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Abstract Let G be a finite group, p the smallest prime dividing the order of G and P a Sylow

p-subgroup of G. If d is the smallest generator number of P , then there exist maximal subgroups

P1, P2, . . . , Pd of P , denoted by Md(P ) = {P1, . . . , Pd}, such that
⋂

d

i=1
Pi = Φ(P ), the Frattini

subgroup of P . In this paper, we will show that if each member of some fixed Md(P ) is either

p-cover-avoid or S-quasinormally embedded in G, then G is p-nilpotent. As applications, some

further results are obtained.
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1. Introduction

All groups considered in this paper are finite and G always denote a finite group. Let L and

K be normal subgroups of G with L < K. A subgroup H of G covers the normal factor K/L of

G if HK = HL holds; H avoids K/L provided that H ∩K = H ∩L. If H either covers or avoids

each chief factor of G, then H is said to possess the cover-avoiding property. Such a subgroup

of G is called a CAP-subgroup of G. This concept was introduced by Gaschütz [2] in 1962 and

studied by many authors [1, 3–6]. For convenience, we use the notation M(G) to denote the

set of all maximal subgroups of all Sylow subgroups of G and let F be a saturated formation

containing all supersoluble groups. In 1993, Ezquerro [1] showed that:

Theorem 1.1 ([1]) G is supersolvable if and only if all members of M(G) are cover-avoid

subgroups of G.
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Recently, Fan, Guo and Shum [18] introduced the semi-p-cover-avoiding property, which

generalizes not only the semi-cover-avoiding property [19] but also the c-normality [20], and

obtained some characterizations of solvability of groups.

As another generalization of the normality, Kegel in [8] introduced the following concept:

A subgroup H of G is called S-quasinormal in G provided that H permutes with all Sylow

subgroups of G, i.e., HS = SH for any Sylow subgroup S of G. This concept has been studied

extensively by Deskins [9] and Schmid [10]. Asaad [7] in 1998 obtained further results in the

formation universe. Ballester-Bolinches and Pedraza-Aquilera [11] generalized S-quasinormal

subgroups to S-quasinormally embedded subgroups, and showed that:

Theorem 1.2 ([11]) If every subgroup in M(G) is S-quasinormally embedded in G, then G is

supersolvable.

Assad and Heliel [12] showed that a group G is p-nilpotent for the smallest prime p dividing

|G| if and only if all members of M(Gp) are S-quasinormally embedded in G. In the paper [13],

Li and He continued the research in this direction by a new way and showed that:

Theorem 1.3 ([13, Theorem 3.1]) Let p be the smallest prime dividing the order of G and Gp

a Sylow p-subgroup of G. Then the following statements are equivalent:

(a) G is p-nilpotent;

(b) Every member in Md(Gp) is S-quasinormally embedded in G.

By a p-chief factor we shall mean a chief factor each of whose elements has finite order a

power of p. Recall that a normal factor H/K is said to be a pd-chief factor if p| | H/K |.

Similar to semi-p-cover-avoid subgroups, we give the following definition:

Definition 1.4 Let H be a subgroup of G. If H either covers or avoids each pd-chief factor of

G, then H is said to possess the p-cover-avoiding property, and H is called a p-CAP-subgroup

of G.

More recently, Li [23] unified two independent concepts, c-normal and S-quasinormal, and

improved some known results. We note that p-CAP-subgroups and S-quasinormally embedded

subgroups are also two independent concepts.

Example 1.5 Let G = S4 and X = 〈(12)〉. The normal series G � A4 � K4 � 1 is the unique

chief series of G. We can easily show that X satisfies the 2-cover-avoiding property in G, but it

is not S-quasinormally embedded in G.

Example 1.6 Let G = A5 and Y any Sylow subgroup of G. It is easy to see that Y is

S-quasinormally embedded in G, but Y does not satisfy the p-cover-avoiding property in G.

Following [13], we use the following notation.

Definition 1.7 ([13]) Let d be the smallest generator number of a p-group P . We consider the

set Md(P ) = {M1, . . . , Md} of all elements of M(P ) such that
⋂d

i=1
Mi = Φ(P ), the Frattini

subgroup of P .
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In this paper, we unify p-CAP-subgroups and S-quasinormally embedded subgroups, which

are two independent concepts, and generalize some results of [1] and [13].

