
Journal of Mathematical Research & Exposition

Jul., 2010, Vol. 30, No. 4, pp. 701–715

DOI:10.3770/j.issn:1000-341X.2010.04.015

Http://jmre.dlut.edu.cn

Iterative Algorithms of Common Solutions for
Quasi-Variational Inclusion and Fixed Point Problems

Ruo Feng RAO

Department of Mathematics, Yibin College, Sichuan 644007, P. R. China

Abstract By introducing the resolvent operator associated with a maximal monotone mapping,

the author obtains a strong convergence theorem of a generalized iterative algorithm for a class

of quasi-variational inclusion problems, which extends and unifies some recent results.

Keywords variational inclusion; inverse strongly monotone; maximal monotone; viscosity

approximation method.

Document code A

MR(2000) Subject Classification 47H09

Chinese Library Classification O177.91

1. Introduction

Throughout this paper, we assume, H is a real Hilbert space with inner product 〈·, ·〉 and

induced norm ‖ · ‖, and C is a nonempty closed convex subset of H . We always denote the fixed

points set of T : H → H by F (T ) = {x ∈ H : x = Tx}, the natural number set by N = {1, 2, . . .},

and the identity mapping by I. In addition, we denote by ⇀ weak convergence and by → strong

convergence.

Now we introduce the so called quasi-variational inclusion problem:

Finding x ∈ H such that

A(x) + M(x) ∋ θ, the zero element in H. (1.1)

Here, A : H → H is a single-valued nonlinear mapping, and M : H → 2H is a multi-valued

mapping. Denote by VI(H, A, M) the set of solutions for the variational inclusion (1.1). From

the references [1–3], we learn, studying this kind of variational inclusions is helpful to solve many

problems arising in structural analysis, mechanics, economics, and so on. Some special cases of

the quasi-variational inclusion problem (1.1) were studied in the papers [1–12].

In the case that M = ∂φ : H → 2H is the sub-differential of φ : H → (−∞, +∞], a proper

convex lower semi-continuous function, the variational inclusion problem (1.1) is equivalent to

finding x ∈ H such that

〈Ax, y − x〉 + φ(y) − φ(x) ≥ 0, ∀ y ∈ H, (1.2)
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which is called the mixed quasi-variational inequality [4].

If M = ∂δC is the sub-differential of δC : H → [0,∞], the indicator function of C:

δC(x) =

{

0, x ∈ C,

+∞, x 6∈ C,

then the variational inclusion problem (1.1) is equivalent to finding x ∈ C such that

〈A(x), y − x〉 ≥ 0, ∀ y ∈ C, (1.3)

which is called Hartman-Stampacchia variational inequality problem [1, 5, 6]. To find a common

element of F (S) ∩ VI(C, A), i.e., a common element of the fixed points set of nonexpansive

mapping S : C → C and the set of solutions for variational inequality (1.3), Takahashi-Toyoda

[7] introduced the following iterative scheme in 2003:

xn+1 = αnxn + (1 − αn)SPC(xn − λnxn), ∀n ≥ 0, (1.4)

and proved that {xn} generated by (1.4) converges weakly to an element of F (S) ∩ VI(C, A),

where PC is the metric projection of H onto C.

In 2005, Iiduka-Takahashi [8] introduced again the following iteration:

xn+1 = αnu + (1 − αn)SPC(xn − λnxn), ∀n ≥ 0, (1.5)

and proved that {xn} generated by (1.4) converges strongly to the element PF (S)∩VI(C,A)u ∈

F (S)∩VI(C, A). Since then, many of authors are interested in the problems. For example, Chen

[17] extended the iteration (1.5) from u to f(xn).

xn+1 = αnf(xn) + (1 − αn)SPC(xn − λnxn), ∀n ≥ 0. (1.6)

Chen [17] proved that {xn} generated by (1.6) converges strongly to a common element of the

fixed points set of a nonexpansive mapping and the set of solutions for a variational inequality.

In 2006, Nadezhkina and Takahashi [10] studied the following composite iteration:
{

xn+1 = αnxn + (1 − αn)SPC(xn − λnAyn),

yn = PC(xn − λnAxn),
∀n ≥ 0.

In [10] they introduced the so called extragradient method motivated by the idea of Korpelevich

[11]. In 2006, Zeng [12] also studied the similar problem by way of the extragradient method. In

2008, Zhang [9] introduced the following composite iteration:
{

xn+1 = αnu + (1 − αn)Syn,

yn = JM, λ(xn − λAxn),
∀n ≥ 0, (1.7)

and proved that {xn} generated by (1.7) converges strongly to PF (S)∩VI(H,A,M)u ∈ F (S) ∩

VI(H, A, M), where VI(H, A, M) is the set of solutions for variational inclusion (1.1), JM,λ is a

resolvent operator associated with M. Some special cases of the iteration (1.7) were studied in

many papers [9].



