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Abstract Let q be a prime or prime power and Fqn the extension of q elements finite field Fq

with degree n (n > 1). Davenport, Lenstra and Schoof proved that there exists a primitive

element α ∈ Fqn such that α generates a normal basis of Fqn over Fq. Later, Mullin, Gao

and Lenstra, etc., raised the definition of optimal normal bases and constructed such bases. In

this paper, we determine all primitive type I optimal normal bases and all finite fields in which

there exists a pair of reciprocal elements α and α−1 such that both of them generate optimal

normal bases of Fqn over Fq . Furthermore, we obtain a sufficient condition for the existence

of primitive type II optimal normal bases over finite fields and prove that all primitive optimal

normal elements are conjugate to each other.

Keywords finite fields; normal bases; primitive elements; optimal normal bases.

Document code A

MR(2000) Subject Classification 12E20

Chinese Library Classification O156.1

1. Introduction and main results

Let q be a power of the prime p and Fqn the extension of the finite field Fq with degree

n(n > 1). If N = {α, αq, . . . , αqn−1

} is a normal basis of Fqn over Fq , then α ∈ Fqn is called a

normal basis generator element (or a normal element)of Fqn . Set

α · αqi

=

n−1
∑

j=0

ti,jα
qj

, 0 ≤ i ≤ n − 1,

then the complexity CN of N is defined to be the number of non-zero elements ti,j , where

ti,j ∈ Fq, i, j, = 0, 1, . . . , n − 1. Mullin [13] proved that CN ≥ 2n − 1. The normal basis N is

called an optimal normal basis when CN = 2n − 1.

There are many papers on normal bases [2–11] or optimal normal bases over finite fields [5, 7].

Mullin, etc., [13] obtained the construction theorems for both type I and type II optimal normal

bases.

The construction theorem for a type I optimal normal basis Suppose that n + 1 is

Received December 15, 2008; Accepted March 17, 2009

Supported by the National Natural Science Foundation of China (Grant No. 10990011), Special Research Found

for the Doctoral Program Issues New Teachers of Higher Education (Grant No. 20095134120001) and the Found
of Sichuan Province (Grant No. 09ZA087).

E-mail address: liao qunying@yahoo.com.cn



870 Q. Y. LIAO

a prime and q is primitive in Zn+1, where q is a prime or prime power. Then the n nonunit

(n + 1)-th roots of unity are linearly independent and they form an optimal normal basis N of

Fqn over Fq. And N = {αqi

|i = 0, . . . , n − 1} = {αj |j = 1, . . . , n} is called a type I optimal

normal basis of Fqn over Fq, where α is a primitive (n + 1)-th root of unity.

The construction theorem for a type II optimal normal basis Let 2n + 1 be a prime

and assume that either

(a) 2 is primitive in Z2n+1,

or

(b) 2n + 1 ≡ 3 (mod 4), and 2 generates the quadratic residues in Z2n+1.

Then α = r + r−1 generates an optimal normal basis N of F2n over F2, where r is a primitive

(2n + 1)-th root of unity. And N = {α, α2, . . . , α2n−1

} = {α = r + r−1, r2 + r−2, . . . , rn + r−n}

is called a type II optimal normal basis of F2n over F2.

Let N be an optimal normal basis of Fqn over Fq. Then for a ∈ F ∗

q , aN = {aα |α ∈ N} is

also an optimal normal basis of Fqn over Fq. N and aN are called to be equivalent to each other.

Gao and Lenstra [6] proved that an optimal normal basis is always equivalent to the type I or

the type II optimal normal basis, therefore they are all optimal normal bases over finite fields.

On the other hand, the well-known normal basis theorem and its generalization over finite

fields were given as follows:

Proposition 1.1 Let q be a power of the prime p and n a positive integer. Then there exists

α ∈ Fqn such that α generates a normal basis of Fqn over Fq, and α is called a normal element

of Fqn (The proof can be seen in [3, Theorem 2.35, p57]).

Proposition 1.2 ([1]) Let m, n be positive integers and m | n. Then there exists α ∈ Fqn

such that α generates a normal basis of Fqn over Fqm . Such element α ∈ Fqn is called a normal

element of Fqn .

