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Abstract Let A be a subgroup of a group G and X a nonempty subset of G. A is said to

be X-semipermutable in G if A has a supplement T in G such that A is X-permutable with

every subgroup of T . In this paper, we try to use the X-semipermutability of some subgroups

to characterize the structure of finite groups.
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1. Introduction

All groups in this paper will be finite.

Let A and B be subgroups of a group G. A is said to be permutable with B if AB = BA.

A is said to be a permutable subgroup (or quasinormal subgroup) of G if A is permutable with

all subgroups of G (see [13]). The permutable subgroups have many interesting properties. For

example, Ore [13] proved that every permutable subgroup of a group G is subnormal in G. Ito

and Scép [10] proved that for every permutable subgroup H of a group G, H/HG is nilpotent.

However, two subgroups H and T of a group G may not be permutable in G, but G may contain

an element x such that HT x = T xH . Basing on the observation, Guo, Shum and Skiba [4, 5, 7]

recently introduced the following generalized permutable subgroups. Let A and B be subgroups

of a group G and X a nonempty subset of G. Then A is said to be X-permutable with B if there

exists some x ∈ X such that ABx = BxA; A is said to be X-permutable (or X-quasinormal) in

G if for every subgroup K of G there exists some x ∈ X such that AKx = KxA; A is said to be

X-semipermutable in G if A is X-permutable with all subgroups of some supplement T of A in

G (see [4]). By using the generalized permutable subgroups, one has obtained some important

results [4–7, 9, 11, 12, 15].
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As a continuation, we try to use some F (G)-semipermutable subgroups to determine the

structure of finite groups, where F (G) is the Fitting subgroup of a group G. Some new interesting

results are obtained.

For notations and terminologies not given in this paper, the reader is referred to [3] and [14].

2. Preliminaries

We cite here some known results which are useful in the sequel.

Lemma 2.1 ([4, Lemma 2.4]) Let A and X be subgroups of a group G. Then the following

statements hold:

(1) If N is a permutable subgroup of G and A is X-semipermutable in G, then NA is an

X-semipermutable subgroup of G.

(2) If N is normal in G, A is X-semipermutable in G and T is a supplement of A in G

such that every subgroup of T is X-permutable with A, then AN/N is XN/N -semipermutable

in G/N and TN/N is a supplement of AN/N in G/N such that every subgroup of TN/N is

XN/N -permutable with AN/N .

(3) If A/N is XN/N -semipermutable in G/N and T/N is a supplement of A/N in G/N

such that every subgroup of T/N is XN/N -permutable with A/N , then A is X-semipermutable

in G and T is a supplement of A in G such that every subgroup of T is X-permutable with A.

(4) If A is X-semipermutable in G and A ≤ D ≤ G, X ≤ D, then A is X-semipermutable

in D.

(5) If A is a maximal subgroup of G, T is a minimal supplement of A in G and every

subgroup of T is G-permutable with A, then T = 〈a〉 is a cyclic p-subgroup for some prime p

and ap ∈ A.

(6) If A is X-semipermutable in G, T is a supplement of A in G such that A is X-permutable

with every subgroup of T and A ≤ NG(X), then T x is a supplement of A in G such that every

subgroup of T x is X-permutable with A, for all x ∈ G.

(7) If A is X-semipermutable in G and X ≤ D, then A is D-semipermutable in G.

Lemma 2.2 ([8, Lemma 2.6]) Let H be a nilpotent normal subgroup of a group G. If H 6= 1

and H ∩ Φ(G) = 1, then H has a complement in G and H is a direct product of some minimal

normal subgroups of G.

Lemma 2.3 ([11, Lemma 3.3]) Let G be a group and X a normal p-soluble subgroup of G.

Then G is p-soluble if and only if a Sylow p-subgroup P of G is X-permutable with all Sylow

q-subgroups of G, where q 6= p.

Lemma 2.4 Let G be a soluble group and N a minimal normal subgroup of G. If every minimal

subgroup of N is G-semipermutable in G, then N is cyclic of prime order.

Proof Obviously N is an elementary abelian p-group for some prime p. By Jordan-Hölder

theorem, we can choose a minimal subgroup A of N such that A is normal in some Sylow p-
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subgroup P of G. By the hypothesis, A has a supplement T in G such that every subgroup of

T is G-permutable with A. Let D be a Hall p′-subgroup of T . Then E = ADx = DxA for some

x ∈ G. Since A is subnormal in G, A is subnormal in E. Then since Dx is a Hall p′-subgroup of

G, Dx ≤ NG(A). It follows that G ≤ NG(A). The minimal choice of N implies that N = A and

thereby N is cyclic of order p.