Iterative algorithms of common solutions for quasi-variational inclusion and fixed point problems 703

In this paper, the author introduces the following iteration:
{

xn+1 = αnf(xn) + (1 − αn)Syn,

yn = JM, λn
(xn − λnAxn),

∀n ≥ 0. (1.8)

Particularly, letting λn ≡ λ and f(xn) ≡ u in (1.8), we see, (1.8) is reduced to (1.7), which implies

that the strong convergence results on the iteration (1.8) include those on (1.7). Moreover, it will

be proved below that the strong convergence results on the iteration (1.8) extend those reselts

on (1.6) from self-mappings to nonself-mappings. By using viscosity approximation methods, we

shall extend and improve the main results of [17].

2. Preliminaries

Definition 2.1 (1) A mapping T : H → H is called nonexpansive, if ‖Tx − Ty‖ ≤ ‖x − y‖,

∀x, y ∈ H .

(2) f : H → H is said to be a contractive mapping with a contractive constant β ∈ (0, 1), if

‖f(x) − f(y)‖ ≤ β‖x − y‖, ∀x, y ∈ H.

Definition 2.2 A mapping PC : H → C is called the nearest point projection (or metric

projection) from H to C, if for any given x ∈ H , there exists PCx ∈ C with ‖PCx − x‖ =

infy∈C ‖y − x‖.

Being the metric projection from H onto C, PC has the following properties:

(1) PC is nonexpansive;

(2) PC is firmly nonexpansive. i.e., ‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉, ∀x, y ∈ H .

Definition 2.3 (1) A mapping A : H → H is called α-inverse-strongly-monotone, if there exists

an α > 0 such that 〈Ax − Ay, x − y〉 ≥ α‖Ax − Ay‖2, ∀x, y ∈ H .

(2) A multi-valued mapping M : H → 2H is called monotone, if for all x, y ∈ H, u ∈ Mx

and v ∈ My implies that 〈u − v, x − y〉 ≥ 0.

(3) A multi-valued mapping M : H → 2H is called maximal monotone, if it is monotone and

if for any (x, u) ∈ H ×H , 〈u − v, x− y〉 ≥ 0 for every (y, v) ∈ Graph(M) (the graph of mapping

M) implies that u ∈ Mx.

Definition 2.4 A single-valued mapping A : H → H is called hemi-continuous, if for any

x, y, z ∈ H, the function t → 〈A(x + ty), z〉 is continuous as t → 0+.

Definition 2.5 ([9]) Let M : H → 2H be a multi-valued maximal monotone mapping. Then

the single-valued mapping JM,λ : H → H defined by

JM,λ = (I + λM)−1u, u ∈ H

is called the resolvent operator associated with M, where λ is any positive number and I is the

identity mapping.

From [9], we have the following proposition and Lemmas:

Proposition 2.6 (1) The resolvent operator JM,λ associated with M is single-valued and
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nonexpansive for all λ > 0.

(2) The resolvent operator JM,λ is 1-inverse-strongly-monotone.

Proof The conclusion (1) is obvious [18]. On the other hand, one can prove the conclusion (ii)

by Definition 2.5 and the maximal monotonicity of M .

Proposition 2.7 Let A : H → H be an α-inverse-strongly-monotone mapping. Then

(1) A is an 1
α
-Lipschitz continuous and monotone mapping;

(2) If λ is any constant in (0, 2α], then the mapping I − λA is nonexpansive, where I is the

identity mapping on H.

Proof Two conclusions can be proved by the definition of α-inverse-strongly-monotone mapping

and the property of the norm in the setting of Hilbert spaces.

Lemma 2.8 ([13]) Let E be a real Banach space, E∗ the dual space of E, T : E → 2E∗

a

maximal monotone mapping, and P : E → E∗ a hemi-continuous bounded monotone mapping

with D(T ) = E. Then the mapping S = T + P : E → 2E∗

is a maximal monotone mapping.

Lemma 2.9 ([14]) Let C be a nonempty closed convex subset of a real Hilbert space H , and PC

be the nearest point projection (or metric projection) from H to C. Then for any given x ∈ H

and y ∈ C, we have

(1) 〈z − PCx, x − PCx〉 ≤ 0, ∀ z ∈ C;

(2) 〈z − y, x − y〉 ≤ 0, for all z ∈ C, then y = PCx.

Lemma 2.10 ([15]) Let {an}, {bn} and {cn} be three nonnegative real sequences, satisfying

an+1 ≤ (1 − λn)an + bn + cn, n ≥ n0,

where n0 is some nonnegative integer, λn ∈ [0, 1],
∑∞

n=1 λn = ∞, bn = o(λn) and
∑∞

n=1 cn < ∞.

Then an → 0 (n → ∞).

Lemma 2.11 ([16]) Let E∗ be the dual space of a real Banach space E, and J : E → 2E∗

be

the normalized duality mapping from E into 2E∗

given by

J(x) = {f ∈ E∗, 〈x, f〉 = ‖x‖ · ‖f‖ = ‖x‖2 = ‖f‖2}, x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. Then for any x, y ∈ E, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀ j(x + y) ∈ J(x + y).

Lemma 2.12 ([14]) Let H be a real Hilbert space, and a mapping T : E → E be nonexpansive.

Then the mapping I − T is demi-closed at zero, i.e.,

xn ⇀ x and xn − Txn → y implies y = Ty.

