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Abstract A star coloring of an undirected graph G is a proper coloring of G such that no path

of length 3 in G is bicolored. The star chromatic number of an undirected graph G, denoted by

χs(G), is the smallest integer k for which G admits a star coloring with k colors. In this paper,

we show that if G is a graph with maximum degree ∆, then χs(G) ≤ ⌈7∆
3

2 ⌉, which gets better

bound than those of Fertin, Raspaud and Reed.
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1. Introduction

All graphs considered here are undirected graphs. A star coloring of an undirected graph

G is a proper coloring (i.e., no two neighbors are assigned the same color) of G such that any

path of length 3 in G is not bicolored. The star chromatic number of undirected graph G,

denoted by χs(G), is the smallest integer k for which G admits a star coloring with k colors. The

terminologies and notations used but undefined in this paper can be found in [2, 3].

Star coloring was introduced in 1973 by Grünbaume [4]. In 2001, Nesetril et al. [5] proved

that χs(G) ≤ O(∆2). In 2004, Albertson et al. [6] proved that χs(G) ≤ ∆(∆ − 1) + 2. In 2004,

Fertin et al. [1] proved that χs(G) ≤ ⌈20∆
3

2 ⌉. In this paper, we extend those results above and

give a good bound for χs(G), i.e., we show that if G is a graph with maximum degree ∆, then

χs(G) ≤ ⌈7∆
3

2 ⌉, which is better than any of the above bounds.

2. Lemmas and the main result

Let G∗ be a graph with vertex set X. We say that G∗ on the set X is a dependency graph for

the family of event (Ax)x∈X (i.e., any two events Ax and Ay (x, y ∈ X) will share an edge in G∗

iff they are dependent). Erdös and Lovász [7] proved the following fundamental lemma, namely,
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Lovász Local Lemma.

Lemma 2.1 (Lovász Local Lemma) Let G∗ be a dependency graph for the family of event

(Ax)x∈X , and suppose (rx)x∈X are real numbers in [0, 1) such that, for each x,

P (Ax) ≤ rx

∏

y∈Γ(x)

(1 − ry),

where Γ(x) is the set of vertices of G∗ adjacent to x. Then,

P (
⋂

x∈X

Āx) ≥
∏

x∈X

(1 − rx) > 0.

Lemma 2.2 ([6]) If G is a graph with maximum degree ∆, then χs(G) ≤ ∆(∆ − 1) + 2.

Theorem 2.1 Let G be a graph of maximum degree ∆. Then χs(G) ≤ ⌈7∆
3

2 ⌉.

Proof The proof is divided into two cases according to ∆ as follows.

Case 1 ∆ ≤ 49

Suppose that ∆ ≤ 49. By Lemma 2.2, χs(G) ≤ ∆(∆− 1) + 2 = ∆2 −∆ + 2. Since
√

49
∆ ≥ 1

as ∆ ≤ 49, ∆2 − ∆ + 2 ≤ ⌈∆2
√

49
∆ ⌉ = ⌈7∆

3

2 ⌉. Thus the result holds in this case.

Case 2 ∆ > 49

Now suppose that ∆ > 49. Let k = ⌈7∆
3

2 ⌉. We color V (G) with k colors, and the color is

independently chosen randomly according to a uniform distribution on {1, . . . , k} for each vertex

v of V (G). Let ϕ define this application. Usually, the labeling (or coloring) of vertex x is denoted

by ϕ(x). What we want to show here is that with non-zero probability, ϕ is a star coloring of G.

We need define a family of events on which we will apply Lovász Local Lemma. This will imply

that with non-zero probability, none of these events occurs. If our events are chosen so that if

none of them happens, our coloring is a star coloring of G, and the theorem will be proved.

Now, let us describe the two types of events we have chosen.

Type I For each pair of adjacent vertices x and y in G, let Ax,y be the event that ϕ(x) = ϕ(y).

Type II For each path of length 3 wxyz in G, let Bw,x,y,z be the event that ϕ(w) = ϕ(y) and

ϕ(x) = ϕ(z).

For two types of the events above, now let us come back to our coloring ϕ. We can easily see

that the following two Observations are straightforward.

Observation 2.1 For each event A of type I, P (A) = 1
k
;

Observation 2.2 For each event B of type II, P (B) = 1
k2 .

If none of the two events A and B occurs, then ϕ is star coloring of G by the definition of

star coloring. Now, we want to show that with strictly positive probability, none of these two

events occurs. We want to apply Lováz Local Lemma, so we construct a graph G∗ whose nodes

are all the events of the two types, and in which two nodes RX1
and WX2

, R, W ∈ {A, B}, are
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adjacent iff X1 ∩ X2 6= ∅. Since the occurrence of each event RX1
depends only on the color of

the vertices in X1, G∗ is a dependency graph for these events, because even if the colors of all

vertices of G but those in X1 are known, the probability of RX1
remains unchanged. Now, if a

vertex of G∗ corresponds to an event of type i, then it will be said to be of type i ∈ {I, II}.
In order to estimate the degree of a vertex of type i in G∗, we need the following lemma that

was proved in Fertin et al. [1].

