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Abstract A right adequate semigroup of type F is defined as a right adequate semigroup which

is an F -rpp semigroup. A right adequate semigroup T of type F is called an F -cover for a right

type-A semigroup S if S is the image of T under an L
∗-homomorphism. In this paper, we will

prove that any right type-A monoid has F -covers and then establish the structure of F -covers

for a given right type-A monoid. Our results extend and enrich the related results for inverse

semigroups.
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1. Introduction

An inverse semigroup S is called F -inverse if there exists a group congruence σ on S such that

each σ-class has greatest element with respect to the natural partial order ≤ on S. McFadden and

O’Carroll [19] pointed out that the concept of F -inverse semigroups is indeed a generalization of

residuated inverse semigroups. Later on, Edwards [3] defined analogously F -regular semigroups

and F -orthodox semigroups and showed that an F -regular semigroup is indeed an F -orthodox

semigroup.

A semigroup is called rpp if for any a ∈ S, aS1, regarded as an S-system, is projective. Dually,

lpp semigroups may be defined. In [4], Fountain pointed out that a semigroup S is rpp if and

only if every L∗-class of S contains at least one idempotent. Following Fountain, a semigroup is

called abundant if and only if it is both rpp and lpp. As in [4], an rpp semigroup S is said to be

a right adequate semigroup if the set of idempotents of S forms a commutative subsemigroup,

that is, a semilattice. It is easy to see that each L∗-class of a right adequate semigroup contains

exactly one idempotent. For convenience, we denote by a∗ the idempotent related to a ∈ S by

L∗. A right adequate semigroup S is called a right type-A semigroup if for any a, e2 = e ∈ S,
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ea = a(ea)∗. Dually, we define left adequate semigroups and left type-A semigroups. We call a

semigroup S an adequate semigroup if S is both a left adequate semigroup and a right adequate

semigroup. Also, we call S a type-A semigroup if S is both a left type-A semigroup and a right

type-A semigroup. Regular semigroups are abundant semigroups and inverse semigroups are

type-A semigroups.

In order to generalize the F -regular semigroups, Guo [9] defined F -abundant semigroup. So-

called an F -abundant semigroup is an abundant semigroup in which there exists a cancellative

congruence σ such that each σ-class contains a greatest element with respect to the Lawson order

≤. In the same reference, Guo established the structure of a class of F -abundant semigroups,

namely, strongly F -abundant semigroups by utilizing an SF -system. In [20], Ni, Chen and the

second author obtained a structure of general F -abundant semigroups.

Parallelizing F -inverse semigroups, Li, Shum and the second author [10] defined F -rpp semi-

groups. We call an rpp semigroup S an F -rpp semigroup if there exists a left cancellative monoid

congruence ρ on S such that each ρ-class contains a greatest element with respect to the Lawson

partial order ≤ℓ on S (for the Lawson orders, see [17]). By introducing SFR-systems, they

established a structure for strongly F -rpp semigroups. Recently, Huang, Chen and the second

author [16] obtained the structure of general F -rpp semigroups. In [1], Cui and Guo established

the structure of right adequate semigroups of type F (such a semigroup is a right adequate

semigroup which is F -rpp). Recently, the authors [2] gave a new structure of right adequate

semigroups of type F .

An F -inverse (E-unitary inverse) semigroup T is called an F -cover (E-unitary cover) for an

inverse semigroup S if S is an idempotent-separating homomorphic image of T . It is well known

that any inverse semigroup has F -covers (E-unitary covers). Along this direction, it is found that

any orthodox semigroup has E-unitary covers. Guo [9] established the structure of E-unitary

covers for an orthodox semigroup. Fountain pointed out that any left type-A semigroup has

proper covers (such proper covers are analogue of E-unitary covers in the range of left type-A

semigroups). Later on, Guo and Xie [13] gave a construction method of proper covers for a left

type-A semigroups. Guo and Tian [12], Huang, Guo and Shen [15] considered the problems on

proper covers for left GC-lpp semigroups. This raises a natural problem: whether do left type-A

semigroups have any F -covers? This is the aim of this paper.

