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Abstract In this paper we give some sufficient conditions for analytic functions which are not
identically zero and belong to Nevanlinna class in the sector and angular domain. Moreover,
their integral expressions or factorization theorems are obtained.
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1. Introduction and Theorems

Suppose R > 1 and o € (0,%). Ao(0,R) = {2 : |2| < R,|argz| < a} is a sector with radius
R, and 0A,(0,R) = {z = R |0] < a}U{z =re’ : 0 <7 < R;0 € {+a, —a}} is the boundary
of Ao(0,R); B(0,1) denotes unit disk, and 0B(0,1) is its boundary; A, = {z : |argz| < a}
denotes angular domain, BT(0,R) = {z : |z|] < R, Rez > 0} is a half-disk with radius R and
C4 = {z: Rez > 0} denotes right half-plane.

Define the conformal mapping as follows: ¢ = ¢3 o ¢ o @1, where

2Ry, 2o e0)
z—1iR z+ ¢2(1)
¢1 maps A (0, R) = {2 : |2] < R,|arg 2| < a} to half-disk BT (0, R®); ¢ maps half-disk B+ (0, R)

to upper half-plane C';; ¢3 maps upper half-plane C; to unit disk B(0,1). Let 8 = J=. After

¢1:2— 27 oiz— —(

the calculations we obtain:
w= () = _$2(1(2) — (1) _ 2P — R¥ — 2P 4+ RSP _ 2P -1 P4 R¥ )
d2(d1(2)) + P2(1) 228 — R28 + 28 — R2626 2P +1 28— R’
for z € A,(0, R) and w € B(0,1), then ¢(1) = 0. f belongs to class N(B(0, 1)) if f is analytic in
B(0,1) and satisfies

2 2m
sup {/0 log™ |f(re‘%)|d9} = }Lrnl/o log™ | f(re?))|do < oo.

0<r<1
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Assume that D is a simply connected domain in the complex plane C and its boundary 0D
is piecewise smooth curve . According to Riemann Mapping Theorem there exists a conformal
mapping (z) that maps D to B(0,1). Moreover, ¢)(z) can be extended to the closure D of D
such that (z) is homeomorphism from D to B(0,1). Let f(w) = F(y~'(w)) for w € B(0,1). If
F is analytic in D, f is in B(0,1). F € N(D) if f € N(B(0,1)). f is inner or outer function,
Blaschke product or singular inner function in B(0,1), so F' is in D. Therefore, for almost all
boundary points £ € 9D, there exists a nontangential limit function F(§) when F € N(D). A
necessary and sufficient condition for F' € N(D) is that there exists a harmonic and majorant
function of log |F(z)| (see [3]). Nevanlinna class is a classical topic in the complex analysis field
that many authors are interested in. Rosenblum, Rovnyak [1] and Duren [3] stated Nevanlinna
class and its property in the unit disk; Horowitz [4] generalized a result from Nevanlinna class
to generalized Nevanlinna class; Moreover, Dijksma, Langer, Luger and Shondin [6] considered
a factorization of functions in generalized Nevanlinna class Nj; Rovnyak and Sakhnovich [5]
characterized some generalized Nevanlinna classes in terms of their integral representations; Lai
[2] generalized some theorems in half-disk with radius R and half-plane; On the basis of the
research in [1] and [3],we mainly consider Nevanlinna class in the sector and angular domain
and obtain a series of results such that [2] is parallel with the particular case in this paper. Our
primary outcomes are the following

Theorem 1 Suppose R’ > R > 1 and F(z) is analytic in Ao(0, R'). Set § = F-. If

« ) R ) ) s—1
/ cos f01og™ |F(Re?)|df + lim [ (log™ |F(re® + €)| 4 log™ |F(re™ " + e)|);#+1dr
e—0.Jo T

< 00, (2)

—Q

then F(z) € N(A,(0, R)).