From [9], we also have

Lemma 2.13 (1) u ∈ H is a solution of variational inclusion (1.1) if and only if u = JM, λ(I −
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λA)u for all λ > 0, i.e.,

V I(H, A, M) = F (JM, λ(I − λA)), ∀λ > 0.

(2) If λ ∈ (0, 2α], then VI(H, A, M) is a closed convex subset in H .

Proof Indeed, the conclusion (1) can be proved by variational inclusion (1.1) and the definition

of JM,λ. On the other hand, we can show the conclusion (2) by the conclusion (1), for the set of

fixed points of every nonexpansive mapping defined on H is closed convex.

3. Main results

For the purpose of proving the forthcoming main results of this paper, we need firstly prove

a lemma:

Lemma 3.1 Let H be a real Hilbert space, A : H → H be an α-inverse-strongly-monotone

mapping, M : H → 2H be a maximal monotone mapping, and S : H → H be a nonexpansive

mapping. Suppose that λ ∈ (0, 2α]. Then we have the following conclusions:

(1) The mapping I − SJ(M, λ)(I − λA) is monotone.

(2) ‖JM, λn+1
(x) − JM, λn

(x)‖ ≤ |λn+1−λn|
a

· ‖x − JM, λn
(x)‖ for all x ∈ H , where the real

sequence {λn} ⊂ [a, b] ⊂ (0, 2α].

Proof For any x, y ∈ H , we get by Propositions 2.6 and 2.7

〈(I − SJ(M, λ)(I − λA))x − (I − SJ(M, λ)(I − λA))y, x − y〉

≥ ‖x − y‖2 − ‖SJ(M, λ)(I − λA))x − SJ(M, λ)(I − λA))y‖ · ‖x − y‖

≥ ‖x − y‖2 − ‖x − y‖2 = 0,

which has proved the conclusion (1).

Next, we begin to prove the conclusion (2), newly given in this paper.

For any given x ∈ H, let

u = JM, λn+1
(x) and v = JM, λn

(x).

Since M : H → H is maximal monotone, we have

0 ≤ 〈
x − u

λn+1
−

x − v

λn

, u − v〉 ≤ −
1

λn+1
‖u − v‖2 + |

1

λn+1
−

1

λn
| · ‖x − v‖ · ‖u − v‖,

which deduces

‖JM, λn+1
(x) − JM, λn

(x)‖ ≤
|λn+1 − λn|

a
· ‖x − JM, λn

(x)‖.

Now, we study the convergence of the implicit composite iteration
{

xn = αnf(xn) + (1 − αn)Syn,

yn = JM, λ(xn − λAxn),
∀n ≥ 0. (3.1)

Theorem 3.2 Let H be a real Hilbert space, A : H → H an α-inverse-strongly-monotone

mapping, and M : H → 2H a maximal monotone mapping. Assume, S : H → H is a nonexpan-
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sive mapping, and f : H → H is a contractive mapping with a contractive constant β ∈ (0, 1).

Suppose that VI(H, A, M) is the set of solutions for the variational inclusion (1.1), and the set

F (S) ∩ VI(H, A, M) 6= ∅.

Then we have the following two conclusions:

(1) There exists the unique solution p ∈ F (S) ∩ VI(H, A, M) for the following variational

inequality in F (S) ∩ VI(H, A, M):

〈(f − I)p, x − p〉 ≤ 0, for all x ∈ F (S) ∩ V I(H, A, M). (3.2)

(2) If the sequence {xn} is defined by the implicit composite iteration (3.1), then {xn}

defined by (3.1) converges strongly to the unique solution p for the variational inequality (3.2) in

F (S)∩VI(H, A, M), where λ ∈ (0, 2α] and {αn} is a real sequence in (0, 1), satisfying lim
n→∞

αn =

0.

Proof First, we claim that the sequence {xn} given by the implicit composite iterative algorithm

(3.1) is well defined.

Indeed, for each n ≥ 0, we define a mapping Tn : H → H by

Tn(x) = αnf(x) + (1 − αn)S(JM, λ(x − λAx)), ∀x ∈ C.

Since both JM, λ and (I −λA) are nonexpansive, it is easily known that the mapping SJM, λ(I −

λA) is nonexpansive. Hence, Tn is a contractive mapping for each integer n ≥ 0. Then Banach

contractive mapping principle yields a unique fixed point xn ∈ H of Tn, satisfying

xn = Tn(xn) = αnf(xn) + (1 − αn)S(JM, λ(xn − λAxn)), for an arbitrarily given n ≥ 0.

Secondly, we claim that both {xn} and {yn} are bounded.

Indeed, for any x ∈ F (S) ∩ V I(H, A, M), we know from Lemma 2.13 that x ∈ F (S) ∩

F (JM, λ(I − λA)). Then we get by (3.1)

‖xn − x‖2 ≤ (1 − (1 − β)αn)‖xn − x‖2 + αn〈f(x) − x, xn − x〉,

which deduces

‖xn − x‖2 ≤
1

1 − β
〈f(x) − x, xn − x〉

≤
1

1 − β
‖f(x) − x‖ · ‖xn − x‖. (3.3)

This implies ‖xn − x‖ ≤ 1
1−β

‖f(x)− x‖. Thus, {xn} is bounded, and hence all the sets {f(xn)},

{(I − λA)xn}, {JM, λ(I − λA)xn} (or {yn}) and {Syn} are bounded.

