Journal of Mathematical Research & Exposition Jul., 2010, Vol. 30, No. 4, pp. 696–700 DOI:10.3770/j.issn:1000-341X.2010.04.014 Http://jmre.dlut.edu.cn

Shared Sets and Normal Families

Guo Bin LIN

Minnan Science and Technology Institute, Fujian Normal University, Fujian 362332, P. R. China

Abstract This paper deals with the problem of normal families concerning share sets. Moreover, the examples show that the conditions of theorem are necessary.

 ${\bf Keywords} \quad {\rm meromorphic\ function;\ normal\ family;\ shared\ set.}$

Document code A MR(2000) Subject Classification 30D45 Chinese Library Classification 0174.52

1. Introduction and main results

In this paper, it is assumed that the reader is familiar with the notations of Nevanlinna theory of meromorphic functions, for instance,

$$T(r, f), N(r, f), m(r, f), \overline{N}(r, f), \ldots$$

We denote by S(r, f) any function satisfying $S(r, f) = o\{T(r, f)\}$, as $r \to +\infty$, possibly outside of a set with finite measure in **R**.

Let D be a domain in C, and let \mathfrak{F} be a family of meromorphic functions defined in D. The family \mathfrak{F} is said to be normal in D, in the sense of Montel, if each sequence $\{f_n\} \subset \mathfrak{F}$ contains a subsequence $\{f_{n_j}\}$ that converges, spherically locally uniformly in D, to a meromorphic function or ∞ ([2, 6, 8]).

Now let \mathfrak{F} be a family of meromorphic functions on D. Schwick proved in [7] that if there exist three distinct finite values $a_1, a_2, a_3 \in C$ such that f(z) and f'(z) share a_j (j = 1, 2, 3) for each $f(z) \in \mathfrak{F}$, then \mathfrak{F} is normal in D. The corresponding statement in which f(z) and f'(z) share two distinct finite values $a_1, a_2 \in C$ remains valid, as is shown by Pang and Zalcman [4]. Chang, Fang and Zalcman [10] gave a simplified proof of a result of Pang and Zalcman.

Recently, Zhang and Qin [9] have proved the following theorem.

Theorem A Let \mathfrak{F} be a family of meromorphic functions in a domain D, and let a, b and c be three distinct finite complex numbers. If, for every $f(z) \in \mathfrak{F}$, f(z) = a whenever f'(z) = a, f(z) = b whenever f'(z) = b, f'(z) = c whenever f(z) = c, then \mathfrak{F} is normal in D.

Received April 23, 2008; Accepted October 6, 2008

Supported by the National Natural Science Foundation of China (Grant No. 10671109) and the Natural Science Foundation of Fujian Province (Grant No. 2008J0190).

E-mail address: linguobin0812@163.com

On the other hand, Fang [1] extended Schwick's result in the view of shared sets. Actually, he proved the following theorem.

Theorem B Let \mathfrak{F} be a family of holomorphic functions in a domain D, and let a_1 , a_2 , and a_3 be three distinct finite complex numbers. If, for every $f(z) \in \mathfrak{F}$, f(z) and f'(z) share the set $S = \{a_1, a_2, a_3\}$, then \mathfrak{F} is normal in D.

Very recently, generalizing Theorem A from families of holomorphic functions to families of meromorphic functions, Liu and Pang [3] obtained the following result.

Theorem C Let \mathfrak{F} be a family of meromorphic functions in a domain D, and let a_1 , a_2 , and a_3 be three distinct finite complex numbers. If, for every $f(z) \in \mathfrak{F}$, f(z) and f'(z) share the set $S = \{a_1, a_2, a_3\}$, then \mathfrak{F} is normal in D.

It is natural to ask what can be stated if f'(z) is replaced by $f^{(k)}(z)$ in Theorem C. In this paper, we prove the following theorem.

