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Abstract For a right R-module N , we introduce the quasi-Armendariz modules which are a com-

mon generalization of the Armendariz modules and the quasi-Armendariz rings, and investigate

their properties. Moreover, we prove that NR is quasi-Armendariz if and only if Mm(N)Mm(R)

is quasi-Armendariz if and only if Tm(N)Tm(R) is quasi-Armendariz, where Mm(N) and Tm(N)

denote the m×m full matrix and the m×m upper triangular matrix over N , respectively. NR is

quasi-Armendariz if and only if N [x]R[x] is quasi-Armendariz. It is shown that every quasi-Baer
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1. Introduction

Throughout this paper R denotes an associative ring with identity, N denotes a right R-

module and rR(X) denotes the annihilator of the subset X of N in R. Let R[x] and N [x] be the

polynomials over R and N , respectively. Rege and Chhawchharia [1] introduced the notion of

an Armendariz ring. They defined a ring R to be an Armendariz ring if whenever polynomials

f(x) = a0+a1x+· · ·+apx
p, g(x) = b0+b1x+· · ·+bqx

q ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0

for each i and j. The name “Armendariz ring” was chosen because Armendariz [2] had noted

that a reduced ring satisfies this condition. Some properties, examples and counterexamples of

the Armendariz rings were given in Rege and Chhawchharia [1], Armendariz [2], Anderson and

Camillo [3], Huh et al. [4], and Kim and Lee [5]. Following Anderson and Camillo [3], NR is

called Armendariz if, whenever n(x)g(x) = 0 where n(x) = n0 + n1x + · · · + npx
p ∈ N [x] and

g(x) = b0 + b1x+ · · · + bqx
q ∈ R[x] , then nibj = 0 for all i and j. In [6], Lee and Zhou studied

some properties of this module. According to Hirano [7], a ring R is called quasi-Armendariz if

whenever polynomials f(x) = a0 + a1x + · · · + apx
p, g(x) = b0 + b1x+ · · · + bqx

q ∈ R[x] satisfy
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f(x)R[x]g(x) = 0, then aiRbj = 0 for each i and j. He showed that the class of quasi-Armendariz

rings is Morita invariant, and if R is a quasi-Armendariz ring, then R[x] is quasi-Armendariz.

Motivated by the results above, in this paper, we introduce the notion of quasi-Armendariz

modules which are a generalization of Armendariz modules and quasi-Armendariz rings. We give

the equivalent characterizations of the quasi-Armendariz rings and study the relations between

the set of annihilators of the submodules of N in R and the set of annihilators of the submodules

of N [x] in R[x]. We also show that NR is quasi-Armendariz if and only if Mm(N)Mm(R) is quasi-

Armendariz if and only if Tm(N)Tm(R) is quasi-Armendariz. Furthermore, it is showed that

the polynomial modules over the quasi-Armendariz modules are quasi-Armendariz and every

quasi-Baer module is quasi-Armendariz.

2. Main Results

We start with the following:

Definition 2.1 Let N be a right R-module. N is said to be a quasi-Armendariz module if

whenever n(x) = n0 + n1x + · · · + npx
p ∈ N [x], g(x) = b0 + b1x + · · · + bqx

q ∈ R[x] satisfy

n(x)R[x]g(x) = 0, then niRbj = 0 for all i and j.

Example 2.2 Several simple examples of quasi-Armendariz modules can be given:

(1) R is a quasi-Armendariz ring if and only if RR is a quasi-Armendariz module.

(2) Every submodule of a quasi-Armendariz module is quasi-Armendariz. In particular, if I

is a right ideal of a quasi-Armendariz ring, then IR is a quasi-Armendariz module.

(3) Every direct sum and direct product of quasi-Armendariz modules are quasi-Armendariz.

(4) If Nt is a quasi-Armendariz Rt-module for each t ∈ Γ, then
∏

tNt is a quasi-Armendariz
∏

tRt-module.

An R-module N is torsionless if it is a submodule of a direct product of copies of R. If N

is a faithful right R-module, then R is a submodule of a direct product of copies of N . We can

obtain the following result easily.

Theorem 2.3 Let R be a ring. The following statements are equivalent:

(1) R is quasi-Armendariz;

(2) Every projective right R-module is quasi-Armendariz;

(3) Every finitely generated projective right R-module is quasi-Armendariz;

(4) Every cyclic projective right R-module is quasi-Armendariz;

(5) Every torsionless right R-module is quasi-Armendariz;

(6) There exists a faithful right R-module which is quasi-Armendariz.