In this paper, we shall prove that any right type-A semigroup has F -covers and then provide

a method constructing F -covers for any right type-A semigroups.

2. Preliminaries

Throughout this paper we use the notions and terminologies of Fountain [4] and Howie [14].

Now, we provide some known results repeatedly used without mentions in the sequel.

Lemma 2.1 ([4]) Let S be a semigroup and a, b ∈ S. Then the following statements are

equivalent:

(1) aL∗b.
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(2) For all x, y ∈ S1, ax = ay if and only if bx = by.

Evidently, L∗ is a right congruence while R∗ is a left congruence. In general, we have L ⊆ L∗

and R ⊆ R∗. But if a, b are regular elements, aL∗b [aR∗b] if and only if aLb [aRb]. For the sake

of convenience, we use a∗ to denote a typical idempotent L∗-related to a, and a† to denote that

R∗-related to a.

Proposition 2.2 ([4]) If S is a right adequate semigroup with semilattice of idempotents E,

then

(1) For all a, b ∈ S, (ab)∗ = (a∗b)∗.

(2) For all a, b ∈ S, (ab)∗ωb∗.

Let S be an rpp semigroup. As in [17], we define a relation S by

x ≤ℓ y if and only if L∗(x) ⊆ L∗(y) and there exists f ∈ E(S)
⋂
L∗

x such that x = yf ,

where L∗(x) is the left *-ideal generated by x (see [5]) and L∗
x denotes the L∗-class of S containing

x. Then ≤ℓ is a partial order on S. Dually, we may define the partial order ≤r on an lpp

semigroup. If S is an abundant semigroup, we define the partial order ≤ on S as ≤ℓ ∩ ≤r.

Equivalently, for a, b ∈ S, a ≤ b if and only if there exist e, f ∈ E(S) such that a = eb = bf (see

[17]). We shall denote Ga = {s ∈ S : s ≤ℓ a} for a ∈ S.

Lemma 2.3 ([17]) Let S be an rpp semigroup. Then for x, y ∈ S and e ∈ E(S), the following

statements hold:

(1) ≤ℓ is a partial order on S, in particular, ≤ℓ coincides with the usual idempotent order

ω on E(S), that is, eωf if and only if e = ef = fe.

(2) If x ≤ℓ e, then x2 = x in S.

(3) If x ≤ℓ y and y is a regular element in S, then x is also a regular element in S.

(4) Let y∗ ∈ L∗
y

⋂
E(S) and ω(y∗) = {f : fωy∗}. Then x ≤ℓ y if and only if for all [some]

y∗, there exists f ∈ ω(y∗) such that x = yf .

(5) If x ≤ℓ y and xL∗y, then x = y.

A congruence ρ on a semigroup S is called a left cancellative monoid congruence on S if S/ρ

is a left cancellative monoid.

By an F -rpp semigroup, we mean an rpp semigroup in which there exists a left cancellative

monoid congruence σ on S such that each σ-class of S contains a greatest element with respect

to the Lawson order ≤ℓ. In this case, the σ is indeed the smallest left cancellative monoid

congruence on S (see [10]). In what follows, we use σ to denote the smallest left cancellative

monoid congruence on S if it exists.

Assume that S is an F -rpp semigroup. We denote by M the set of greatest elements in all

σ-classes of S and ma the greatest element in σa. In general, M does not form a subsemigroup

of S. Now define a multiplication ◦ as follows:

m ◦ n = the greatest element of the σ-class of S containing mn.

It is not difficult to check that (M, ◦) is a semigroup isomorphic to S/σ.
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Lemma 2.4 ([15]) If S is an F -abundant semigroup, then

(1) G1 = E, where 1 is the identity of S.