The following notations are used in the paper. If H is a subgroup of G, then HG always

denotes the core of H in G, the largest normal subgroup of G contained in H . Also, Hp always

denotes a Sylow p-subgroup of H . All unexplained notation and terminology are standard. The

reader can refer to [14] and [15].

2. Preliminaries

In this section we collect some known results which are needed in the sequel.

Lemma 2.1 ([22, P180]) Let G be a π-separate group. If Oπ′(G) = 1, then CG(Oπ(G)) ≤ Oπ(G).

Lemma 2.2 ([9]) If H is an S-quasinormal subgroup of G, then H/HG is nilpotent.

Lemma 2.3 ([10]) For a nilpotent subgroup H of G, the following two statements are equivalent:

(a) H is S-quasinormal in G;

(b) The Sylow subgroups of H are S-quasinormal in G.

Lemma 2.4 ([12]) Let Gp be a Sylow p-subgroup of G and P a maximal subgroup of Gp. Then

following two statements are equivalent:

(a) P is normal in G;

(b) P is S-quasinormal in G.

Lemma 2.5 ([11]) Suppose that U is an S-quasinormally embedded subgroup of G and K is a

normal subgroup of G. Then

(a) U is S-quasinormally embedded in H whenever U ≤ H ≤ G.

(b) UK is S-quasinormally embedded in G and UK/K is S-quasinormally embedded in

G/K.

By definition of p-CAP-subgroups and Lemma 2.2 [18], it is easy to have the following result:

Lemma 2.6 Let H be a p-CAP-subgroup of G and N � G. Then the following statements are

true:

(a) N is a p-CAP-subgroup of G.

(b) If N ≤ H , then H/N is a p-CAP-subgroup of G/N .

(c) Let π be a set of primes, H a π-subgroup of G and N a π′subgroup of G. Then HN/N

is a p-CAP-subgroup of G/N .

Lemma 2.7 ([15]) Let N be a normal subgroup of G and H ≤ G. If N ≤ Φ(H), then N ≤ Φ(G).

Lemma 2.8 ([17]) If P is a Sylow p-subgroup of G and N � G such that P ∩ N ≤ Φ(P ), then

N is p-nilpotent.

Lemma 2.9 ([15]) The following statements are equivalent:
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(a) G is p-nilpotent;

(b) If 1 = G0 � G1 � · · · � Gr−1 � Gr = G is any chief series of G and p| |Gi/Gi−1 |, then

Gi/Gi−1 ≤ Z(G/Gi−1).

Lemma 2.10 ([16]) Let F be a saturated formation containing U , the class of all supersolvable

groups. Suppose that there is a cyclic normal subgroup Q of G such that G/Q ∈ F . Then

G ∈ F .

Lemma 2.11 Let p be the smallest prime of |G| and P a maximal subgroup of the Sylow

p-subgroup Gp of G. If P is a p-CAP subgroup of G, then G is p-soluble.

Proof Take any pd-chief factor H/K of G. By Definition 1.4, we have that PH = PK or

P ∩ H = P ∩ K. If PH = PK, then PH/K = PK/K ∼= P/(P ∩ K) is p-group. Therefore,

|H/K| = |PH/K|
|PH/H| is a p-number. Let P ∩H = P ∩K. Note that |H/K|p = |H ∩Gp : K ∩Gp|. If

H ∩ Gp ≤ P , then H ∩ Gp ≤ P ∩ H = P ∩ K ≤ K ∩ Gp, a contradiction. So (H ∩ Gp)P = Gp.

Hence, p = |Gp/P | = |(H ∩ Gp)P/P | = |H ∩ Gp : H ∩ P | = |H ∩ Gp : K ∩ Gp||K ∩ Gp : K ∩ P |.

Thus, |H/K|p = |H ∩ Gp : K ∩ Gp| = p. We can get that H/K is p-nilpotent since p is the

smallest prime of |G|. Therefore, |H/K| = p and then G is p-soluble. 2

Lemma 2.12 ([21]) Let p be a prime dividing |G| with (|G|, p − 1) = 1.

(a) If N is normal in G of order p, then N lies Z(G).

(b) If G has a cyclic Sylow p-subgroup, then G is p-nilpotent.

(c) If M ≤ G and |G : M | = p, then M � G.

Lemma 2.13 ([15, I, Hauptsatz 17.4]) Let N be a normal abelian subgroup of G and let

N ≤ M ≤ G such that (|N |, |G : M |) = 1. If a complement subgroup of N in M exists, then N

possesses a complement subgroup in G.