Lemma 2.4 Let n(x) ∈ N [x] and f(x) ∈ R[x]. Then n(x)Rf(x) = 0 if and only if n(x)R[x]

f(x) = 0.

In the following, we use Lemma 2.4 freely without any mention.

Proposition 2.5 A right R-module N is quasi-Armendariz if and only if every finitely generated
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submodule of N is quasi-Armendariz.

Let θ : R −→ A be a ring homomorphism and let N be a right A-module. RegardN as a right

R-module via θ. Buhphand and Rege [8, Proposition 2.5] showed that if NA is Armendariz, then

NR is Armendariz. However, if NA is quasi-Armendariz, NR need not be quasi-Armendariz.

For example, take S and M2(R) in Example 2.14. Let θ : S −→ M2(R) be the inclusion

homomorphism. By Example 2.14, M2(R) is a quasi-Armendariz right M2(R)-module but not

quasi-Armendariz right S-module.

Proposition 2.6 Let θ : R −→ A be an onto ring homomorphism. Then N is a quasi-

Armendariz A-module if and only if N is a quasi-Armendariz R-module.

Proof Suppose that N is a quasi-Armendariz A-module. Let n(x) =
∑p

i=0 nix
i ∈ N [x] and

g(x) =
∑q

j=0 bjx
j ∈ R[x] such that n(x)R[x]g(x) = 0. One can obtain that n(x)θ(R)θ(g(x)) = 0,

where θ(g(x)) =
∑q

j=0 θ(bj)x
j ∈ A[x]. Since θ is onto, we have n(x)Aθ(g(x)) = 0. By hypothesis,

niAθ(bj) = 0 for all i and j. Thus, niRbj = niθ(Rbj) = niAθ(bj) = 0 for all i and j. Therefore

N is a quasi-Armendariz R-module. The proof of the converse is similar to that above. 2

Corollary 2.7 Let θ : R −→ A be an onto ring homomorphism. Then A is a quasi-Armendariz

ring if and only if A is a quasi-Armendariz R-module.

Remark 2.8 If N is a right R-module, R denotes the ring R/rR(N) and E(N) = EndR(N)

denotes the ring of endomorphisms of N . With those notations, we consider the following

conditions.

(1) The right R-module N is quasi-Armendariz.

(2) The right R-module N is quasi-Armendariz.

(3) R is a quasi-Armendariz ring.

An application of Proposition 2.6 yields the equivalence of conditions (1) and (2); since the

right R-module N is faithful as a right R-module, applying (6) ⇒ (1) of Theorem 2.3 we get

(2) ⇒ (3). The following example shows that (3) ⇒ (1) does not hold.

Example 2.9 Let K be a field of characteristic 2 and R = K[x, y] be a polynomial ring over

K. Take the factor ring A = K[x, y]/(x2, y2) of R by the ideal (x2, y2) generated by x2 and

y2. By [7, Example 3.6], R is a quasi-Armendariz ring and A is not a quasi-Armendariz ring.

Let θ : R −→ A be the natural epimorphism. By Corollary 2.7, A is not quasi-Armendariz as

a right R-module. Now, we take N = R
⊕

A. Then N is R-faithful, but N (which has A as a

submodule) is not quasi-Armendariz as a right R-module. This shows that (3) ⇒ (1) does not

hold in Remark 2.8.

For f ∈ R[x], the contentAf is the ideal ofR generated by the coefficients of f . For any subset

S of R[x], AS denotes the ideal
∑

f∈S Af . According to [7], a ring R is called quasi−Gaussian

if AfRg = AfAg for all f, g ∈ R[x]. Hirano [7, Theorem 4.1] showed that R is quasi-Gaussian if

and only if every homomorphic image of R is quasi-Armendsriz. A ring R is right duo if every

right ideal of R is two-sided. By Proposition 2.6, we have the following result.
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Proposition 2.10 Let R be a right duo ring. R is quasi-Gaussian if and only if every cyclic

right R-module is quasi-Armendariz.

Let N be a right R-module and C be the centre of R. If S is a multiplicatively closed subset

of C, then S−1N has an S−1R-module structure. The module N is S-torsion free if whenever s

is an element of S and n is a nonzero element of N , we have ns 6= 0.

Proposition 2.11 Let N be S-torsion free. The right R-module N is quasi-Armendariz if and

only if the right S−1R-module S−1N is quasi-Armendariz.