(2) GmGn ⊆ Gm◦n for any m,n ∈M(S).

Lemma 2.5 ([1]) If S is a right adequate semigroup of type F , then

(1) S is a right type A semigroup (that is, a right adequate semigroup in which for any

a, e2 = e ∈ S, ea = a(ea)∗).

(2) The smallest left cancellative monoid congruence σ on S is equal to {(a, b) ∈ S × S :

(∃e2 = e ∈ S) ae = be}.

(3) σ ∩ L∗ = id (the identity relation on S).

Let φ be a homomorphism of the semigroup S into another T . φ is called an L∗-homomorphism

if for any a, b ∈ S, φ(a) = φ(b) implies that aL∗b. Obviously, any L∗-homomorphism of S into

T is idempotent-separating when S is a right adequate semigroup.

Assume S is a right adequate semigroup. Then every L∗-class of S contains a unique idem-

potent. We denote the unique idempotent in L∗
a by a∗. So, we may regard a right adequate

semigroup as an algebra with a binary operation of multiplication and a unary operation ∗. We

will refer to such algebras as ∗-semigroups. From universal algebras, we have the notions of ∗-

subsemigroup, ∗-homomorphism and ∗-congruence. It is not difficult to see that a homomorphism

is a ∗-homomorphism if and only if it preserves the L∗-classes.

3. F -covers

To begin with, we formulate the definition of F -covers.

Definition 3.1 Let S be a right type-A semigroup and T a right adequate semigroup of type

F . Then T is called an F -cover for S if there exists a surjective ∗-homomorphism ϕ of T onto S

which also is an L∗-homomorphism of T into S.

The aim of this section is to prove the following theorem.

Theorem 3.2 Any right type-A monoid has F -covers.

To prove Theorem 3.2, we need to recall the construction of free right type-A semigroups.

Let X be a non-empty set. Let FX be the free monoid on X and partially order on FX by

putting u ≤ v if and only if u is a final segment of v. For any subset A of FX , we write

maxA = {a ∈ A : a is maximal in A under ≤}.

Now let

EX = {A : A ⊂ FX , A is finite and non-empty, A = maxA}.

Thus EX is the set of all finite suffix codes over X . For A,B ∈ EX , let AB = max(A∪B). Then

EX is a semilattice. In fact, if we consider FX as partial order by the dual of note, the following

statements are equivalent for members A,B of EX where we use ≤ for the order relation in EX

as well as that in FX :
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A ≤ B; AB = A; max(A ∪ B) = A; for each b ∈ B, there is a ∈ A such that b ≤ a;

each element in B is a final segment of some element in A.

For w ∈ FX , A ⊂ FX , we put A · w = {aw : a ∈ A}. Clearly, A · w ∈ EX and we have an

action of FX on EX . Furthermore, if w ∈ FX , A,B ∈ EX , then it is routine to verify that

(AB) · w = (A · w)(B · w)

and consequently the action is order-preserving. We form the set

AX = {(w,A) ∈ F 1
X × EX : w ≤ a for some a ∈ A}.

On AX , define a multiplication by

(w,A) ◦ (v,B) = (wv,A · v ∧B).

Then (AX , ◦) is a free right type-A semigroup [6, P.138-141].

Lemma 3.3 ([6, Proposition 2.6]) Let (v,A), (w,B) be elements of AX . Then

(1) (v,A)σ(w,B) if and only if v = w.

(2) (v,A)L∗(w,B) if and only if A = B.

Lemma 3.4 ([6, Theorem 2.8]) Let S be a right type-A semigroup. Then S is the image of

some AX under an L∗-homomorphism which also is a ∗-homomorphism.

For a non-empty subset A ⊆ FX , we denote by [A]↓ the order ideal of (FX ,≤) generated by

A.

Lemma 3.5 If A ∈ EX , then A = max([A]↓).

Proof Clearly A ⊆ [A]↓. We show first that every element of A is maximal in the set [A]↓.