3. Main results

Theorem 3.1 Let G be a group. Then G is supersoluble if the normalizer of every Sylow

subgroup of G is F (G)-semipermutable in G.

Proof We first prove that G is soluble. Let p be the maximal prime dividing |G| and Gp a Sylow

p-subgroup of G. Assume that Gp is normal in G and Q/Gp is a Sylow q-subgroup of G/Gp,

where q 6= p. Then Q/Gp = GqGp/Gp for some Sylow q-subgroup Gq of G and NG/Gp
(Q/Gp) =

NG(Gq)Gp/Gp. By Lemma 2.1, we see that NG/Gp
(Q/Gp) is F (G/Gp)-semipermutable in G/Gp.

This shows that G/Gp satisfies the hypothesis. Hence G/Gp is soluble by induction on |G|. It

follows that G is soluble. Now assume that NG(Gp) < G. By hypothesis, NG(Gp) is F (G)-

semipermutable in G and so there exists a supplement T of NG(Gp) in G such that NG(Gp) is

F (G)-permutable with every subgroup of T . Let Tq be any Sylow q-subgroup of T , where q 6= p.

Then NG(Gp)T
x
q = T x

q NG(Gp) for some x ∈ F (G). Put L = NG(Gp)T
x
q . Then |L : NG(Gp)| =

qβ . We claim that there exists some q 6= p such that β 6= 0. If not, then NG(Gp) = G, a

contradiction. Assume that β > 1 and T1 is a maximal subgroup of Tq. Then there exists some

y ∈ F (G) such that L1 = NG(Gp)T
y
1

is a subgroup of G. Let |L1 : NG(Gp)| = qβ1 , where β1 ≤ β.

If β1 6= 1, then by the same argument we see that there exists an r-maximal subgroup Tr of

Tq such that |Lr : NG(Gp)| = q, where Lr = NG(Gp)T
z
r for some z ∈ F (G). Therefore Lr has

exactly q Sylow p-subgroups. By Sylow’s theorem, p divides q − 1, which is impossible since

p > q. This contradiction shows that NG(Gp) = G and so G is soluble.

Now we prove that G is supersoluble by induction on |G|. Let N be a minimal normal

subgroup of G and P/N a Sylow p-subgroup of G/N , where p divides |G|. Then P/N = GpN/N

for some Sylow p-subgroup Gp of G. Hence NG/N (P/N) = NG(Gp)N/N . Since NG(Gp) is

F (G)-semipermutable in G, NG/N(P/N) is F (G/N)-semipermutable in G/N . Hence G/N is

supersoluble by induction. Since the class of all supersoluble groups is a saturated formation,

N is the unique minimal normal subgroup of G and Φ(G) = 1. Let M be a maximal subgroup

of G such that N is not contained in M . Then G = [N ]M and N = CG(N) = F (G) = Oq(G)

for some prime q. Let s be the largest prime dividing |M | and Ms a Sylow s-subgroup of M .

Then NG(Ms) = M since M is supersoluble and since N is the unique minimal normal subgroup

of G. If s 6= q, then Ms is a Sylow s-subgroup of G. By hypothesis and Lemma 2.1(5), we

have that |G : M | = q and so |N | = q, which implies that G is supersoluble. If s = q, then

Oq(G/CG(N)) = Oq(G/N) 6= 1, which contradicts [3, Lemma 1.7.11]. Then the proof is thus

completed. 2

Corollary 3.2 Let G be a group. If the normalizer of every Sylow subgroup of G is F (G)-
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quasinormal in G, then G is supersoluble.

Theorem 3.3 Let G be a group and M a supersoluble maximal subgroup of G. If M is F (G)-

semipermutable in G and F (G) is not contained in M , then G is supersoluble.

Proof If Φ(G) 6= 1, then by Lemma 2.1 we easily see that G/Φ(G) satisfies the hypothesis and

so G/Φ(G) is supersoluble by induction on |G|. This implies that G is supersoluble. Now assume

that Φ(G) = 1. By Lemma 2.2, F (G) is a direct product of some minimal normal subgroups

of G. Since F (G) is not contained in M , G = [N ]M , where N is a minimal normal subgroup

of G contained in F (G). By Lemma 2.1(5), we have that |G : M | = p for some prime p. Since

G/N ≃ M is supersoluble and |N | = |G : M | = p, we obtain that G is supersoluble. 2

Theorem 3.4 Let p be an odd prime dividing the order of a group G, P a Sylow p-subgroup of G

and X = Op′p(G). If NG(P ) is p-nilpotent and every cyclic subgroup of P is X-semipermutable

in G, then G is p-nilpotent.