Proof Suppose that N is quasi-Armendariz. Let n(x) =
∑p

i=0
ni

s
xi ∈ S−1N [x] and f(x) =

∑q

j=0
aj

t
xj ∈ S−1R[x] with n(x)S−1Rf(x) = 0. Since N is S-torsion free, it is easily obtained

that n′(x)Rf ′(x) = 0, where n′(x) =
∑p

i=0 nix
i ∈ N [x] and f ′(x) =

∑q

j=0 ajx
j ∈ R[x]. Since N

is quasi-Armendariz, we have niRaj = 0 for all i and j . It follows that ni

s
S−1R

aj

t
= 0 for all i

and j, and we have that S−1N is quasi-Armendariz.

Conversely. Let n(x) =
∑p

i=0 nix
i ∈ N [x] and f(x) =

∑q
j=0 ajx

j ∈ R[x] with n(x)Rf(x) = 0.

Then we have n(x)S−1Rf(x) = 0. Since S−1N is quasi-Armendariz, niS
−1Raj = 0 for all i and

j. As N is S-torsion free, niRaj = 0 for all i and j. Therefore N is quasi-Armendariz.

We write Mm(R) and Tm(R) for the m×m full matrix ring and the m×m upper triangular

matrix ring over R, respectively. For a right R-module N , let

Mm(N) =









































n11 n12 · · · n1m

n21 n22 · · · n2m

...
...

. . .
...

nm1 nm2 · · · nmm















|nij ∈ N, i, j = 1, 2, . . . ,m



























,

Tm(N) =









































n11 n12 · · · n1m

0 n22 · · · n2m

...
...

. . .
...

0 0 · · · nmm















|nij ∈ N, 1 ≤ i ≤ j ≤ m



























.

Similar to that of Lee and Zhou [6], Mm(N) and Tm(N) become the right modules over Mm(R)

and Tm(R) respectively under usual addition and multiplication of matrices.

Theorem 2.12 Let N be a right R-module and m a positive integer ≥ 2. Then the following

statements are equivalent:

(1) N is a quasi-Armendariz right R-module;

(2) Mm(N) is a quasi-Armendariz right Mm(R)-module;

(3) Tm(N) is a quasi-Armendariz right Tm(R)-module.

Proof (1) ⇒ (2). It is easy to see that there exists an isomorphism of abelian groups:

Mm(N)[x] →Mm(N [x]) via
∑

i

Aix
i 7→ (

∑

i

ni
stx

i), where Ai = (ni
st) ∈Mm(N).

Let f(x) =
∑p

i=0 Aix
i ∈Mm(N)[x] and g(x) =

∑q

j=0 Bjx
j ∈Mm(R)[x] satisfy f(x)Mm(R)[x]
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g(x) = 0, where Ai = (ni
st) ∈ Mm(N) and Bj = (bjst) ∈ Mm(R). Then, by the isomorphism

above, we have














f11 f12 · · · f1m

f21 f22 · · · f2m

...
...

. . .
...

fm1 fm2 · · · fmm















Mm(R[x])















g11 g12 · · · g1m

g21 g22 · · · g2m

...
...

. . .
...

gm1 gm2 · · · gmm















= 0,

where fst =
∑p

i=0 n
i
stx

i ∈ N [x], gst =
∑q

j=0 b
j
stx

j ∈ R[x]. Since ceuv ∈ Mm(R) for any c ∈ R

and any matrix unit euv ∈Mm(R), we have














f11 f12 · · · f1m

f21 f22 · · · f2m

...
...

. . .
...

fn1 fn2 · · · fmm















ceuv















g11 g12 · · · g1m

g21 g22 · · · g2m

...
...

. . .
...

gm1 gm2 · · · gmm















= 0.

It follows that fsucgvt = 0 for all 1 ≤ s, u, v, t ≤ m, and so fsuRgvt = 0. Since N is quasi-

Armendariz, ni
suRb

j
vt = 0 for all 0 ≤ i ≤ p, 0 ≤ j ≤ q and 1 ≤ s, u, v, t ≤ m. Now we can

easily conclude that AiMm(R)Bj = 0 for all i, j. Therefore, Mm(N) is a quasi-Armendariz right

Mm(R)-module.

(2) ⇒ (1). Let n(x) =
∑p

i=0 nix
i ∈ N [x] and g(x) =

∑q

j=0 bjx
j ∈ R[x] such that

n(x)R[x]g(x) = 0. Let

α(x) =















n(x) 0 · · · 0

0 n(x) · · · 0
...