Theorem 1 Let \mathfrak{F} be a family of meromorphic functions in D, k be a positive integer, M be a real constant, a, b and c be three distinct finite complex numbers and $S = \{a, b\}$. If, for every $f(z) \in \mathfrak{F}$, all zeros of f - c are of multiplicity at least k, $f(z) \in S$ whenever $f^{(k)}(z) \in S$, and $|f^{(k)}(z)| \leq M$ whenever f(z) = c, then \mathfrak{F} is normal in D.

As immediate consequences of Theorem 1, we have the following sharp results.

Corollary 1 Let \mathfrak{F} be a family of meromorphic functions in a domain D, a, b and c be three distinct finite complex numbers and $S = \{a, b\}$. If, for every $f(z) \in \mathfrak{F}$, $f(z) \in S$ whenever $f'(z) \in S$, and f'(z) = c whenever f(z) = c, then \mathfrak{F} is normal in D.

Corollary 2 Let \mathfrak{F} be a family of meromorphic functions in a domain D, a and b be two nonzero distinct finite complex numbers and $S = \{a, b\}$. If, for every $f(z) \in \mathfrak{F}$, $f(z) \in S$ whenever $f'(z) \in S$, and all zeros of f(z) are of multiplicity at least 2, then \mathfrak{F} is normal in D.

Remark Notice that the conditions f(z) = a whenever f'(z) = a, and f(z) = b whenever f'(z) = b imply $f(z) \in S$ whenever $f'(z) \in S$. Therefore, our results improve the Theorem A.

The examples below show that the conditions of Theorem 1 are necessary, and show that the Corollaries 1 and 2 are sharp.

Example 1 Let $S = \{1, -1\}$, and let k be a positive odd number. Set

$$\mathfrak{F} = \{f_n(z) : n = 2, 3, 4, \ldots\},\$$

where

$$f_n(z) = \frac{n^k + 1}{2n^k} e^{nz} + \frac{n^k - 1}{2n^k} e^{-nz}, \quad D = \{z : |z| < 1\}.$$

Then, for any $f_n \in \mathfrak{F}$, we have

$$f_n^{(k)}(z) = \frac{n^k + 1}{2}e^{nz} - \frac{n^k - 1}{2}e^{-nz}, \quad f_n^{(k+1)}(z) = n^{k+1}[\frac{n^k + 1}{2n^k}e^{nz} + \frac{n^k - 1}{2n^k}e^{-nz}],$$

and so $n^{2k}[f_n^2(z) - 1] = [f_n^{(k)}(z)]^2 - 1$. Thus f_n and $f_n^{(k)}$ share the set $S = \{1, -1\}$, but \mathfrak{F} is not

normal in D, which implies that the condition " $|f^{(k)}(z)| \leq M$ whenever f(z) = c" in Theorem 1 is necessary.

Example 2 Set

$$\mathfrak{F} = \{\frac{n + (nz - 1)^2}{n(nz - 1)} + 2, n = 2, 3, 4, \ldots\}, D = \{z : |z| < 1\}.$$

Then for every $f(z) \in \mathfrak{F}$, $f'(z) = \frac{(nz-1)^2 - n}{(nz-1)^2}$.

Notice that f(z) and f'(z) share value 2, and $f'(z) \neq 1$. But \mathfrak{F} is not normal in D, which shows that Theorem 1 is not valid when a = b.

The following example shows that the condition "all zeros of f - c are of multiplicity at least k" in Theorem 1 is necessary.

Example 3 Let $k \ge 2$ be a positive integer such that $\lambda_i^k = 1$, where i = 1, 2, and $\lambda_1 \ne \lambda_2$. Set $\mathfrak{F} = \{f_n(z) : n = 1, 2, 3, \ldots\}$, where

$$f_n(z) = n(e^{\lambda_1 z} - e^{\lambda_2 z}), \quad D = \{z : |z| < 1\}.$$

Then, for any $f_n \in \mathfrak{F}$, we have

$$f_n(z) = f_n^{(k)}(z), \quad f_n^{(k+1)}(z) = n(\lambda_1 e^{\lambda_1 z} - \lambda_2 e^{\lambda_2 z})$$

However, \mathfrak{F} is not normal in D.