Proof Assume that the assertion is false and let G be a counterexample of minimal order. Then

we have the following claims:

(1) Op′(G) = 1.

Assume that Op′(G) 6= 1. Then by using Lemma 2.1, we see that G/Op′(G) satisfies the

hypothesis. Thus G/Op′(G) is p-nilpotent by the choice of G. Consequently G is p-nilpotent, a

contradiction.

(2) If M is a proper subgroup of G such that P ≤ M ≤ G, then M is p-nilpotent.

Since NM (P ) ≤ NG(P ), NM (P ) is p-nilpotent. Besides, by (1), X = Op′p(G) = Op(G) ≤

Op′p(M). Hence by Lemma 2.1, we see that M satisfies the hypothesis. The minimal choice of

G implies that M is p-nilpotent.

(3) Op(G) 6= 1.

Assume that Op(G) = 1 and {x1, x2, . . . , xn} is a minimal generator set of P . Then by the

hypothesis, for every i, 〈xi〉 has a supplement Ti in G such that 〈xi〉 is permutable with every

subgroup of Ti. By Lemma 2.1(6), we see that 〈xi〉 is permutable with every Sylow q-subgroup of

G, where q 6= p. Then since P = 〈x1, x2, . . . , xn〉, P is permutable with every Sylow q-subgroup

of G, where q 6= p. It follows from Lemma 2.3 that G is p-soluble and thereby Op′ (G) > 1 by

(1), a contradiction. Hence (3) holds.

(4) G = PQ, where Q is a Sylow q-subgroup of G and q 6= p.

Clearly the hypothesis still holds on G/Op(G). Hence G/Op(G) is p-nilpotent by the choice

of G. Then by [2, Ch. 6, Theorem 3.5], for any prime q dividing the order of G with q 6= p,

there exists a Sylow q-subgroup of G such that E = PQ is a subgroup of G. If E < G, then E

is p-nilpotent by (2). This leads to that Q ≤ CG(Op(G)) ≤ Op(G) (see [3, Theorem 1.8.19]), a

contradiction. Thus G = PQ.

(5) Final contradiction.

Let N be a minimal normal subgroup of G. Then N is an elementary abelian p-group because

G is soluble by (4) and Op′(G) = 1. It is easy to see that G/N satisfies the hypothesis. Hence
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G/N is p-nilpotent by the choice of G. Since the class of all p-nilpotent groups is a saturated

formation, N is the only minimal normal subgroup of G and Φ(G) = 1. Thus G = [N ]M for

some maximal subgroup M of G and N = CG(N) = F (G) = Op(G) = X . By Lemma 2.4, N

is cyclic of order p. Since M ≃ G/N = G/CG(N) is isomorphic to some subgroup of Aut(N),

M is a p′-subgroup of G and so N is a Sylow p-subgroup of G. Then G = NG(N) = NG(P ) is

p-nilpotent by hypothesis. The final contradiction completes the proof. 2

Remark 3.5 The assumption “NG(P ) is p-nilpotent” in Theorem 3.4 is essential. For example,

let G = S3 and p = 3. Then every subgroup of Sylow 3-subgroup of G is Op′p(G)-semipermutable

in G, but G is not 3-nilpotent.

However, if p is the smallest prime dividing the order of G, then we have the following result.

Theorem 3.6 Suppose that p is the smallest prime dividing the order of a group G and P is a

Sylow p-subgroup of G. Let X = Op′p(G). If every cyclic subgroup of P is X-semipermutable

in G, then G is p-nilpotent.

Proof Assume that the assertion is false and let G be a counterexample of minimal order. Then

(1) Op′(G) = 1.

Suppose that Op′(G) 6= 1. Then it is easy to see that G/Op′(G) satisfies the hypothesis. The

minimal choice of G implies that G/Op′(G) is p-nilpotent and so G is p-nilpotent, a contradiction.

(2) Op(G) 6= 1.

Assume that Op(G) = 1. Then X = 1 by (1). Let A be a minimal subgroup of P and T a

supplement of A in G such that A is X-permutable with every subgroup of T . If A ∩ T = 1,

then |G : T | = p and so T is normal in G (see [16, II, Proposition 4.6]). It is easy to see that

T satisfies the hypothesis and hence T is p-nilpotent by the choice of G. If Op′(T ) 6= 1, then

Op′(G) 6= 1 because Op′(T ) char T � G. If Op′(T ) = 1, then G is a p-group. This contradiction

implies that A∩T = A. Thus G = T and so A is a permutable subgroup of G. By [14, (13.2.2)],

A is subnormal in G and consequently A ≤ Op(G) by [1, A, Lemma 8.6]. This contradiction

shows that Op(G) 6= 1.

(3) Φ(G) = 1.