On the other hand, for any x ∈ F (S) ∩ VI(H, A, M), we can see it by (3.1) and the inverse

strong monotonicity of A that

‖xn − x‖2 ≤ αn‖f(xn) − x‖2 + (1 − αn)‖yn − x‖2

≤ αn‖f(xn) − x‖2 + (1 − αn)‖xn − λAxn − (x − λAx)‖2

≤ αn‖f(xn) − x‖2 + 1 · (‖xn − x‖2 + λ(λ − 2α)‖Axn − Ax‖2),
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which together with limn→∞ αn = 0 deduces

‖Axn − Ax‖2 ≤
αn‖f(xn) − x‖2

λ(2α − λ)
→ 0, as n → ∞. (3.4)

For any x ∈ F (S) ∩ VI(H, A, M), it follows from Propositions 2.6, 2.7 and (3.1) that

‖yn − x‖2

= ‖JM, λ(xn − λAxn) − JM, λ(x − λAx)‖2

≤ 〈(xn − λAxn) − (x − λAx), yn − x〉

=
1

2
(‖(xn − λAxn) − (x − λAx)‖2 + ‖yn − x‖2 − ‖(xn − λAxn) − (x − λAx) − (yn − x)‖2)

≤
1

2
(‖xn − x‖2 + ‖yn − x‖2 − ‖xn − yn‖

2 − λ2‖Axn − Ax‖2 + 2λ〈xn − yn, Axn − Ax〉).

This implies

‖yn − x‖2 ≤ ‖xn − x‖2 − ‖xn − yn‖
2 − λ2‖Axn − Ax‖2 + 2λ〈xn − yn, Axn − Ax〉. (3.5)

Thus, we get by (3.1) and (3.5)

‖xn − x‖2 ≤ αn‖f(xn) − x‖2 + (1 − αn)‖yn − x‖2

≤ 1 · (‖xn − x‖2 − ‖xn − yn‖
2 − λ2‖Axn − Ax‖2 + 2λ〈xn − yn, Axn − Ax〉)+

αn‖f(xn) − x‖2,

which together with (3.4) implies

‖xn − yn‖
2 ≤ −λ2‖Axn − Ax‖2 + 2λ〈xn − yn, Axn − Ax〉 + αn‖f(xn) − x‖2 → 0. (3.6)

Then we get by (3.6) and Proposition 2.7

‖Axn − Ayn‖ ≤
1

α
‖xn − yn‖ → 0.

In addition, we get by (3.1)

‖xn − Syn‖ = αn‖f(xn) − Syn‖ ≤ αn(‖f(xn)‖ + ‖Syn‖) → 0,

which together with (3.6) deduces

‖yn − Syn‖ ≤ ‖yn − xn‖ + ‖xn − Syn‖ → 0.

Thus,

‖xn − Sxn‖ ≤ ‖xn − yn‖ + ‖yn − Syn‖ + ‖Syn − Sxn‖

≤ 2‖xn − yn‖ + ‖yn − Syn‖ → 0, as n → ∞. (3.7)

By the boundedness of {xn}, there exists a weakly convergent subsequence {xni
} ⊂ {xn} such

that xni
⇀ q ∈ H as i → ∞. Then we know by (3.7) and Lemma 2.12 that q ∈ F (S). In virtue

of (3.6) and xni
⇀ q, we can prove easily that yni

⇀ q ∈ F (S) as i → ∞.

Next, we claim q ∈ F (S) ∩ VI(H, A, M).

Indeed, since A : H → H is α-inverse-strongly-monotone, we deduce from Proposition 2.7

that A is a hemi-continuous bounded monotone mapping with D(A) = H. It follows from Lemma
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2.8 that M + A is maximal monotone. Let (v, g) ∈ Graph(M + A), i.e., g − Av ∈ M(v). Since

yni
= JM,λ(xni

− λAxni
), we get xni

− λAxni
∈ (I + λM)yni

or

1

λ
(xni

− yni
− λAxni

) ∈ Myni
.

Since M is maximal monotone, we get

〈v − yni
, g − Av −

1

λ
(xni

− yni
− λAxni

)〉 ≥ 0,

which deduces

〈v − yni
, g〉 ≥ 〈v − yni

, Av +
1

λ
(xni

− yni
− λAxni

)〉

≥ 0 + 〈v − yni
, Ayni

− Axni
〉 +

1

λ
〈v − yni

, xni
− yni

〉 → 0

in virtue of ‖Axn − Ayn‖ → 0 and ‖xn − yn‖ → 0. Letting i → ∞, we have 〈v − q, g〉 ≥ 0. Then

the maximal monotonicity of M + A yields θ ∈ (M + A)q, and hence q ∈ VI(H, A, M), which

has proved that q ∈ F (S) ∩ VI(H, A, M).

By xni
⇀ q, and by interchanging x with q in (3.3), we get

‖xni
− q‖2 ≤

1

1 − β
〈f(q) − q, xni

− q〉 → 0, as i → ∞,

which implies xni
→ q ∈ F (S) ∩ VI(H, A, M).

