meromorphic function, and a, b be two finite distinct complex numbers.

Suppose that f (k) 6= a, b. Then f (k) is a constant.
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Proof Using the Nevanlinna’s second fundamental theorem for f (k), we obtain

T (r, f (k)) ≤ N(r, f) + N(r,
1

f (k) − a
) + N(r,

1

f (k) − b
) + S(r, f (k)).

Notice

T (r, f (k)) > N(r, f (k)) > (k + 1)N(r, f),

so

N(r, f) <
1

k
N(r,

1

f (k) − a
) +

1

k
N(r,

1

f (k) − b
) + S(r, f (k)).

Thus, we get

T (r, f (k)) ≤ (1 +
1

k
)N(r,

1

f (k) − a
) + (1 +

1

k
)N(r,

1

f (k) − b
) + S(r, f (k)).

By the condition, we obtain

T (r, f (k)) ≤ S(r, f (k)).

Thus the proof is completed. 2

3. Proof of Theorem 1

We may assume that D = ∆, the unit disc. Suppose that F is not normal on ∆. Then by

Lemma 1 we can find fn ∈ F, zn ∈ ∆, and ρn → 0+ such that

gn(ζ) =
fn(zn + ρnζ) − c

ρk
n

⇒ g(ζ),

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic

function on C, all of whose zeros have multiplicity at least k, such that g♯(ζ) ≤ g♯(0) = k(M +

1) + 1.

To begin with, we claim that

(i) |g(k)(ζ)| ≤ M whenever g(ζ) = 0.

Suppose now that g(ζ0) = 0. Clearly, g(ζ) 6≡ 0. Then by Hurwitz’s theorem there exist ζn,

ζn → ζ0, and for n sufficiently large, such that

0 = g(ζ0) = gn(ζn) =
fn(zn + ρnζn) − c

ρk
n

,

then fn(zn + ρnζn) = c. By |f (k)(z)| ≤ M whenever f(z) = c, we have

|g(k)(ζ0)| = lim
n→∞

|g(k)
n (ζn)| = lim

n→∞

|f (k)
n (zn + ρnζn)| ≤ M.

(ii) g(k)(ζ) 6= a, b.

Suppose now that g(k)(ζ0) = a. Clearly, g(k)(ζ) 6≡ a. Indeed, if g(k)(ζ) ≡ a = 0, then g would

be a polynomial of degree at most k − 1 and so could not have zeros of multiplicity at least k.

If g(k)(ζ) ≡ a 6= 0, then g(ζ) would be a polynomial of exact degree k, and g(ζ) has zeros. By

Claim 1 there is a contradiction since a, c are two distinct complex numbers. Then by Hurwitz’s

theorem there exist ζn, ζn → ζ0, such that, for n sufficiently large,

a = g(k)
n (ζn) = f (k)

n (zn + ρnζn).
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Because f ∈ S whenever f (k) ∈ S, we obtain fn(zn + ρnζn) ∈ S. It follows that

g(ζ0) = lim
n→∞

gn(ζn) = lim
n→∞

fn(zn + ρnζ) − c

ρk
n

= ∞.

This is a contradiction. Therefore, g(k)(ζ) 6= a. Similarly, we also obtain that g(k)(ζ) 6= b.

By Claim (i), (ii) and Lemma 2, we know that g(ζ) = A
k! (ζ − ζ1)

k, where ζ1 and A(|A| ≤ M)

are constants. A simple calculation then shows that

|g♯(0)| ≤







k

2
, |ζ1| ≥ 1, (1a)

|A|, |ζ1| < 1, (1b)

which contradicts g♯(ζ) ≤ g♯(0) = k(|M | + 1) + 1. This completes the proof of Theorem 1. 2
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