Theorem 2 Suppose R’ > R > 1 and F(z) is analytic in A,(0,R'). Set 8 = §- and AR is the
zero’s set for F'(z) on the A, (0, R), including repetitions for multiplicities. If F(z) € N(A,(0, R)),

there exists a singular measure p such that

@ R
[ cosporog 1E(Reia0 + [ g (e e
0

—x

R
/ log [F(re=0)||r®~1dr + | (DA (0, R) \ E) < 00 (3)
0
and

Re\,”
AT @)

2

An€EAR 1+ |An| g

where E = {z : |z| = R,|argz| < a}. Moreover, for all z € A,(0, R)\ Ar we have

B[RO RO

log |[F(z)] o ). (|R56ﬁ9i — 8P RPe i ¢ Zﬁ|2) log | F(Re®")|d6+
B [t Rez"? R?PRezP

7 Jo (|irﬁ — 282 |izPrB + R28)2

) log |F(reo‘i) |dr+
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B e Rez”? R?PRezP i
T lirB + 282 |izBrf — R2ﬁ|2) log [F'(re™*")|dr+
_ Aﬁ R25 + /\525 6 /R Rezﬁ R2ﬁRezﬁ ) ( )+
. T - r
seve P +X R -X'20 jirf — 282 JizPr® + R2A12)
B " Rez" R28RezB i
= |i7‘5 +ZB|2 o |izﬁ7aﬁ _ Rzﬁlg) /L(T). ( )

Theorem 3 Suppose F'(z) is analytic in A,. Set 3 = 5= and

Hgr(z) :%/ cos 30log™ |F(Re)|do+

R ‘ ‘ B-1
tim | (log " |F(re™ 4] + log " |Pre ™" +€)) g . (6)
If
lim Hp(z) < o0, (7)
R—oo
then F(z) € N(Aq).
Theorem 4 Suppose F'(z) is analytic in A,. Set 8 = g and A is the zero’s set for I'(z) on the

Aa, including repetitions for multiplicities. If F(z) € N (Aa), F(z) has a factorization as follows

F(z) = G1(2)Bi1(2)51(2),

where

—B [ ir? 1 _ i
G1(z) :C’exp{7 ; (r25+1+irﬁ—zﬁ)Tﬁ Yog |F(re )|dr}.

exp{g/ooo( ir” + - L )rﬁ_llog|F(re_°‘i)|dr} (8)

r28 +1  irB 420

is outer function, where |C| = 1. Moreover

/0 " (log [F(re®)| + | log |F(re=)]])

here F(re"") is nontangential boundary function of F(z) for v € {—a, a}.

-1

2ﬁ+1dr<oo, 9)

D=c it 3 [ w
is Blachke product, where |C| = 1, and
AGX% |A]|%22Ajz =% (11)
51(:) =Ce exp { - | Nt )
exp { 217T /OO(TQZZj_ 1 + B i_ Zﬁ)du(r)} (12)

is the quotient of two singular functions, where a € R, |C| = 1 and v denotes signed singular
measure on R
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2. Proof of Theorems

Proof of Theorem 1 Set f(w) = F(¢ 1 (w)) for w € B(0,1) and e + A4 (0,R) = {e+2z: 2z €
An(0,R)} for 0 < e < R’ — R. Therefore Vp € (0,1), we have

[ gt Ifidel <t [ dog" (67 w) + O]
lwl=p —0J|w|=1
=1lim [ log"|F(Re% + €)||¢'(Re’)|RAO+
e—0J_q
lim (log™® |F(re® 4 €)||¢' (re®?)| 4+ log™t |F(re=*" + €)||¢ (re™*")|)dr.
e—0.Jo

Because log™ |F(¢~'(w) + €)| is subharmonic in the domain containing B(0,1), the above in-
equality holds. R’ > R > 1 and F\(z) is analytic in A,(0, R’), hence

lim [ log™ |F(Re’ + ¢)||¢'(Re")|RAO = / log™ [F(Re%)||¢' (Re")|RA6.

e—0J—a —«

By (1) we get
oy 2B(RP —1)(2*7 + R?7)201
O B 1 By =225y R

4B(R*® —1)RP~! cos 30 _

|RPeBIT + 1[2]eP9% — RA|2

28(R* — 1)(R2P — p28)pA-1
(R )65 11)

¢ (Re™)| =

|6 (re®®)| = |/ (re™")| =

So
4BR5 [ ,
/ log*lf(w)lldwlg% / log™ |F(Re%)]| cos 306+
lwl=p - —a
B . N o -1
25151% ; (log™ |F(re* +€)| +log™ |F(re +6)|)Wdr'
Therefore

sup L/' log™ | £(w)||dw| < oo,
0<p<1 J|w|=p

then f(w) € N(B(0,1)), i.e., F(2) € N(44(0, R)).