...
. . .

...

0 0 · · · n(x)















, β(x) =















g(x) 0 · · · 0

0 g(x) · · · 0
...

...
. . .

...

0 0 · · · g(x)















.

It follows that α(x)Mm(R[x])β(x) = 0. By the hypothesis, we have that














ni 0 · · · 0

0 ni · · · 0
...

...
. . .

...

0 0 · · · ni















Mm(R)















aj 0 · · · 0

0 aj · · · 0
...

...
. . .

...

0 0 · · · aj















= 0

for all i and j. So niRaj = 0 for all i and j. Hence the assertion holds.

The proof of (1) ⇔ (3) is similar to that of (1) ⇔ (2).

Corollary 2.13 Let R be a ring and m a positive integer ≥ 2. Then the following statements

are equivalent:

(1) R is quasi-Armendariz;

(2) Mm(R) is quasi-Armendariz;

(3) Tm(R) is quasi-Armendariz.

Clearly, Armendariz modules are quasi-Armendariz. But the converse need not be true by

[1, Remark 3.1] and Corollary 2.13. Let R be a subring of a ring S with 1S ∈ R and NR ⊆ LS.
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According to Lee and Zhou [6, Remark 1.11], if LS is Armendariz, then NR is also Armendariz.

One may conjecture that if LS is quasi-Armendariz, then NR is also quasi-Armendariz. However

the following example erases the possibility.

Example 2.14 Let T be a reduced ring. Then R =

{(

a b

0 a

)

|a, b ∈ T

}

is quasi-Armendariz

by [9, Proposition 1.2]. By Corollary 2.13, M2(R) is quasi-Armendariz ring, but S = R ⋉ R is

not a quasi-Armendariz ring.

Let S =

{(

A B

0 A

)

|A,B ∈ R

}

. Clearly, SS ⊆M2(R)M2(R).

Let

f(x) =

(

N 0

0 N

)

+

(

N −I

0 N

)

x, g(x) =

(

N 0

0 N

)

+

(

N I

0 N

)

x ∈ S[x],

where N =

(

0 1

0 0

)

and I =

(

1 0

0 1

)

∈ R. Then f(x)S[x]g(x) = 0, but

(

N 0

0 N

)(

N I

0 N

)

6= 0,

implying that

(

N 0

0 N

)

S

(

N I

0 N

)

6= 0. Thus S is not quasi-Armendariz.

Let R be a ring and S be a subring of Mm(R) such that eiiSejj ⊆ S for all i, j ∈ {1, . . . ,m}

where eij denotes the (i, j)-matrix unit. In [7, Theorem 3.12], Hirano showed that if RR is

quasi-Armendariz, then SS is quasi-Armendariz. In fact, this need not be true in general. For

example, take R and S in Example 2.14. Let T ′ = M2(R). Then Mm(S) is a subring of Mm(T ′)

satisfying the hypothesis above. By Example 2.14, T ′

T ′ is quasi-Armendariz. But Mm(S)Mm(S)

is not quasi-Armendariz by Corollary 2.13. His gap lies in the fourth-last line of p.50, where he

thinks the set {c ∈ R|cepq ∈ eppReqq} as the ideal of R. In [9, Theorem 1.3], the author made

the same gap. But this does not affect their main results.

From [6, Theorem1.12], we can infer that NR is Armendariz if and only if N [x]R[x] is Armen-

dariz. For the quasi-Armendariz module, we have the following result.

Theorem 2.15 LetN be a right R-module. ThenNR is quasi-Armendariz if and only ifN [x]R[x]

is quasi-Armendariz.

Proof Suppose that N is quasi-Armendariz. Let n(T ) ∈ N [x][T ] and g(T ) ∈ R[x][T ] with

n(T )R[x][T ]g(T ) = 0. Write n(T ) = n0(x) + n1(x)T + · · · + np(x)T
p and g(T ) = g0(x) +

g1(x)T + · · ·+ gq(x)T
q where ni(x) =

∑us

s=0 aisx
s ∈ N [x] and gj(x) =

∑vt

t=0 bjtx
t ∈ R[x] for all i

and j. Let k = degn0(x)+deg n1(x)+ · · ·+degnp(x)+deg g0(x)+ · · ·+deg gq(x), where the de-

gree of ni(x) is as polynomial in N [x], the degree of gj(x) is as polynomial in R[x] and the degree