Furthermore, if a normal element α ∈ Fqn is also a primitive element of Fqn , then α is

called a primitive normal element. A normal basis generated by a primitive normal element

is a primitive normal basis. Davenport [4] studied primitive normal elements and proved their

existence as following:

Proposition 1.3 Let p be prime, then there exists a primitive element α of Fpn which is also

a normal element of Fpn over Fp.

Later, Lenstra and Schoof [9] obtained a general result:

Proposition 1.4 There exists a primitive element α of Fqn which is also a normal element of

Fqn over Fq, where q is a power of the prime p and n is a positive integer.

On primitive normal elements, Tian and Qi [14] proved the following result:

Proposition 1.5 Let q be a power of the prime and n a positive integer. If Fqn is the extension

of the finite field Fq with degree n (n > 1), then there exists a primitive element α ∈ Fqn such
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that α and α−1 are normal elements of Fqn over Fq when n ≥ 32.

Naturally there are two questions as follows:

(1) Does there exist a primitive element α of Fqn such that α generates an optimal normal

basis of Fqn over Fq?

(2) Does there exist an element α ∈ Fqn such that both α and α−1 generate optimal normal

bases of Fqn over Fq?

In this paper, we solve the first question partially and the second one completely. In fact we

obtain the following main results.

Theorem 1.6 Let q be a power of the prime p and Fqn the extension of the finite field Fq with

degree n (n > 1).

(1) There exists a primitive element α ∈ Fqn such that α generates a type I optimal normal

basis of Fqn over Fq if and only if n = q = 2.

(2) Let q = 2 and both 2n+1 and 2n−1 be primes. Suppose that N = {αqi

| i = 0, 1, . . . , n−1}

is a type II optimal normal basis of F2n over F2. Then the generator α of N is a primitive element

of F2n .

Remark If Mn = 2n − 1 is prime, then n is also prime. The prime with the form 2n − 1 is

called Mersenne prime in the name of the French mathematician Marin Mersenne (1588-1648).

Until now, people observe 44 distinct Mersenne primes 2n − 1, where

n =2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217,

4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503,

132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377,

6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657.

Of all the above 44 numbers, there are exactly 7 integers n such that both 2n − 1 (n <

32582657) and 2n + 1 are primes, where

n = 2, 3, 5, 89, 9689, 21701, 859433

and

2n + 1 = 5, 7, 11, 179, 19379, 43403, 1718867.

If n = 3, then the prime 2n + 1 = 7 satisfies the condition (a) of the type II optimal normal

basis. And for the other cases, the corresponding primes 2n + 1 satisfies the condition (b).

Corollary 1.7 Let q be a power of the prime and Fqn the extension of the finite field Fq with

degree n (n > 1). If there exists a primitive element α ∈ Fqn such that α generates an optimal

normal basis of Fqn over Fq, then q = 2 and there exactly exists one primitive optimal normal

basis of Fqn over Fq. This means there are exactly n distinct primitive optimal normal elements

which are conjugate to each other.

Theorem 1.8 Let q be a power of the prime and Fqn the extension of the finite field Fq with
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degree n (n > 1). If α generates an optimal normal basis of Fqn over Fq, then α−1 generates also

an optimal normal basis of Fqn over Fq iff n = q = 2 or there exists only type I optimal normal

bases of Fqn over Fq.

Corollary 1.9 Let q be a power of the prime and Fqn the extension of the finite field Fq with

degree n (n > 1). If α is a primitive optimal normal element of Fqn , then α−1 is also a primitive

optimal normal element of Fqn iff n = q = 2.

2. Proofs of main results

From now on, we denote gcd(a, b) to be the greatest common divisor for two integers a and

b. Before proving our main results, we first give one Lemma as follows.

Lemma 2.1 ([8, Ex 1.5.4, p47]) Let q be a power of the prime p, and Fqn the extension of

the finite field Fq with degree n (n > 1). Suppose that α is a primitive element of Fqn , then all

primitive elements of Fqn are in the form αk, where 1 ≤ k ≤ qn − 1 and gcd(k, qn − 1) = 1.

The Proof for Theorem 1.6 (1) Suppose that N = {α, αq, . . . , αqn−1

} is a type I optimal

normal basis of Fqn over Fq and the generator α of N is a primitive element of Fqn . Then the

order of α in the multiply group F ∗

qn is qn − 1. From the construction Theorem of the type I

optimal normal basis, we know that α is also a primitive (n + 1)-th root of unity, i.e., αn+1 = 1.