Proof of Theorem 2 1) If F(2) € N(4,(0,R)) and f(w) = F(¢ 1 (w)), f(w) € N(B(0,1)).
Without loss of generality we assume f(0) # 0. Therefore f(w) has a factorization as follows

flw) = Gw)B(w)S(w),

Glw) = Cexp (3 [ £ 10g]7(9)]ae)

21 JaB(o,1) E-w

where

is outer function in unit disk B(0,1), |C| =1 and log |f(§)| € L'(0B(0,1));

ap — w
C mn
H 1-a,w |an|
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is Blaschke product in unit disk B(0,1), where |C| = 1, {a, = ¢(N\,) : n € N} C B(0,1) is the
zero’s set for function f(w) and satisfies

+oo

> (1= fan]) < +oo; (13)

n=1
1 E4w
s =cew (5 [ o)
is the quotient of two singular inner functions in unit disk B(0,1), u1 is the difference of two
nonnegative singular measures in unit disk B(0,1) and total variation measure |u;| satisfies the
condition | |[{0B(0,1)} < occ.

For outer function G(w),

log G(6(2)) = /@ 1 0C) 10g 1)1

21 301)5 ¢()
L ¢(R601) +9(2), M 1o P
=5x | SR — o) ¢ (Re"N1og | F(Re") R0+
(,reaz) (Z) / Teai o ,reai r
wh —(b(ma) 50| e log | F(reldr+
e+ 8(2) 1o oty 1o | et
3 | S e g Fre =,
Since
Re P(Re”) +¢(z) _ [d(Re™)P — () 1—g(2)
O(Re) —d(z)  |p(Re?) —d(2)?  [¢(Re?) — o(2)]*
LOre) +6(2) _ |o(re)? —[6(z) _  1-19(2)
p(re) —(z)  |p(re)) — ()2 |d(rer?) — d(2)[*’

where v € {—a, a}. Then

Lo 1-g(2))?
10g|G(¢(2))| 2% . |¢)(R€9i|)¢£ ;|(Z)|2

i " 1- |¢(Z)|2 / at at
277/0 [p(revt) — (= )|2|¢ (re®")| log |F(re®)|dr+

L S
27T/0 |p(re=ai) — ¢ ()|2|¢( )| log | F'( )|dr. (14)

For Blaschke product B(w),

|¢' (Re®)| log | F(Re")| RAO+

z An
H(b ¢(),Z()

nth, L= 0(n)o(2) | (M)l
thus "
log |B(¢(2))] = C 72 15
sl E\R SOo) (15)

For singular inner function S(w),

log S(6()) = 1/ “—“’dm(s)
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_ L[ G(Re) + ¢(2) oy L[ o) + 6(2) i
5 | S am o) + 5 [ S S R o)+
1R glre™) +¢(2)

o7 |, dre—) —o(z) pa(d(re=")).

Let po = p1 o ¢, where pq is singular measure in unit disk B(0,1). Then ps is zero measure in
the circular arc {z : |2| = R, |argz| < a}. Write dus = |¢/(re®")|du. Since R’ > R > 1, F(z) is
analytic A, (0, R'), and |¢/(re®?)| = |¢' (re=*%)|, we see that

R —1o(2)2 _
g (6] =5 [ o A (et +

11— ez))?
21 Jo |p(re=2%) — ¢(2)

By (1) we calculate and know

E ¢/ (re™*")|dp(r). (16)