3. Main results

Theorem 3.1 Let G be a p-soluble group and P a Sylow p-subgroup of G, where p is a prime

dividing |G|. Assume that every member in some fixed Md(P ) is either p-cover-avoid or S-

quasinormally embedded in G. Then G is p-supersoluble.

Proof Assume that the theorem is not true and let G be a counterexample of minimal order.

Let Md(P ) = {P1, . . ., Pd}. By hypotheses, each Pi is either p-cover-avoid or S-quasinormally

embedded in G. Without loss of generality, let 1 ≤ k ≤ d such that

(i) Every Pl(1 ≤ l ≤ k) is p-cover-avoid in G;

(ii) Every Pj(k + 1 ≤ j ≤ d) is S-quasinormally embedded in G.

We prove the theorem by the following claims.

(1) Op′(G) = 1.

Denote N = Op′(G). If N = Op′ (G) > 1, we consider the factor group G/N . Obviously,

PN/N is a Sylow p-subgroup of G/N , which is isomorphic to P , so PN/N has the smallest gen-
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erator number as the same as P , i.e., d and Md(PN/N) = {P1N/N, . . . , PdN/N}. Also, PiN/N

is either S-quasinormally embedded or p-cover-avoid in G/N by Lemmas 2.5 and 2.6. Thus, we

know that G/N satisfies the hypotheses of the theorem. Hence, G/Op′(G) is p-supersoluble by

the choice of G, it follows that G itself is p-supersoluble, a contradiction. Thus, we have that

N = Op′ (G) = 1, as desired.

(2) Φ(P )G = 1, therefore, Op(G) is an elementary abelian group.

If not, take any T ≤ Φ(P )G such that T � G. We consider the factor group G/T . In this

case, Pi/T (1 ≤ i ≤ d) are maximal subgroups of P/T . By Lemmas 2.5 and 2.6, Pi/T is either

S-quasinormally embedded or p-cover-avoid in G/T . Thus, G/T satisfies the hypotheses of the

theorem. Hence, G/T is p-supersoluble by the choice of G. By Lemma 2.7, T ≤ Φ(G), so

G/Φ(G) is p-supersoluble. Consequently, G is p-supersoluble, a contradiction.

(3) All minimal normal subgroups of G contained in Op(G) are of order p.

Take any minimal normal subgroup N of G contained in Op(G). If there exists some Pt(t ∈

{1, 2, . . . , k}) such that N/1 is avoided by Pt, then N ∩ Pt = 1 and |N | = p. If N is covered

by Pl(1 ≤ l ≤ k), then N ≤ ∩k
l=1

PlG. Suppose that N ≤ MjG(k + 1 ≤ j ≤ d). Denote

T = (∩k
l=1PlG) ∩ (∩d

j=k+1MjG), then N ≤ T and T � G. By (ii), there exist S-quasinormal

subgroups Mj(k + 1 ≤ j ≤ d) of G such that Pj is a Sylow p-subgroup of Mj. It follows from

Lemma 2.5 that Mj/MjG is S-quasinormal in G/MjG and then Mj/MjG is nilpotent by Lemma

2.2. So we may apply Lemma 2.3 to see that every Sylow subgroup of Mj/MjG is S-quasinormal

in G/MjG. Thus, PjMjG/MjG is S-quasinormal in G/MjG because PjMjG/MjG is a Sylow

p-subgroup of Mj/MjG. It follows by Lemma 2.4 that PjMjG/MjG is normal in G/MjG. Hence,

Pj ≤ MjG and T ∩ P ≤ Φ(P ). By Lemma 2.8, T is p-nilpotent. By (1), T is a p-group, so

T = T ∩ P ≤ Φ(P ). By (2), T = 1. Consequently, N = 1, a contradiction. Therefore, there

exists some MsG(s ∈ {k + 1, . . . , d}) such that N is not contained in MsG, then N ∩ MsG = 1,

|N | = p.

(4) The counterexample G does not exist.

Let N1, N2, . . . , Nr be all minimal normal subgroups of G contained in Op(G). By (2) and

(3), we have that every Ni(i ∈ {1, 2, . . . , r}) is complemented in P . By Lemma 2.13, each

Ni(i ∈ {1, 2, . . . , r}) is complemented in G. Let M be a supplement of N1 ×N2 × · · · ×Nr to G

with the order as small as possible. We assume that Op(G)∩M = 1. If not, then Op(G)∩M �G.