Next, we claim that q solves the variational inequality (3.2), i.e.,

〈(f − I)q, x − q〉 ≤ 0, for all x ∈ F (S) ∩ VI(H, A, M). (3.8)

Indeed, it follows from (3.1) that

xn − f(xn) = (1 − αn)(Syn − xn + xn − f(xn)).

Thus,

xn − f(xn) = −
1 − αn

αn

(xn − Syn).

Then, for any x ∈ F (S) ∩ V I(H, A, M), we get by Lemma 2.13 that x = Sx = (SJ(M, λ)(I −

λA))x. Thus, we get by (3.1) and Lemma 3.1

〈(I − f)xn, xn − x〉 = −
1 − αn

αn

〈xn − Syn, xn − x〉

= −
1 − αn

αn

〈(I − SJ(M, λ)(I − λA))xn − (I − SJ(M, λ)(I − λA))x, xn − x〉 ≤ 0. (3.9)

Interchanging xn with xni
in (3.9), we can easily prove and obtain (3.8) as a result of xni

→ q.

This also implies that {xn} is sequentially compact.

Next, we prove the uniqueness of the solution for the variational inequality (3.2) in F (S) ∩

VI(H, A, M).

Indeed, if there exists another element p ∈ F (S) ∩ VI(H, A, M) satisfying (3.2), we have

〈(f − I)p, x − p〉 ≤ 0, for all x ∈ F (S) ∩ VI(H, A, M). (3.10)
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Then we get by adding (3.8) and (3.10)

(1 − β)‖p − q‖2 ≤ 〈(I − f)p − (I − f)q, p − q〉 ≤ 0,

which implies p = q. Hence, below we can denote by p the unique solution for the variational

inequality (3.2) in F (S) ∩ VI(H, A, M).

Finally, we have also proved limn→∞ xn = p since {xn} is sequentially compact and each

cluster point of {xn} equals p. This completes the proof of Theorem 3.2. 2

Now we are in the position to give the main result of this paper:

Theorem 3.3 Let H be a real Hilbert space, A : H → H be an α-inverse-strongly-monotone

mapping, M : H → 2H a maximal monotone mapping, and S : H → H a nonexpansive mapping.

Assume, f : H → H is a contractive mapping with a contractive constant β ∈ (0, 1), VI(H, A, M)

is the set of solutions for the variational inclusion (1.1), and the set F (S) ∩ VI(H, A, M) 6= ∅.

Suppose that x0 is an arbitrarily given point in H, and the sequence {xn} is generated by x0 ∈ H

and the composite iteration
{

xn+1 = αnf(xn) + (1 − αn)Syn,

yn = JM, λn
(xn − λnAxn),

∀n ≥ 0, (3.11)

where {λn} ⊂ [a, b] ⊂ (0, 2α], and {αn} is a real sequence in [0, 1], satisfying the following

conditions: (i) αn → 0;
∑∞

n=0 αn = ∞;

(ii)
∑∞

n=0 |αn+1 − αn| < ∞ (or limn→∞
αn+1

αn

= 1);
∑∞

n=0 |λn+1 − λn| < ∞.

Then the sequence {xn} generated by (3.11) converges strongly to such an element p ∈

F (S) ∩ VI(H, A, M) that p is just the unique solution for the variational inequality (3.2) in

F (S) ∩ VI(H, A, M).

Proof Firstly, we know from the conclusion (1) of Theorem 3.2 that there exists the unique

solution p ∈ F (S) ∩ VI(H, A, M) for the variational inequality (3.2) in F (S) ∩ VI(H, A, M).

Secondly, we point out that {xn} generated by (3.11) is bounded.

Indeed, for any given n ≥ 0, we get by (3.11), Lemma 2.13, Proposition 2.6 (1) and Proposi-

tion 2.7(2) that

‖xn+1 − p‖ ≤ αn‖f(xn) − f(p) + f(p) − p‖ + (1 − αn)‖Syn − p‖

≤ αn‖f(p) − p‖ + (1 − (1 − β)αn)‖xn − p‖

≤ max{‖xn − p‖,
1

1 − β
‖f(p) − p‖}.

Mathematical induction method yields

‖xn − p‖ ≤ max{‖x0 − p‖,
1

1 − β
‖f(p)− p‖}, for all n ≥ 0.

Hence, {xn} generated by (3.11) is bounded, and so are all the sequences {f(xn)}, {Axn},

{(I − λnA)xn}, {JM, λn
(I − λnA)xn}, {yn} and {Syn}. Thus, there exists a constant M > 0

such that

‖Axn‖+‖f(xn)‖+‖(I−λnA)xn‖+‖JM,λn
(I−λnA)xn‖+‖yn‖+‖Syn‖+‖xn‖+‖p‖ ≤ M, ∀n ≥ 0.
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Next, we claim that

‖xn+1 − xn‖ → 0 and ‖yn − yn−1‖ → 0. (3.12)

Indeed, it follows from (3.11), Proposition 2.7 and Lemma 3.1(2) that

‖yn+1 − yn‖

≤ ‖JM, λn+1
(xn+1 − λn+1Axn+1) − JM, λn

(xn+1 − λn+1Axn+1)‖+

‖JM, λn
(xn+1 − λn+1Axn+1) − JM, λn

(xn − λnAxn)‖

≤
2M

a
|λn+1 − λn| + ‖xn+1 − xn‖ + |λn − λn+1| · ‖Axn‖

≤ (
2M

a
+ M)|λn+1 − λn| + ‖xn+1 − xn‖, ∀n ≥ 0.