Suppose a ∈ A is not maximal in [A]↓. Then there exists a′ ∈ [A]↓ such that a < a′. By definition

a′ ≤ a′′ for some a′′ ∈ A. But this implies a, a′′ ∈ A distinct comparable elements of A, which

is a contradiction. Thus A ⊆ max([A]↓). Conversely, let b ∈ max([A]↓). By definition b ≤ c for

some c ∈ A. But b is maximal, and so b = c ∈ A. Thus A = max([A]↓).

Proof of Theorem 3.2 By Lemma 3.4, we need only to prove that AX is F -rpp. To this end,

we let (w,A) be any element of AX , then by Lemma 3.3, σ(w,A) = {(w,B) ∈ AX : w ∈ B}. Now

let x ∈ max([w]↓). Then x ≤ w and so by definition, B ≤ [w]↓. Clearly (w,max([w]↓) ∈ σ(w,A)

and is the greatest element of σ(w,A). Consequently, AX is F -rpp and we complete the proof. 2

4. The structure of F -covers

In this section we will establish the structure of F -covers for a right type-A semigroup. P(S)

is a set containing all subset of S. In what follows, we denote A · B := {ab : a ∈ A, b ∈ B} for

any A,B ∈ P(S). It is easy to see that (P(S), ·) is a commutative semigroup.

Definition 4.1 Let S be a monoid with identity 1, T a semigroup. A mapping φ : S → P(T )

is called a pre-homomorphism if the following conditions are satisfied:
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(1) φ(1) = E(T );

(2) for all x, y ∈ S,φ(x)φ(y) ⊆ φ(xy).

Definition 4.2 Let M be a left cancellative monoid, T a right type-A monoid. If φ is a mapping

from M into P(T ). Then (M,T ;φ) is called an FRA∗-system if

(FRA1) φ is pre-homomorphism;

(FRA2) for all m ∈M , there exists ma ∈ T such that φ(m) = Gma
.

Given an FRA-system (M,T ;φ), put

FRA(M,T ;φ) = FRA = {(m,x) ∈M × T : x ∈ φ(m)}.

By routine computing, FRA is a subsemigroup of M × T . Moreover, we may prove

Lemma 4.3 The above semigroup FRA is a monoid.

Proof By (FRA2), there exists e ∈ E(T ) such that φ(1) = Ge so that e is the identity of E(T ).

Hence e is the identity of T . The following result is immediate.

Lemma 4.4 E(FRA) = {(1, f) : f ∈ E(T )} and is isomorphic to E(T ). Moreover, E(FRA)

has (1, e) as its identity.

Proposition 4.5 Let (M,T ;φ) be an FRA-system.

(1) For all (m,x), (n, y) ∈ FRA, (m,x)L∗(n, y) if and only if xL∗y.

(2) For all (m,x), (n, y) ∈ FRA, (m,x) ≤ℓ (n, y) if and only if m = n, x ≤ℓ y.

(3) For all (m,x), (n, y) ∈ FRA, (m,x)σ(n, y) if and only if m = n, xσy.

(4) FRA is a right adequate monoid of type F .

Proof (1) First of all, we verify that (m,x)L∗(1, x∗). Now let (δ, t), (γ, u) ∈ FRA with

(m,x)(δ, t) = (m,x)(γ, u). Then (mδ, xt) = (mγ, xu), and so mδ = mγ, xt = xu. Thereby δ = γ

and x∗t = x∗u. Thus (1, x∗)(δ, t) = (1, x∗)(γ, u). Together with the fact (m,x)(1, x∗) = (m,x),

we have that (m,x)L∗(1, x∗).

Now, by the above proof, we have

(m,x)L∗(n, y) ⇔ (1, x∗)L∗(1, y∗) ⇔ x∗y∗ = x∗, y∗x∗ = y∗

⇔ x∗Ly∗ ⇔ xL∗y.