ARezP(R?® — 1)(R2 — |2[29
- Joa) = PR ), (17)
2 YR 1) 1 )
MO =00 = e e - e - By "
b(2) = 282871 (R?8 — 1)(22° + R?P)
YT TP 2P R
B 2R - D)2+ NS (R - NP
1= 0n)e(z) = (28 + 1)\ + 1) (28 — R29)(\,,” — R28)
Therefore, substituting (17), (18), (19) and (20) into (14), (15) and (16) gives (5).
2) Suppose R’ > Ry > R > 1 and define the conformal mapping ¢g, that maps A, (0, R1)
to B(0,1) as follows

2P —1 zﬁ—l—Rfﬁ
2841 Zﬁ_Rfﬁ'

Or, (2) = (21)

For log |F(¢)| € LY (B(0,1)), we have

0 >/w_1 |log | f(w)]||dw] :/6 R |log |F(2)]||¢'(2)]|dz]
“  48(R?*P —1)RF 9
> [ pog ey PR R g

BR? — 1)(R?P — 29)r-!

R
ai —ai 2
/0 ([log | F(re®*)|| + | log |F(re=“")||) (R + R29)(R?P + 1) dr.

Hence o
/ |log | F'(Re®)|| cos 30d0 < +o0;
R 28 26 _ ,.28Y,.6-1
ai —ai 26(R B 1)(R —-r )T
/0 (|log | F(re®)|| + | log |F (re”*")||) (7 1+ R2) (R 1 1) dr < +o0.
Similarly

(R}’ —1)(R}’ — 128 )rP—1
(RY” + RV (R +1)

Ry . .
/ (|log [F(re®)|| + |log |F(re=**)|[) dr < +o0.
0
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So
By : L (B = D)(RYY — r20)pP !
00 > log |F'(re®)|| + | log |F'(re™** L L
) ewtE el + g e D S g s
R 26 26 _ p2By,.6-1
i Coiniy (R 1)(R R?P)p
2/ (|log [F(re®)|| + |log | F(re™ )| "= —5"—35-37 dr
0 (R” 4+ R7) (R +1)
Thereby

R
/ (|1og |[F(re®)|| + | log |[F(re—21)|)r®~Ldr < +oc.
0
Combining with
|2](0Aa(0, R)\ {7 : |z| = R, |argz| < a}) = |u1|(B(0,1)) < +oo0,

we get the proof of (3).
3) Combining with (13) and (21), we see

Yo A=lor M) <2 D0 (1= [dr, (Ma)l) < +oo.

An €AR,y An€ARy

4Re"(RY” — D(RY — \al™)

1- An)|? =
|¢R1( )| |/\n5+ 1|2|R§ﬁ _)\n5|2
Therefore
4ReM (R — 1)(R? — |\ ) 4ReM P (R — 1)(R? — |\ )
> 2 2B B2 < B 35 B2 < 00
Nl A +112|RY — A, AvEhn, A" 4+ 112|RY — A,

Then we see that

3 AReM,P(R?® — 1)(R?” — R?)

< 0
2 )
Nk, WS HIRIRY 4 RO
SO 5 5
ReM\, 2Re\,

E —— < E —— <
28 - B8 ’

An€AR Anf?7 41 An€AR [An” 12

thus (4) holds.

Proof of Theorem 3 Without loss of generality we assume F(1) # 0, and there exists an
€0 > 0 such that F/(1 +¢€) # 0 when 0 < € < ¢g. Although F(z + ¢) is analytic in A,(0, R), by
(6) and (7) we get