Take L ≤ Op(G)∩M such that L is a minimal normal subgroup of G. Similar to the proof above,

L is complemented in G, so in M . Then there is a subgroup K of M such that M = L ⋊ K.

Thus, G = (N1×N2×· · ·×Nr)LK = (N1×N2×· · ·×Nr)K, which contradicts the choice of M .

Therefore, Op(G) ∩M = 1. So we can get that Op(G) = N1 ×N2 × · · · ×Nr, where Ni � G and

|Ni| = p for any i ∈ {1, 2, . . . , r}. Hence, G/CG(Ni) is abelian, G/CG(Op(G)) = G/∩r
i=1CG(Ni)

is abelian. Since G is p-soluble, CG(Op(G)) ≤ Op(G) by (1) and Lemma 2.1. Thus, G/Op(G) is

abelian and G is p-supersolvable, a contradiction. 2

Theorem 3.2 Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. Assume

that every member in some fixed Md(P ) is either p-cover-avoid or S-quasinormally embedded
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in G. Then G is p-nilpotent.

Proof Let Md(P ) = {P1, . . . , Pd}. By hypotheses, each Pi is either p-cover-avoid or S-

quasinormally embedded in G.

If all Pi(1 ≤ i ≤ d) are S-quasinormally embedded in G, by Theorem 3.1 in [13], we have

G is p-nilpotent, a contradiction. Therefore, there exists some Pt ∈ Md(P ) such that it is p-

cover-avoid in G. By Lemma 2.11, G is p-soluble. By Theorem 3.1, G is p-supersolvable. Take

any pd-chief factor M/N of G. By Lemma 2.12(a), M/N ≤ Z(G/N). By Lemma 2.9, G is

p-nilpotent. 2

Remark 3.3 The p-cover-avoiding property of Theorem 3.2 cannot be replaced by semi-p-cover-

avoiding property.

Example 3.4 Let V = 〈a1, a2, a3〉 be an elementary abelian group of order 23 and α an

automorphism of V defined by

α =

(

a1 a2 a3

a2 a3 a1

)

.

Put H = 〈α〉. It is clear that H ∼= Z3 and H acts on V by conjugate. Denote G = V ⋊ H and

Md(V ) = {〈a1〉 × 〈a2〉, 〈a2〉 × 〈a3〉, 〈a1a2〉 × 〈a2a3〉}.

It is easy to see that 〈a1a2〉 × 〈a2a3〉 and 〈a1a2a3〉 are both minimal normal subgroups of

G. Therefore, 〈a1a2〉 × 〈a2a3〉 is S-quasinormal in G. We know that G has the following normal

series:

(1) G = V 〈α〉 � V � 〈a1a2a3〉 � 1;

(2) G = V 〈α〉 � V � 〈a1a2〉 × 〈a2a3〉 � 1.

We can show that 〈a1〉 × 〈a2〉, 〈a2〉 × 〈a3〉 are 2-cover-avoid in normal series (1), but not

2-cover-avoid in normal series (2). Thus, every member in M3(V ) is either semi-2-cover-avoid

or S-quasinormally embedded in G, but G is not 2-nilpotent. Furthermore, it is easy to see that

G is not 2-nilpotent even if all members in M3(V ) are semi-2-cover-avoid in G. 2

Theorem 3.5 If, for each Sylow subgroup P of G, every member in some fixed Md(P ) is either

p-cover-avoid or S-quasinormally embedded in G, then G is supersolvable.

Proof Firstly, we claim that G is solvable. Suppose there exists a non-solvable chief factor

N/K of G. Then there exists a prime p such that p2 divides |N/K|. By hypotheses, there is a

fixed Md(Gp) such that every member Pj ∈ Md(Gp) is either p-cover-avoid or S-quasinormally

embedded in G, where Gp is a Sylow p-subgroup of G. If all Pj ∈ Md(Gp) are S-quasinormally

embedded in G, then G is supersolvable by Theorem 3.2 in [13], a contradiction. Therefore, there

exists some Pi ∈ Md(Gp) such that it is p-cover-avoid in G. If Pi covers N/K, then PiN = PiK.