of the zero polynomial is taken to be 0. Then n(xk) = n0(x) + n1(x)x
k + · · ·+ np(x)x

kp ∈ N [x],

g(xk) = g0(x) + g1(x)x
k + · · · + gq(x)x

kq ∈ R[x] and the set of coefficients of the ni(x)
′s (resp.,
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gi(x)
′s) equals to the set of coefficients of n(xk) (resp., g(xk)). Since n(T )R[x][T ]g(T ) = 0,

n(T )R[x]g(T ) = 0. Since x commutes with the elements of R, we have n(xk)R[x]g(xk) = 0. By

the hypothesis, we get aisRbjt = 0 for all i, j, s and t. Thus ni(x)R[x]gj(x) = 0 for all i and j.

Conversely, suppose that N [x] is quasi-Armendariz and let n(x) ∈ N [x] and g(x) ∈ R[x] with

n(x)R[x]g(x) = 0, where n(x) =
∑p

i=0 nix
i and g(x) =

∑q
j=0 bjx

j . Thus, for any c ∈ R we have

the following equations:

n0cb0 = 0,

n0cb1 + n1cb0 = 0,

· · ·

Hence, for any h(x) ∈ R[x],

n0h(x)b0 = 0,

n0h(x)b1 + n1h(x)b0 = 0,

· · ·

Now, take n(T ) =
∑p

i=0 niT
i and g(T ) =

∑q

j=0 bjT
j. By the equations above, we have

n(T )R[x]g(T ) = 0, and so n(T )R[x][T ]g(T ) = 0. By the hypothesis, niR[x]bj = 0 for all i

and j. Thus niRbj = 0, proving the statement.

Hirano [7, Theorem 3.16] showed that ifR is quasi-Armendariz, thenR[x] is quasi-Armendariz.

By Theorem 2.15, the converse is also true.

Corollary 2.16 R is quasi-Armendariz if and only if R[x] is quasi-Armendariz.

For a right R-module N , we put rAnnR(sub(N)) = {rR(S)|S is a submodule of N}. The

following result is a generalization of that of [5, Proposition 3.4].

Proposition 2.17 Let N be a right R-module. Then the following statements are equivalent:

(1) N is quasi-Armendariz;

(2) ψ : rAnnR(sub(N)) → rAnnR[x](sub(N [x])) defined by A→ AR[x] is bijective.

Proof (1) ⇒ (2). Let A ∈ rAnnR(sub(N)). Then there exists a submodule N ′ of N such that

A = rR(N ′). Clearly, N ′R[x] is a submodule of N [x] and N ′R[x]AR[x] = 0. Thus, AR[x] ⊆

rR[x](N
′R[x]). Let g(x) =

∑q
j=0 bjx

j ∈ rR[x](N
′R[x]). Then N ′R[x]g(x) = 0. Hence N ′Rg(x) =

0, and so N ′Rbj = 0, bj ∈ rR(N ′R) = rR(N ′) for all j. Thus g(x) ∈ AR[x] and rR[x](N
′R[x]) =

AR[x]. Consequently, ψ is a well-defined map. Assume that B ∈ rAnnR[x](sub(N [x])). Then

there exists a submodule S of N [x] such that B = rR[x](S). Let B1 and S1 denote the set

of coefficients of elements of B and S, respectively. We claim that rR(S1R) = B1R. Let

n(x) =
∑p

i=0 nix
i ∈ S and g(x) =

∑q

j=0 bjx
j ∈ B. Then n(x)R[x]g(x) = 0. Hence niRbj = 0

for all i, j, since N is quasi-Armendariz. Thus bj ∈ rR(S1R) for all j, and so B1R ⊆ rR(S1R).

Clearly rR(S1R) ⊆ B1R, hence rR[x](S) = B1R[x].

(2) ⇒ (1). Let n(x) =
∑p

i=0 nix
i ∈ N [x] and g(x) =

∑q

j=0 bjx
j ∈ R[x] satisfy n(x)R[x]g(x) =

0. Then g(x) ∈ rR[x](n(x)R[x]) = AR[x], where A is an ideal of R. Hence b0, b1, . . . , bq ∈ A, and

so n(x)Rbj = 0 for all j. Thus niRbj = 0 for all i, j. Therefore N is quasi-Armendariz.
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A submodule S of a right R-module N is called a pure submodule if SR

⊗

L → NR

⊗

L is

a monomorphism for every left R-module L. Following Tominaga [10], an ideal I of R is said to

be left s-unital if, for each a ∈ I, there is an x ∈ I such that xa = a. If an ideal I of R is left

s-unital, then for any finite subset F of I, there exists an element e ∈ I such that ex = x for all

x ∈ F . By [11, Proposition 11.3.13], for an ideal I, the following conditions are equivalent:

(1) I is pure as a right ideal of R;

(2) R/I is flat as a right R-module;

(3) I is left s-unital.