R B-1

iljil) i (lOng |F(,r,eoci + 6)| + 10g+ |F(,r,efoci + 6)|)T2Tﬁﬁd’f‘ < 00,

so there exists {e,}, €, — 0 and positive measure 7 that satisfies for all ¢
li - + i o _ [ o
Jim. ; g(t)log™ |F(re” + €,)] T 1dr /0 g(t)mdr, (22)
where ¢ is continuous in Ry, lim;_ g(t) = 0 and v € {—a, a}.
Since (6) and (7) hold, there exists R large enough to satisfy Hr(z) < co. By Theorem 1 we
know F(z) € N(A,). Therefore we applied Theorem 2 to F(z + ¢,) and have
A T T
T (|Rﬁeﬁ‘% — 2B2 |RPeh%i 4 282

log | F(z + €n)] ) log | F(Re% + e,)|d0+
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B e Rez”? R26Rezf o
_ lirf — 282 B |izBrB + R2ﬁ|2) log |F(re™ + ey )|dr+
B Rez" R28ReB >
m Iirﬁ + 202 JizPrf — R2ﬁ|2) log |F(re™®" + €n)ldr+
— A8 Rm + A\B2B
Z log | ——|+0.
AeAr BN R2B 3,8
Write
=] BP0 <R
I It > R.
Since

B 248 8,8
Zlog| A —|—iﬁz | < Zloglg(),
AEAR 2P+ )‘ R2ﬁ — AP AEAR

according to (17), (18) and (19) we know
log |F(2)] = lim log |F(> + )
€e—0

1 [ 4BRezP(R* — |2|*%)RP cos 30
= 2w J_, |RPeBY — 2B|2|RPe—F0 4 5|2
1 . * BRezP(R?P — |2|*%)g(r)rP~1

—1
Q eanO o |irf —2822PrPi + R2A|2

L iy [ R L0
lirf + 282|287 — R2A|2

log | F'(Re)|d0+

log |F(re® + ¢,)|dr+

og|F(re™ 4 ¢,)|dr.

T e,—0

Since ¢(t) is continuous in Ry and g(¢) = 0 when [¢t| > R, by (22) we have

1 [ 4BRez” cos 30 R28 _ |,|28)R28

log |F(2)] <2—/ B =3 po . |RB€B€E_Zﬁ|2||}|tﬁe)—59i+zﬁ|2dT(T)+
1 [~ 81 BRezP(R* —|2|?P)(R* — r20)(r?% + 1)
;/0 28 41 lir — 282|2PrBi + R?5|2 7(r)+
. / T P BRePB — |AP) R -2 1)y
)y TP +1 lirP + 2B[2[zPrPi — R2B]2 )

Letting R — 400 and combining with (6) and (7), we obtain

*  Rez’ *  RezP
B -
log |F(z)| < Ai1Rez —I—A2/0 |ir5—zﬁ|2dT(T>+A3/0 |irﬁ+zﬁ|2d7(r)’

here A;, A, and Az are some positive numbers independent of z. Since Rez” o " lwgezzﬁlz 7(r)
and fOR %dﬂr} are harmonic functions, there exists a harmonic majorant function for
log |F'(z)| in Aq, hence F(z) € N(A,).

Proof of Theorem 4 From the proof of Theorem 2, we get G(¢(2)), B(¢(z)) and S(¢(z)).
Therefore, letting

Gi(2) = lim G(6(2))

R—o

yields (8).
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Define the conformal mapping as follows

LB _
v =5

then v (2) maps A, to B(0,1). Because f(w) = F(¢ ' (w)) € N(B(0,1)) and f(w) € L(0),
00 > /_a log | f(e?)|dO

= /0 (|log [F(re®)[[[¢ (re®")| + [log |F (re=*")[[[¢/ (re ") )dr
B—1

7“254-1

Ta

_25/000(|1og|F(reo‘i)||+|10g|F(7" N =z

then (9) holds.
Letting
Bi(z) = lim B(¢(2)),

R—o0
results in (11).
By (13), we know

> (1= |y Z (1 = [¢1(An)]) < o0,

B 4ReAnﬁ 2Re),”
|)\nﬁ+1|2 = |)\nﬁ|2+1’

then (11) holds.
Letting

S1(z) = lim S(¢(2)),

R—oo

we obtain

1 AP —1
Si(2) =Cer exp {5 / o dm(d(re) }

1 irfz8 41 i
oo {gr [ Gz dmeoe )

where |C| = 1, and p; denotes signed singular measure on dB(0,1). Letting a = v(9B(0,1))
and dv = (14 72%)du (¢) gives (12).
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