Since PiN/K = PiK/K ∼= Pi/Pi ∩ K is p-group. Thus, |N/K| = |PiN/K|
| PiN/N | is a p-number, a

contradiction. Hence, Pi avoids N/K, |N/K|p = 1 or p by the proof of Lemma 2.11, which is

a contradiction. Therefore, we conclude that G has no non-solvable chief factors and hence, G

is solvable. Now we are in the hypotheses of Theorem 3.1 for all primes p. Consequently, G is
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p-supersolvable for all primes p dividing |G|. That is, G is supersolvable. 2

Theorem 3.6 Suppose that there is a normal Sylow q-subgroup Q of G such that G/Q is

supersolvable for some prime q, every member in some fixed Md(Q) is either q-cover-avoid or

S-quasinormally embedded in G. Then G is supersolvable.

Proof Suppose that this is not true so that there exists a counterexample G of minimal order.

The proof is divided into four steps.

(1) Φ(Q) = 1, Q is an elementary abelian group.

If not, consider the factor group G/Φ(Q). It is easy to show that G/Φ(Q) satisfies the

hypotheses of the theorem. By the choice of G, G/Φ(Q) is supersoluble. Hence, G is supersoluble,

a contradiction.

(2) Every Qi (1 ≤ i ≤ d) is q-cover-avoid in G.

Suppose that there is some Qj (j ∈ {1, 2, . . . , d}) which is S-quasinormally embedded in

G. By the definition, there exists S-quasinormal subgroup Hj of G such that Qj is a Sylow q-

subgroup of Hj . It follows from Lemma 2.5 that Hj/HjG is S-quasinormal in G/HjG and Hj/HjG

is nilpotent by Lemma 2.2. So we may apply Lemma 2.3 to see that every Sylow subgroup of

Hj/HjG is S-quasinormal in G/HjG. Thus, QjHjG/HjG is S-quasinormal in G/HjG because

QjHjG/HjG is a Sylow q-subgroup of Hj/HjG. It follows by Lemma 2.4 that QjHjG/HjG is

normal in G/HjG. Thus, Qj ≤ HjG. Note that Qj ≤ HjG ∩ Q ≤ Hj ∩ Q = Qj , Consequently,

Qj = HjG ∩ Q � G. By Lemma 2.6, every Qi (1 ≤ i ≤ d) is q-cover-avoid in G.

(3) Final contradiction.

Take any minimal normal subgroup L of G contained in Q. If all Qi cover L/1, then L ≤

Φ(Q) = 1, a contradiction. Thus, there exists some Qj (j ∈ {1, 2, . . . , d}) such that Qj avoids

L/1, then Qj ∩ L = 1, |L| = q. Similar to the proof of (4) of Theorem 3.1, we have that

Q = L1 × L2 × · · · × Ls by (1), where Lt � G and |Lt | = q for any t ∈ {1, 2, . . . , s}. Hence,

all Qi (1 ≤ i ≤ d) are normal in G. Consequently, (G/Qi)/(Q/Qi) is supersolvable. By Lemma

2.10, G/Qi is supersolvable. Therefore, G ∼= G/ ∩d
i=1 Qi is supersolvable, a contradiction. 2

Remark 3.7 The condition that Q is a Sylow subgroup of G of Theorem 3.6 is necessary.

Example 3.8 Let V = 〈a1, a2, a3〉 be an elementary abelian group of order 33 and α, β be two

automorphisms of V defined respectively by

α =

(

a1 a2 a3

a2 a3 a1

)

, β =

(

a1 a2 a3

a3 a2 a1

)

.

Set H = 〈α, β〉. It is clear that H ∼= S3 and H acts on V by conjugate. Denote G = V ⋊ H

and Md(V ) = {〈a1〉 × 〈a2〉, 〈a2〉 × 〈a3〉, 〈a1a2〉 × 〈a2a3〉}. Then G/V ∼= S3 is supersolvable, but

V is not a Sylow subgroup of G. We know that G has unique normal series:

G = V 〈α, β〉 � V 〈α〉 � V � 〈a1a2a3〉 � 1. (*)

It is easy to see that 〈a1a2a3〉 is a minimal normal subgroup of G and 〈a1a2〉 × 〈a2a3〉 is
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S-quasinormal in G. We can easily show that both 〈a1〉 × 〈a2〉 and 〈a2〉 × 〈a3〉 are 3-cover-avoid

in (∗). Thus, every member in Md(V ) is either 3-cover-avoid or S-quasinormally embedded in

G, but we know that G is not supersolvable. 2
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