Theorem 2.18 Let N be a right R-module. Then the following statements are equivalent:

(1) rR(nR) is pure as a right ideal in R for any element n ∈ N .

(2) rR[x](n(x)R[x]) is pure as a right ideal in R[x] for any element n(x) ∈ N [x].

In this case, N is quasi-Armendariz.

Proof (1) ⇒ (2). First we shall prove that N is quasi-Armendariz. Let n(x) =
∑p

i=0 nix
i ∈ N [x]

and g(x) =
∑q

j=0 bjx
j ∈ R[x] satisfy n(x)R[x]g(x) = 0. We will prove that niRbj = 0 for all i, j.

Let c be an arbitrary element of R. Then we have the equation:

(n0 + n1x+ · · · + npx
p)c(b0 + b1x+ · · · + bqx

q) = 0. (*)

Thus npcbq = 0. Hence bq ∈ rR(npR). By hypothesis, rR(npR) is left s-unital, and hence there

exists ep ∈ rR(npR) such that epbq = bq. Replacing c by cep in Eq.(*), we obtain that

(n0 + n1x+ · · · + np−1x
p−1)cep(b0 + b1x+ · · · + bqx

q) = 0.

It follows that np−1cepbq = 0. That is, np−1cbq = 0. Hence bq ∈ rR(np−1R). Since rR(np−1R)

is left s-unital, there exists f ∈ rR(np−1R) such that fbq = bq. If we put ep−1 = fep, then

ep−1bq = bq and ep−1 ∈ rR(npR + np−1R). Next, replacing c by cep−1 in Eq.(*), we obtain

np−2cbq = 0 in the same way as above. Hence we have bq ∈ rR(npR + np−1R + np−2R).

Continuing this process, we obtain nkRbq = 0 for k = 0, 1, . . . , p. Thus

(n0 + n1x+ · · · + npx
p)R[x](b0 + b1x+ · · · + bq−1x

q−1) = 0.

Using induction on p+ q, we have niRbj = 0 for all i, j.

Let g(x) =
∑q

j=0 bjx
j ∈ rR[x](n(x)R[x]), where n(x) =

∑p

i=0 nix
i ∈ N [x]. Then n(x)R[x]g(x) =

0. Since N is quasi-Armendariz, we obtain niRbj = 0 for all j = 0, 1, . . . , q. Since rR(niR) is

left s-unital, there exists ei ∈ rR(niR) such that eibj = bj for all j. Take e = e0e1 · · · ep. Then

e ∈ ∩p
i=0rR(niR) and ebj = bj for all j. Hence e ∈ rR(n(x)R[x]) and g(x) = eg(x). Therefore,

rR[x](n(x)R[x]) is left s-unital.

(2) ⇒ (1). Let n be an element of N . Then rR[x](nR[x]) is left s-unital. Hence, for any

b ∈ rR(nR), there exists a polynomial f ∈ rR[x](nR[x]) such that fb = b. Let a0 be the constant

term of f . Then a0 ∈ rR(nR) and a0b = b. This implies that rR(nR) is left s-unital. Therefore

the condition (1) holds. 2

Corollary 2.19 ([7, Theorem 3.9]) Let R be a ring. Then the following statements are equiva-
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lent:

(1) rR(aR) is pure as a right ideal in R for any element a ∈ R;

(2) rR[x](f(x)R[x]) is pure as a right ideal in R[x] for any element f(x) ∈ R[x].

In this case, R is quasi-Armendariz.

Lee and Zhou [6, Definition 2.1] called a right R-module N quasi-Baer if the right annihilator

of every submodule of N in R as a right ideal is generated by an idempotent. Let N be a quasi-

Baer module and n ∈ N . Then rR(nR) = eR for some e2 = e ∈ R, and so R/rR(nR) ∼= (1− e)R

is projective. Therefore a quasi-Baer module satisfies the hypothesis of Theorem 2.18. Hence we

have the following result.

Corollary 2.20 Every quasi-Baer module is quasi-Armendariz.
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