By (1), we have F (G) = Op(G). If Φ(G) 6= 1, then Φ(G) ≤ Op(G). Obviously, G/Φ(G)

satisfies the hypothesis. Hence G/Φ(G) is p-nilpotent by the choice of G. It follows that G is

p-nilpotent, a contradiction.

(4) Op(G) is a minimal normal subgroup of G.

By Lemma 2.2 and (3), Op(G) is a direct product of some minimal normal subgroup of G. If

Op(G) is not a minimal normal subgroup of G, then obviously G/N satisfies the hypothesis for

any minimal normal subgroup N of G contained in Op(G). Hence G/N is p-nilpotent by choice

of G. Since the class of all p-nilpotent groups is a saturated formation, Op(G) must be a minimal

normal subgroup of G.

(5) The final contradiction.

If P is normal in G, then G/Op(G) is a p′-subgroup and G is soluble. If P 6= Op(G), then
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obviously G/Op(G) satisfies the hypothesis. Hence G/Op(G) is p-nilpotent. Let K/Op(G) be

the normal p-complement of P/Op(G) in G/Op(G). Since p is the smallest prime dividing the

order of G, K/Op(G) is soluble by the well known Feit-Thompson theorem. It follows that K is

soluble and hence G is soluble. Then by (4) and Lemma 2.4, Op(G) is cyclic of order p. Let g

be an element of G such that (|g|, p) = 1 and E = Op(G)〈g〉. Then 〈g〉 is normal in E by [14,

(10.1.9)] and so 〈g〉 ≤ CG(Op(G)) = Op(G). The final contradiction completes the proof. 2

Remark 3.7 The condition that “every cyclic subgroup of P is X-semipermutable in G” in

Theorem 3.6 cannot be replaced by “every minimal subgroup of P is X-semipermutable in G”.

For example, let G = [〈a, b〉]〈α〉, where a4 = 1, a2 = b2 = [a, b] and aα = b, bα = ab. Then G is

a counterexample.

References

[1] DOERK K, HAWKES T. Finite Soluble Groups [M]. Walter de Gruyter & Co., Berlin, 1992.

[2] GORENSTEIN D. Finite Groups [M]. Chelsea Publishing Co., New York, 1980.

[3] GUO Wenbin. The Theory of Classes of Groups [M]. Kluwer Academic Publishers Group, Dordrecht; Science
Press, Beijing, 2000

[4] GUO Wenbin, SHUM K P, SKIBA A N. X-semipermutable subgroups of finite groups [J]. J. Algebra, 2007,

315(1): 31–41.
[5] GUO Wenbin, SHUM K P, SKIBA A N. Conditonally permutable subgroups and supersolubility of finite

groups [J]. Southeast Asian Bull. Math., 2005, 29(3): 493–510.
[6] GUO Wenbin, SHUM K P, SKIBA A N. Schur-Zassenhaus theorem for X-permutable subgroups [J]. Algebra

Colloq., 2008, 15(2): 185–192.

[7] GUO Wenbin, SKIBA A N, SHUM K P. X-Quasinormal subgroups [J]. Siberian Math. J., 2007, 48(4):
593–605.

[8] GUO Wenbin, ZHU Xiaoxing. Finite groups with given indices of normalizers of primary subgroups [J]. J.
Appl. Algebra Discrete Struct., 2003, 1(2): 135–140.

[9] HUANG Jianhong, GUO Wenbin. s-Conditionlly permutable subgroups of finite groups [J]. Chinese Ann.

Math. Ser. A, 2007, 28(1): 17–26. (in Chinese)
[10] ITÔ N, SZÉP J. Über die Quasinormalteiler von endlichen Gruppen [J]. Acta Sci. Math. (Szeged), 1962, 23:

168–170. (in German)
[11] JARADEN J J, AL-DABABSEH A F. Finite groups with X-permutable maximal subgroups of Sylow sub-

groups [J]. Southeast Asian Bull. Math., 2007, 31(6): 1097–1106.

[12] LI Baojun, SKIBA A N. New characterizations of finite supersoluble groups [J]. Sci. China Ser. A, 2008,
51(5): 827–841.

[13] ORE O. Contributions in the theory of groups of finite order [J]. Duke Math. J., 1939, 5: 431-460.
[14] ROBINSON D J S. A Course in the Theory of Groups [M]. Springer-Verlag, New York-Berlin, 1982.

[15] SHI Lei, GUO Wenbin, YI Xiaolan. X-s-permutable subgroups [J]. J. Math. Res. Exposition, 2008, 28(2):

257–265.
[16] XU Mingyao. An Intruduction to Finite Groups [M]. Beijing: Science Press, 1999. (in Chinese)