2. Some lemmas

Lemma 1 ([5]) Let \mathfrak{F} be a family of functions meromorphic on the unit disc, all of whose zeros have multiplicity at least k, and suppose that there exists $A \ge 1$ such that $|f^{(k)}(z)| \le A$ whenever $f(z) = 0, f \in \mathfrak{F}$. Then if \mathfrak{F} is not normal, there exist, for each $0 \le \alpha \le k$,

- (a) a number 0 < r < 1,
- (b) points z_n , $|z_n| < r$,
- (c) functions $f_n \in \mathfrak{F}$, and
- (d) positive numbers $\rho_n \to 0$

such that

$$\frac{f_n(z_n + \rho_n \xi)}{\rho_n^{\alpha}} = g_n(\xi) \to g(\xi)$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C, all of whose zeros have multiplicity at least k, such that $g^{\sharp}(\xi) \leq g^{\sharp}(0) = kA + 1$. Moreover, g has order at most two. In particular, if \mathfrak{F} is a family of holomorphic functions, then g has order at most one.

Here, as usual, $g^{\sharp}(z) = |g'(z)|/(1+|g(z)|^2)$ is the spherical derivative.

Lemma 2 Let f be a meromorphic function, and a, b be two finite distinct complex numbers. Suppose that $f^{(k)} \neq a, b$. Then $f^{(k)}$ is a constant. **Proof** Using the Nevanlinna's second fundamental theorem for $f^{(k)}$, we obtain

$$T(r, f^{(k)}) \le \overline{N}(r, f) + \overline{N}(r, \frac{1}{f^{(k)} - a}) + \overline{N}(r, \frac{1}{f^{(k)} - b}) + S(r, f^{(k)}).$$

Notice

$$T(r, f^{(k)}) > N(r, f^{(k)}) > (k+1)\overline{N}(r, f),$$

 \mathbf{so}

$$\overline{N}(r,f) < \frac{1}{k}\overline{N}(r,\frac{1}{f^{(k)}-a}) + \frac{1}{k}\overline{N}(r,\frac{1}{f^{(k)}-b}) + S(r,f^{(k)})$$

Thus, we get

$$T(r, f^{(k)}) \le (1 + \frac{1}{k})\overline{N}(r, \frac{1}{f^{(k)} - a}) + (1 + \frac{1}{k})\overline{N}(r, \frac{1}{f^{(k)} - b}) + S(r, f^{(k)}).$$

By the condition, we obtain

$$T(r, f^{(k)}) \le S(r, f^{(k)}).$$

Thus the proof is completed. \Box

3. Proof of Theorem 1

We may assume that $D = \Delta$, the unit disc. Suppose that \mathfrak{F} is not normal on Δ . Then by Lemma 1 we can find $f_n \in \mathfrak{F}$, $z_n \in \Delta$, and $\rho_n \to 0^+$ such that

$$g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta) - c}{\rho_n^k} \Rightarrow g(\zeta),$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C, all of whose zeros have multiplicity at least k, such that $g^{\sharp}(\zeta) \leq g^{\sharp}(0) = k(M + 1) + 1$.

To begin with, we claim that

(i) $|g^{(k)}(\zeta)| \leq M$ whenever $g(\zeta) = 0$.