Thus, we can get by (3.11) and the equality above

‖xn+1 − xn‖

= ‖(αn − αn−1)(f(xn−1) − Syn−1) + (1 − αn)(Syn − Syn−1) + αn(f(xn) − f(xn−1))‖

≤ (1 − (1 − β)αn)‖xn − xn−1‖ + (
2M

a
+ M)|λn−1 − λn| + 2M |αn − αn−1|, ∀n ≥ 1.

Now we know from the conditions (i), (ii) and Lemma 2.10 that ‖xn − xn−1‖ → 0 as n → ∞.

Hence, ‖yn+1 − yn‖ ≤ (2M
a

+ M)|λn+1 − λn| + ‖xn+1 − xn‖ → 0, and (3.12) is proved.

Then we get by (3.11) and (3.12)

‖xn − Syn‖ ≤ ‖xn − Syn−1‖ + ‖Syn−1 − Syn‖

≤ αn−1‖f(xn−1) − Syn−1‖ + ‖yn−1 − yn‖ → 0.

From (3.11) and the inverse-strong-monotone mapping A, we have

‖xn+1 − p‖2 ≤αn‖f(xn) − p‖2 + (1 − αn)‖yn − p‖2

≤αn‖f(xn) − p‖2 + (1 − αn)‖xn − λnAxn − (p − λnAp)‖2

≤αn‖f(xn) − p‖2 + 1 · (‖xn − p‖2 + λn(λn − 2α)‖Axn − Ap‖2),

which implies

‖Axn − Ap‖2 ≤
αn‖f(xn) − p‖2 + (‖xn − p‖ − ‖xn+1 − p‖)(‖xn − p‖ + ‖xn+1 − p‖)

λn(2α − λn)

≤
αn‖f(xn) − p‖2 + (‖xn − xn+1‖)(‖xn − p‖ + ‖xn+1 − p‖)

a(2α − b)
−→ 0.

Since JM, λn
is 1-inverse-strongly-monotone, we get by (3.11)

‖yn − p‖2

= ‖JM,λn
(I − λnA)xn − JM,λn

(I − λnA)p‖2

≤ 〈(I − λnA)xn − (I − λnA)p, yn − p〉

=
1

2
(‖(I − λnA)xn − (I − λnA)p‖2 + ‖yn − p‖2 − ‖(I − λnA)xn − (I − λnA)p − (yn − p)‖2)

≤
1

2
(‖xn − p‖2 + ‖yn − p‖2 − ‖xn − yn‖

2 + 2λn〈xn − yn, Axn − Ap〉 − λ2
n‖Axn − Ap‖2),
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which deduces

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖
2 + 2λn〈xn − yn, Axn − Ap〉 − λ2

n‖Axn − Ap‖2.

Then we get by (3.11)

‖xn+1 − p‖2

≤ αn‖f(xn) − p‖2 + (1 − αn)‖yn − p‖2

≤ 1 · (‖xn − p‖2 − ‖xn − yn‖
2 + 2λn〈xn − yn, Axn − Ap〉 − λ2

n‖Axn − Ap‖2)+

αn‖f(xn) − p‖2,

which deduces

‖xn − yn‖
2

≤(‖xn − p‖2 − ‖xn+1 − p‖2) + 2λn〈xn − yn, Axn − Ap〉 − λ2
n‖Axn − Ap‖2 + αn‖f(xn) − p‖2

≤ ‖xn − xn+1‖(‖xn − p‖ + ‖xn+1 − p‖) + 2b(‖xn‖ + ‖yn‖)‖Axn − Ap‖ + αn(‖f(xn)‖ + ‖p‖)2 → 0.

Thus, we get by ‖xn − Syn‖ → 0 that

‖xn − Sxn‖ ≤ ‖xn − Syn‖ + ‖Syn − Sxn‖ ≤ ‖xn − Syn‖ + ‖yn − xn‖ → 0. (3.13)

Since the sequence {〈f(p) − p, xn − p〉} is bounded, lim supn→∞〈f(p) − p, xn − p〉 exists, and

hence there exists a subsequence {xi} ⊂ {xn} such that

lim sup
n→∞

〈f(p) − p, xn − p〉 = lim
i→∞

〈f(p) − p, xi − p〉.

Then we know from the boundedness of {xi} that there exists a subsequence {xj} ⊂ {xi} such

that xj ⇀ w as j → ∞. Now we can see it by (3.13) and Lemma 2.12 that w ∈ F (S).

Next, since ‖xn − yn‖ → 0 has been proved, we can see it by the Lipschitz continuity of the

map A that

‖Axn − Ayn‖ → 0, as n → ∞.