Thus qn − 1 | n + 1. But N is a type I optimal normal basis, and then n + 1 is prime. Therefore

qn − 1 = n + 1 and the equality is true if and only if n = q = 2.

Conversely, if n = q = 2 and N = {α, α2} is a type I optimal normal basis of F4 over F2.

Then α is a root of the irreducible polynomial x2 + x + 1 ∈ F2. Thus the order of α in the

multiply group F ∗

22 is 3, which means that the generator α of N is a primitive element of F4.

(2) Suppose that N is a type II optimal normal basis of F2n over F2. From the construction

Theorem of the type II optimal normal basis we know that 2n + 1 is prime and 2 is a primitive

root (mod 2n + 1) or 2n + 1 ≡ 3 (mod 4) and the order of 2 (mod 2n + 1) is n. In any cases we

have 22n ≡ 1 (mod 2n + 1), therefore (2n − 1)(2n + 1) ≡ 0 (mod 2n + 1). Since 2n + 1 is prime,

we can get 2n + 1 | 2n − 1 or 2n + 1 | 2n + 1.

Case 1 If 2n + 1 | 2n − 1, then from the assumption 2n + 1 and 2n − 1 are primes we know

that 2n − 1 = 2n + 1. This equality is true if and only if n = 3. In this case, the order of

2 (mod 2n + 1 = 7) is 3, thus we obtain a type II optimal normal basis N = {α, α2, α4} of F8

over F2. Noticing that the set F ∗

8 − {1} contains only 6 nonzero elements and each of them is

the primitive element of F ∗

8 . Therefore the generator α of N is also a primitive element of F8,

which means that N is a primitive type II optimal normal basis of F ∗

qn over Fq.

Case 2 If 2n+1 | 2n +1, i.e., 2n ≡ −1 (mod 2n+1). Since 2n+1 is prime, thus 2 is a primitive

root modulo 2n + 1. Now since 2n − 1 is prime we know that all 2n − 2 nonzero elements in the

set F ∗

2n − {1} are primitive elements of F ∗

2n . Therefore, the generator α of the type II optimal

normal basis N of F ∗

2n over F2 is also a primitive element of F2n , which means that N is a
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primitive type II optimal normal basis of F ∗

2n over F2.

Thus we complete the proof of Theorem 1.6. 2

The Proof for Corollary 1.7 Suppose that there exists a primitive element α ∈ Fqn such

that α generates an optimal normal basis N of Fqn over Fq.

Case 1 If N is equivalent to a type I optimal normal basis N of Fqn over Fq , then there exists

a primitive type I optimal normal basis of Fqn over Fq. From (1) of Theorem 1.6 we know that

n = q = 2. Thus there exists exactly one primitive optimal normal bases of Fqn over Fq.

Case 2 If N is equivalent to a type II optimal normal basis B = {βi = βqi

| i = 0, 1, . . . , n− 1}

of Fqn over Fq, which means that there exists a primitive type II optimal normal basis of Fqn

over Fq. From the construction Theorem of a type II optimal normal basis we know that q = 2.

Thus B = N and so β = αqk

for some k, 0 ≤ k ≤ n − 1, i.e., β is a conjugate element of α.

Therefore there exists exactly one primitive optimal normal basis.

Thus we complete the proof of Corollary 1.7. 2

The Proof for Theorem 1.8 Suppose that N is the optimal normal basis generated by α.

If N is the type I optimal normal basis, from the construction Theorem of type I optimal

normal bases we know that α−1 = αn also generates N .

Now we suppose that N is a type II optimal normal basis (and so q = 2) and α−1 also

generates an optimal normal basis B of Fqn over Fq.

Case 1 If B is equivalent to a type II optimal normal, then B = N . From the construction

Theorem of type II optimal normal bases we know that α−1 = αs + α−s for some s, 1 ≤ s ≤ n.

Note that 1 = αα−1 and α = r + r−1, where r is a primitive (2n + 1)-th root of unity. Therefore

r2n+1 = 1 =⇒ rn = r−(n+1) =⇒ rt+n = r−(n+1)rt = r−(n+1−t), 0 ≤ t ≤ n,

and

1 = (r + r−1)(rs + r−s) = (rs+1 + r−(s+1)) + (rs−1 + r−(s−1)).