Lemma 2.3 Let G be a graph with maximum degree ∆ and let u ∈ V (G). Then,

(i) u belongs to at most ∆ edges of G;

(ii) u belongs to at most 2∆(∆ − 1)2 paths of length 3 in G.

Lemma 2.4 Let Yi,j be an upper bound on the number of vertices of type j which are adjacent

to a vertex of type i (for i, j ∈ {I, II}) in the dependency graph G∗. Then

(1) YI,I = 2∆;

(2) YI,II = 4∆ − 2;

(3) YII,I = 4∆(∆ − 1)2;

(4) YII,II = 8∆(∆ − 1)2 − 8.

Proof (1) It was proved in [1].

(2) Take a vertex wII of vertices of type II in G∗, and let us give an upper bound on the

number of type I in G∗ that are the neighbors of wII . Since the vertex wII corresponds to

an event Bw,x,y,z, it implies four vertices w, x, y and z in G. Thus according to the definition

of the event of the graph G∗, wII is connected to all the vertices (type I) that correspond to

events Aw,u, Ax,v, Ay,p, Az,q for all vertices u that are neighbors of w in G, all vertices v that

are neighbors of x in G, all vertices p that are neighbors of y in G, and all vertices q that are

neighbors of z in G. By Lemma 2.3, there are at most ∆ vertices that are neighbor of w in G

(resp,of x, y, z in G), and so YI,II is upperly bounded by 4∆ − 2.

(3) Take a vertex xI of vertices of type I in G∗, and let us give an upper bound on the

number of type II in G∗ that are the neighbors of xI . Since the vertex xI corresponds to an

event Ax,y, it implies two vertices x, y in G. Thus according to the definition of the event of the

graph G∗, xI is connected to all the vertices (type II) that correspond to events Bx,o,p,q, Bo,x,p,q,

Bo,p,x,q, Bo,p,q,x, By,r,s,t, Br,y,s,t, Br,s,y,t and Br,s,t,y for all vertices o, p, q, r, s, t ∈ V (G). By

Lemma 2.3, YII,I is upperly bounded by YII,I = 4∆(∆ − 1)2.

(4) Then as in (2) and (3), the lemma holds. 2

Now, in order to apply Lováz Local Lemma, there remains to choose the rx(i) for i ∈ {I, II}
and x ∈ X , where 0 ≤ rx(i) < 1. For this, we choose that

{

rx(I)=
√

3
k

for type I

rx(II)=
√

5
k2 for type II

In order to be able to apply Lováz Local Lemma, it is necessary to prove that:

P (A) =
1

k
≤

√
3

k
(1 −

√
3

k
)2∆(1 −

√
5

k2
)4∆(∆−1)2 (∗)
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and

P (B) =
1

k2
≤

√
5

k2
(1 −

√
3

k
)4∆−2(1 −

√
5

k2
)8∆(∆−1)2−8.

Clearly, since 0 < 1 −
√

3
k

< 1 and 0 < 1 −
√

5
k2 < 1,

(1 −
√

3

k
)4∆−2(1 −

√
5

k2
)8∆(∆−1)2−8 ≥ (1 −

√
3

k
)4∆(1 −

√
5

k2
)8∆(∆−1)2 .

If the inequality P (B) = 1
k2 ≤

√
5

k2 (1 −
√

3
k

)4∆(1 −
√

5
k2 )8∆(∆−1)2 is satisfied, then the inequality

(∗) is satisfied too. In order to prove that it is satisfied, let

N = (1 −
√

3

k
)4∆(1 −

√
5

k2
)8∆

3 ≤ (1 −
√

3

k
)4∆(1 −

√
5

k2
)8∆(∆−1)2 .

We only need show that N ≥ 1√
5
. Since,

(1 −
√

3

k
)4∆ ≥ 1 − 4

√
3∆

k
; (1 −

√
5

k2
)8∆

3 ≥ 1 − 8
√

5∆3

k2
,

N ≥ (1 − 4
√

3∆
k

)(1 − 8
√

5∆3

k2 ). When k = ⌈7∆
3

2 ⌉,

N ≥ (1 − 4
√

3

7
√

∆
)(1 − 8

√
5

(7)2
) = (1 − 1

7

√

48

∆
)(1 − 8

√
5

49
).

Since ∆ > 49, N ≥ (1 − 1
7 )(1 − 8

√
5

49 ). It is easy to check that in that case N > 1√
5

for any

∆ > 49. Hence by Lováz Local Lemma,

P ((
⋂

x∈X

Āx)
⋂

(
⋂

x∈X

B̄x)) ≥
∏

x∈X

(1 − rx(1))(1 − rx(2)) > 0,

which means that ϕ is a star coloring of G with non-zero probability. The theorem is proved. 2
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