(2) It follows from the computation:

(m,x) ≤ℓ (n, y) ⇔ (∃(1, u) ∈ ω(1, y∗))(m,x) = (n, y)(1, u)

⇔ m = n, x ≤ℓ y.

(3) By Lemmas 2.5 (2) and 4.4, the proof is a routine checking.

(4) By (3), σ(m,x) = {(m, y) ∈ FRA : y ∈ φ(m), yσx} for any (m,x) ∈ FRA. Note that

φ(m) = Gma
for some ma ∈ T . We observe that (m,ma) is the greatest element in σ(m,x), and

consequently FRA is a right adequate semigroup of type F .
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Consider the mapping ϕ : (m,x) 7→ x from FRA to T . It is a routine calculation to show that

ϕ is an L∗-homomorphism which is a ∗-homomorphism. Now, the following lemma is immediate.

Lemma 4.6 The projection ϕ : (m,x) 7→ x from FRA to T is an idempotent-separating

homomorphism.

We now arrive at the structure theorem of F -covers for right type-A monoids

Theorem 4.7 Let (M,T ;φ) be an FRA-system. If T = ∪m∈Mφ(m), then FRA(M,T ;φ) is an

F -cover for right type-A monoid T .

Conversely, any F -cover for the right type-A monoid T can be constructed in this manner.

Proof Notice that T = ∪m∈Mφ(m). We observe that the projection of FRA(M,T ;φ) to T

is surjective. Hence by Proposition 4.5, we only need to prove the converse part. For this, we

assume that ϕ is a surjective ∗-homomorphism and L∗-homomorphism of a right type-A monoid

S of type F into the right adequate monoid T . We denote by M the set of greatest elements in

all σ-classes of S. Under the multiplication ◦ defined by

m ◦ n = the greatest element of the σ-class of S containing mn.

It is not difficult to check that (M, ◦) is a semigroup isomorphic to S/σ.

Define

θ : M → P(T ); m 7→ (Gm)ϕ.

Since S = ∪m∈MGm and ϕ is surjective, we have T = ∪m∈M (Gm)ϕ. Clearly, E(S)ϕ ⊆ E(T ).

Conversely, for any x ∈ E(T ), there exists a ∈ S such that aϕ = x since ϕ is surjective. Note

that ϕ is a ∗-homomorphism, it is easy to see that aϕ L∗a∗ϕ, hence a∗ϕ = aϕ since T is a right

adequate semigroup. It follows that E(T ) ⊆ E(S)ϕ. Thus E(T ) = E(S)ϕ, hence θ(1) = E(T ).

On the other hand, since T is a right type-A semigroup, it is easy to check that a ≤ℓ x, b ≤ℓ y

imply that ab ≤ℓ xy for any a, b, x, y ∈ T . This can derive that (Gm)ϕ · (Gn)ϕ ⊆ (Gm◦n)ϕ for

any m,n ∈M . We have now proved that θ is a pre-homomorphism from M into P(T ).

We can now form the semigroup FRA(M,T ; θ). Furthermore, define

ψ : S → FRA(M,T ; θ); s 7→ ψ(s) = (ms, sϕ).

If sψ = tψ, then ms = mt and sϕ = tϕ. Hence (s, t) ∈ σ ∩ L∗. Thereby s = t since S is F -rpp.

Thus ψ is injective.

For any (m, t) ∈ FRA(M,T ; θ), we have s ∈ Gm such that t = sϕ. Note that s ∈ Gm, we

have (s,m) ∈ σ, thus (m, t) = sψ. Consequently, ψ is surjective.

Finally, suppose that a, b ∈ S,

ψ(a)ψ(b) = (ma, aϕ)(mb, bϕ) = (mab, (ab)ϕ) = ψ(ab).

Thus ψ is a homomorphism. We have now proved that ψ is an isomorphism of S onto FRA(M,T ; θ).

The proof is completed. 2
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