If s = 1, then α2 = 1, this is a contradiction since n ≤ 2. If s ≥ 3, from 1 ≤ s ≤ n we know that

2 ≤ (s + 1) + (s − 1) ≤ 2n < 2n + 1, which means that rs+1 + r−(s+1) 6= rs−1 + r−(s−1). But

N is the type II optimal normal basis generated by α, i.e., N = {ri + r−i | i = 1, . . . , n} is basis

and q = 2. Now we have rs+1 + r−(s+1), rs−1 + r−(s−1) ∈ N , this is contradiction. Therefore, we

must have s = 2. From s = 2 and

r + r−1 = (r + r−1)((rs+1 + r−(s+1)) + (rs−1 + r−(s−1)))

= (rs+2 + r−(s+2)) + (rs−2 + r−(s−2)).

we can get α = α4, i.e., α3 = 1, thus α−1 = α2, and so n = 2 = q.

Case 2 If B is equivalent to a type I optimal normal, from the construction Theorem of type

I optimal normal bases we know that α generates B too, which means that N = B since q = 2.

Thus n + 1 is prime and α = r + r−1 has order n + 1 in the multiply group F ∗

2n , where r is a
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primitive (2n + 1)-th root of unity. Note that q = 2, we know that α2k

= r2k

+ r−2k

for any

integer k.

Now we conclude that n = 2. Otherwise, from n > 2 and n + 1 is prime we know that n is

even. Thus we can set n = 2k + s, where k ≥ 1, 0 ≤ s ≤ 2k − 1 and s ≡ 0 (mod 2). Since α

generates the type I optimal normal basis of F2n over F2, thus αn+1 = 1.

If s = 0, then

1 = αn+1 = (r + r−1)(r + r−1)n

= (r + r−1)(r + r−1)2
k

= (r + r−1)(r2k

+ r−2k

)

= (r2k+1 + r−(2k+1)) + (r2k
−1 + r−(2k

−1))

= (rn+1 + r−(n+1)) + (rn−1 + r−(n−1)).

But r is a primitive (2n+1)-th root of unity, i.e., r2n+1 = 1. Thus we have rn+1 = r−n, therefore

1 = αn+1 = (rn + r−n) + (rn−1 + r−(n−1)),

which is contradiction to the assumption that N = {ri + r−i | i = 1, . . . , n} is a basis of F2n over

F2 with extension degree n > 2.

Therefore s is even and s 6= 0. Thus we can get

(r + r−1)s =

t
∑

i=1

(rli + r−li), t ≤
s

2
, 1 ≤ li ≤ n.

Note that αn+1 = 1 and n = 2k + s, thus

αn = (r + r−1)n = (r + r−1)2
k

(r + r−1)s = (r2k

+ r−2k

)(r + r−1)s

= (r2k

+ r−2k

)

t
∑

i=1

(rli + r−li) =

t
∑

i=1

(

(r2k+li + r−(2k+li)) + (r2k
−li + r−(2k

−li))
)

,

i.e.,

αn +

t
∑

i=1

(

(r2k+li + r−(2k+li)) + (r2k
−li + r−(2k

−li))
)

= 0.

Note that there are at most 2t + 1 terms on the left side of the above equation. But t ≤ s
2 < n

2

from n = 2k + s is even and k ≥ 1, which means that 2t + 1 < n. Thus we get a contradiction

to the assumption N is a basis of F2n over F2 with the extension degree n > 2.

Therefore, we must have n = 2 and so n = 2 = q.

Thus we complete the proof of Theorem 1.8. 2

The Proof for Corollary 1.9 Suppose that α is a primitive optimal normal element of Fqn

over Fq, from Theorem 1.8 we know that α−1 is also a primitive optimal normal element of Fqn

over Fq iff n = q = 2 or both α and α−1 generate type I optimal normal bases of Fqn over Fq.

Therefore it is enough to show that α−1 is also a primitive type I optimal normal element iff

n = q = 2. From (1) of Theorem 1.6 we know that this is true.

Thus we complete the proof of Corollary 1.9. 2
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