Suppose now that $g(\zeta_0) = 0$. Clearly, $g(\zeta) \neq 0$. Then by Hurwitz's theorem there exist ζ_n , $\zeta_n \to \zeta_0$, and for *n* sufficiently large, such that

$$0 = g(\zeta_0) = g_n(\zeta_n) = \frac{f_n(z_n + \rho_n \zeta_n) - c}{\rho_n^k},$$

then $f_n(z_n + \rho_n \zeta_n) = c$. By $|f^{(k)}(z)| \leq M$ whenever f(z) = c, we have

$$|g^{(k)}(\zeta_0)| = \lim_{n \to \infty} |g_n^{(k)}(\zeta_n)| = \lim_{n \to \infty} |f_n^{(k)}(z_n + \rho_n \zeta_n)| \le M.$$

(ii) $g^{(k)}(\zeta) \neq a, b.$

Suppose now that $g^{(k)}(\zeta_0) = a$. Clearly, $g^{(k)}(\zeta) \neq a$. Indeed, if $g^{(k)}(\zeta) \equiv a = 0$, then g would be a polynomial of degree at most k - 1 and so could not have zeros of multiplicity at least k. If $g^{(k)}(\zeta) \equiv a \neq 0$, then $g(\zeta)$ would be a polynomial of exact degree k, and $g(\zeta)$ has zeros. By Claim 1 there is a contradiction since a, c are two distinct complex numbers. Then by Hurwitz's theorem there exist $\zeta_n, \zeta_n \to \zeta_0$, such that, for n sufficiently large,

$$a = g_n^{(k)}(\zeta_n) = f_n^{(k)}(z_n + \rho_n \zeta_n).$$

Because $f \in S$ whenever $f^{(k)} \in S$, we obtain $f_n(z_n + \rho_n \zeta_n) \in S$. It follows that

$$g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = \lim_{n \to \infty} \frac{f_n(z_n + \rho_n \zeta) - c}{\rho_n^k} = \infty.$$

This is a contradiction. Therefore, $g^{(k)}(\zeta) \neq a$. Similarly, we also obtain that $g^{(k)}(\zeta) \neq b$.

By Claim (i), (ii) and Lemma 2, we know that $g(\zeta) = \frac{A}{k!}(\zeta - \zeta_1)^k$, where ζ_1 and $A(|A| \leq M)$ are constants. A simple calculation then shows that

$$|g^{\sharp}(0)| \le \begin{cases} \frac{k}{2}, & |\zeta_1| \ge 1, \end{cases}$$
 (1a)

 $(|A|, |\zeta_1| < 1,$ (1b)

which contradicts $g^{\sharp}(\zeta) \leq g^{\sharp}(0) = k(|M|+1) + 1$. This completes the proof of Theorem 1. \Box

Acknowledgement The author thanks Professor Weichuan LIN for his help. Our special thanks are also due to the referees for reading the manuscript very carefully and making a number of valuable and kind comments to improve the presentations especially.

References

- [1] FANG Mingliang. A note on sharing values and normality [J]. J. Math. Study, 1996, 29(4): 29-32.
- [2] HAYMAN W K. Meromorphic Functions [M]. Clarendon Press, Oxford, 1964.
- [3] PANG Xuecheng, ZALCMAN L. Normal families and shared values [J]. Bull. London Math. Soc., 2000, 32(3): 325–331.
- [4] PANG Xuecheng, ZALCMAN L. Normality and shared values [J]. Ark. Mat., 2000, 38(1): 171–182.
- [5] PANG Xuecheng, ZALCMAN L. Normal families and shared values [J]. Bull. London Math. Soc., 2000, 32(3): 325–331.
- [6] SCHIFF J. Normal Families [M]. Springer-Verlag, New York, 1993.
- [7] SCHWICK W. Sharing values and normality [J]. Arch. Math. (Basel), 1992, 59(1): 50-54.
- [8] YANG Le. Value Distribution Theory [M]. Springer-Verlag, Berlin, 1993.
- [9] ZHANG Qingde, QIN Chunyan. Normal families and shared values of meromorphic functions [J]. Acta Math. Sinica (Chin. Ser.), 2008, 51(1): 145–152. (in Chinese)
- [10] CHANG Jianming, FANG Mingliang, ZALCMAN L. Normality and fixed-points of meromorphic functions
 [J]. Ark. Mat., 2005, 43(2): 307–321.