Now, similarly to the proof of Theorem 3.2, we can also prove by Lemma 2.8 that w ∈ VI(H, A, M).

Hence, w ∈ F (S) ∩ VI(H, A, M). It follows from the definition of p that

lim sup
n→∞

〈f(p)−p, xn −p〉 = lim
i→∞

〈f(p)−p, xi −p〉 = lim
j→∞

〈f(p)−p, xj −p〉 = 〈f(p)−p, w−p〉 ≤ 0.

Set

γn = max{〈f(p) − p, xn − p〉, 0}, ∀n ≥ 0.

Then it is easily known that γn ≥ 0 and limn→∞ γn = 0.

Finally, we prove xn → p as n → ∞.

In fact, we get by (3.11) and Lemma 2.11

‖xn+1 − p‖2 ≤ (1 − αn)2‖xn − p‖2 + 2αn〈f(xn) − p, xn+1 − p〉.

In addition,

2αn〈f(xn) − p, xn+1 − p〉 =2αn〈f(xn) − f(p) + f(p) − p, xn+1 − p〉
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≤αnβ(‖xn − p‖2 + ‖xn+1 − p‖2) + 2αnγn+1.

Thus, we have

‖xn+1 − p‖2 ≤ (1 − αn)2‖xn − p‖2 + αnβ(‖xn − p‖2 + ‖xn+1 − p‖2) + 2αnγn+1,

(1 − αnβ)‖xn+1 − p‖2 ≤ ((1 − αn)2 + αnβ)‖xn − p‖2 + 2αnγn+1.

We get by limn→ αn = 0 that there exists a positive integer n1 > 0 satisfying

2(1 − β)αn ∈ [0, 1) and 1 − αnβ ≥
1

2
, ∀n ≥ n1.

Hence,

‖xn+1 − p‖2 ≤ (1 −
2αn(1 − β)

1 − αnβ
)‖xn − p‖2 +

α2
n

1 − αnβ
‖xn − p‖2 +

2αnγn+1

1 − αnβ

≤ (1 − 2(1 − β)αn)‖xn − p‖2 + 2αn(M2αn + 2γn+1), ∀n > n1.

Now, taking λn = 2(1 − β)αn, an = ‖xn − p‖2, bn = 2αn(M2αn + 2γn+1), and cn = 0 for all

n ≥ n1, we can get by Lemma 2.10 that xn → p as n → ∞. This completes the proof. 2

Particularly in Theorem 3.3, if we set λn ≡ λ ∈ (0, 2α], then Theorem 3.3 yields the following

immediate corollary:

Corollary 3.4 Let H be a real Hilbert space, A : H → H an α-inverse-strongly-monotone

mapping, and M : H → 2H a maximal monotone mapping. Assume, S : H → H is a nonexpan-

sive mapping, and f : H → H is a contractive mapping with a contractive constant β ∈ (0, 1).

Suppose that V I(H, A, M) is the set of solutions for the variational inclusion (1.1), and the

set F (S) ∩ V I(H, A, M) 6= ∅. x0 is an arbitrarily given point in H, and the sequence {xn} is

generated by x0 ∈ H and the composite iteration
{

xn+1 = αnf(xn) + (1 − αn)Syn,

yn = JM, λ(xn − λAxn),
∀n ≥ 0,

where λ ∈ (0, 2α] and {αn} is a real sequence in [0, 1], satisfying the following conditions:

(i) αn → 0;
∑∞

n=0 αn = ∞;

(ii)
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞
αn+1

αn

= 1.

Then the sequence {xn} converges strongly to such an element p ∈ F (S) ∩ VI(H, A, M) that p

is the unique solution for the variational inequality (3.2) in F (S) ∩ VI(H, A, M).

Corollary 3.5 Let C be a nonempty closed convex subset of a real Hilbert space H , A : C → H

an α-inverse-strongly-monotone mapping, f : C → C a contractive mapping with a contractive

constant β ∈ (0, 1). Assume, S : C → C is nonexpansive so that F (S) ∩ VI(C, A) 6= ∅. x0 is an

arbitrarily given point in C, and the sequence {xn} is generated by x0 ∈ C and the composite

iteration
{

xn+1 = αnf(xn) + (1 − αn)Syn,

yn = PC(xn − λnAxn),
∀n ≥ 0,
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where {λn} ⊂ [a, b] ⊂ (0, 2α], and {αn} is a real sequence in [0, 1], satisfying the following

conditions:

(i) αn → 0;
∑∞

n=0 αn = ∞;

(ii)
∑∞

n=0 |αn+1 − αn| < ∞;
∑∞

n=0 |λn+1 − λn| < ∞.

Then the sequence {xn} converges strongly to such an element p ∈ F (S)∩VI(C, A) that p is the

unique solution for the following variational inequality in F (S) ∩ VI(C, A):

〈(f − I)p, x − p〉 ≤ 0, for all x ∈ F (S) ∩ VI(C, A).

Proof In Theorem 3.3, we take M = ∂δC : H → 2H , where δC : H → [0,∞] is the indicator

function of C, a nonempty closed convex subset of H. Namely,

δC(x) =

{

0, x ∈ C,

+∞, x 6∈ C.

Then the variational inclusion problem (1.1) is equivalent to the variational inequality (1.3), i.e.,

finding x ∈ C such that

〈A(x), y − x〉 ≥ 0, ∀ y ∈ C.

The restriction of JM,λn
on C is an identity mapping JM,λn

|C = I by virtue of M = ∂δC . Thus,

yn = PC(xn − λnAxn) = JM,λn
(PC(xn − λnAxn)).

Hence, the conclusion of Corollary 3.5 can be obtained from Theorem 3.3 immediately.

Corollary 3.6 Let H be a real Hilbert space, A : H → H an α-inverse-strongly-monotone

mapping, and f : H → H a contractive mapping with a contractive constant β ∈ (0, 1). Assume,

S : H → H is a nonexpansive mapping such that F (S)∩V I(H, A) 6= ∅. x0 is an arbitrarily given

point in H, and the sequence {xn} is generated by x0 ∈ H and the composite iteration
{

xn+1 = αnf(xn) + (1 − αn)Syn,

yn = xn − λnAxn,
∀n ≥ 0,

where {λn} ⊂ [a, b] ⊂ (0, 2α], and {αn} is a real sequence in [0, 1], satisfying the following

conditions:

(i) αn → 0;
∑∞

n=0 αn = ∞;

(ii)
∑∞

n=0 |αn+1 − αn| < ∞;
∑∞

n=0 |λn+1 − λn| < ∞.

Then the sequence {xn} converges strongly to such an element p ∈ F (S) ∩ VI(H, A) that p is

the unique solution in F (S) ∩ VI(H, A) for the following variational inequality:

〈(f − I)p, x − p〉 ≤ 0, for all x ∈ F (S) ∩ VI(H, A).

Proof In Theorem 3.3, we may take M = ∂δ : H → 2H , where δ : H → [0,∞] is defined by

δ(x) ≡ 0 for all x ∈ H . Then the variational inclusion problem (1.1) is equivalent to finding

x ∈ H such that

〈A(x), y − x〉 ≥ 0, ∀ y ∈ H. (3.14)
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Then JM,λn
= I in virtue of M = ∂δ. Thus,

yn = JM,λn
(xn − λnAxn) = xn − λnAxn.

Hence, the conclusion of Corollary 3.6 can be obtained from Theorem 3.3 immediately.

Corollary 3.7 Let H be a real Hilbert space, T : H → H a k-strictly pseudocontractive

mapping, and f : H → H a contractive mapping with a contractive constant β ∈ (0, 1). Assume,

S : H → H is a nonexpansive mapping such that F (S) ∩ F (T ) 6= ∅. x0 is an arbitrarily given

point in H, and the sequence {xn} is generated by x0 ∈ H and the iteration xn+1 = αnf(xn) +

(1 − αn)S((1 − λn)xn + λnTxn), i.e.,
{

xn+1 = αnf(xn) + (1 − αn)Syn,

yn = xn − λn(I − T )xn,
∀n ≥ 0,

where {λn} ⊂ [a, b] ⊂ (0, 2α], and {αn} is a real sequence in [0, 1], satisfying the following

conditions:

(i) αn → 0;
∑∞

n=0 αn = ∞;

(ii)
∑∞

n=0 |αn+1 − αn| < ∞;
∑∞

n=0 |λn+1 − λn| < ∞.

Then the sequence {xn} converges strongly to such an element p ∈ F (S) ∩ F (T ) that p is the

unique solution in F (S) ∩ F (T ) for the following variational inequality:

〈(f − I)p, x − p〉 ≤ 0, for all x ∈ F (S) ∩ F (T ).

Proof We may take A = I − T , then A is 1−k
2 -inverse-strongly monotone. We claim F (T ) =

VI(H, A).

Indeed, for any x ∈ F (T ), we know, x must be a solution of the variational inequality (3.14),

which implies x ∈ VI(H, A), and hence F (T ) ⊂ VI(H, A).

Next, for any x ∈ VI(H, A), then x is just a solution of the variational inequality (3.14), i.e.,

〈(I − T )(x), y − x〉 ≥ 0, ∀ y ∈ H. (3.15)

Particularly, letting y = Tx in (3.15), we get ‖x − Tx‖ ≤ 0, which implies x ∈ F (T ), and hence

V I(H, A) ⊂ F (T ). Now we have completed the proof immediately by Corollary 3.6.

Remark (1) Corollary 3.5 is just [17, Proposition 3.1], and [17, Theorem 3.1] can be deduced by

Theorem 3.2. Moreover, Corollaries 3.6 and 3.7 extend [17, Proposition 3.1] and [17, Theorem

4.1] from self-maps to nonself-maps. These mappings involved include nonexpansive mapping,

contractive mapping and k-strictly pseudocontractive mapping.

(2) Taking f(xn) ≡ u in Corollary 3.4, we can obtain [9, Theorem 2.1] in view of Lemma

2.9 and Lemma 2.12, for p ∈ F (S) ∩ V I(H, A, M) solving the variational inequality (3.2) is just

PF (S)∩VI(H,A,M)u.
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