On X-s-Permutable Subgroups of a Finite Group

Min Bang SU^1 , Yang Ming $LI^{2,*}$

- 1. Department of Mathematics, Foshan University, Guangdong 528000, P. R. China;
- 2. Department of Mathematics, Guangdong University of Education, Guangdong 510310, P. R. China

Abstract Let X be a nonempty subset of a group G. A subgroup H of G is said to be X-s-permutable in G if there exists an element $x \in X$ such that $HP^x = P^xH$ for every Sylow subgroup P of G. In this paper, some new results are given under the assumption that some suited subgroups of G are X-s-permutable in G.

Keywords finite group; X-s-permutable subgroup; the generalized Fitting subgroup; formation.

Document code A MR(2000) Subject Classification 20D10; 20D20 Chinese Library Classification O152.1

1. Introduction and statements of the results

All groups considered in this paper will be finite. We use conventional notions and notation, as in Huppert [1]. G always denotes a finite group, $\pi(G)$ is the set of the primes which divide the order of G, G_p is a Sylow p-subgroup of G for some $p \in \pi(G)$, and M < G means that M is a maximal subgroup of G.

Let \mathcal{F} be a class of groups. We call \mathcal{F} a formation provided that (i) if $G \in \mathcal{F}$ and $H \triangleleft G$, then $G/H \in \mathcal{F}$, and (ii) if G/M and G/N are in \mathcal{F} , then $G/(M \cap N)$ is in \mathcal{F} for normal subgroups M, N of G. A formation \mathcal{F} is said to be saturated if $G/\Phi(G) \in \mathcal{F}$ implies that $G \in \mathcal{F}$. In this paper, \mathcal{U} will denote the class of all supersolvable groups. Clearly, \mathcal{U} is a saturated formation [1, p.713, Satz 8.6].

From the permutability property with other subgroups, the concept of normal subgroup was generalized. Two subgroups H and K of G are said to permute if HK = KH. It is easily seen that two subgroups of G, H and K, permute, if and only if the set of HK is a subgroup of G. A subgroup H of G is said to be permutable in G if it permutes with every subgroup of G; H is called S-permutable (or S-quasinormal) in G if it permutes with every Sylow subgroup of G. Recently, S-permutable subgroup was generalized as S-conditionally permutable subgroup S is an S-conditionally permutable subgroup of S if there exists an element S is an S-conditionally permutable subgroup S of S. More recently, the following

Received August 28, 2008; Accepted May 18, 2009

Supported by the National Natural Science Foundation of China (Grant No. 10871210) and the Natural Science Foundation of Guangdong Province (Grant No. 06023728).

E-mail address: liyangming@gdei.edu.cn (Y. M. LI)

^{*} Corresponding author

new concept was introduced in [3].

Definition Let X be a nonempty subset of a group G. A subgroup H of G is said to be X-s-permutable in G if there exists an element $x \in X$ such that $HP^x = P^xH$ for every Sylow subgroup P of G.

We know that the Fitting subgroup F(G) is a useful conception in the study of the solvable groups. In [4], the subgroup $\tilde{F}(G)$ of G was introduced, where $\tilde{F}(G)$ satisfies $\tilde{F}(G)/\Phi(G) = \operatorname{Soc}(G/\Phi(G))$. It is easy to see that $\tilde{F}(G)$ is a generalization of F(G). We now define a sequence of subgroups $\{\tilde{F}_i(G)\}$ of G by the rules

$$\tilde{F}_1(G) = \tilde{F}(G), \tilde{F}_i(G)/\tilde{F}_{i-1}(G) = \tilde{F}(G/\tilde{F}_{i-1}(G)) \text{ for } i > 1.$$

Obviously, $\tilde{F}_n(G)$ is a generalization of $F_n(G)$, the Fitting subgroup of degree n (see [1]). Since G is finite and $\tilde{F}_i(G) > \tilde{F}_{i-1}(G)$, there exists an integer m such that $\tilde{F}_m(G) = G$.

On the other hand, the Fitting subgroup F(G) of G was generalized as $F^*(G)$, the unique maximal normal quasinilpotent subgroup of G (see [5]), which has played an important role in the proof of the theorem of the classification of finite simple groups [6]. Its definition and important properties can be found in [5, Chapter X, § 13]. Similarly, we can also define a sequence of subgroups $F_i^*(G)$ of G by the rules

$$F_1^*(G) = F^*(G), F_i^*(G)/F_{i-1}^*(G) = F^*(G/F_{i-1}^*(G))$$
 for $i > 1$.

And similarly, $F_i^*(G) > F_{i-1}^*(G)$ and there exists an integer m such that $F_m^*(G) = G$.

Remark 1.1 The following example shows that $F^*(G)$ is not equal to $\tilde{F}(G)$ usually.

Example 1.2 Suppose that G is a non-split extension $(Z_2)^3 L_3(2)$ of an elementary abelian subgroup $(Z_2)^3$ of order Z_2^3 by $Z_3(2)$. Z_3^3 is a maximal subgroup of Z_3^3 (ref. ATLAS, page 61). Then $\tilde{F}(G) = G$, but $F^*(G) = F(G) = (Z_2)^3$.

In [3], there are following interesting theorems which are the generalizations of some recent results in the literature.

Theorem 1.3 ([3, Theorem 3.1]) Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group and X a solvable normal subgroup of G. Then $G \in \mathcal{F}$ if and only if there exists a normal subgroup H such that $G/H \in \mathcal{F}$ and every maximal subgroup of every Sylow subgroup of H is X-s-permutable in G.

Theorem 1.4 ([3, Theorem 3.2]) Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group and X a solvable normal subgroup of G. Then $G \in \mathcal{F}$ if and only if there exists a normal subgroup H such that $G/H \in \mathcal{F}$ and every maximal subgroup of every Sylow subgroup of $\tilde{F}(H)$ is X-s-permutable in G.

In this paper, we first unify Theorems 1.3 and 1.4 as follows:

Theorem 1.5 Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group and X a solvable normal subgroup of G. Then $G \in \mathcal{F}$ if and only if there exist a normal subgroup H of G

such that $G/H \in \mathcal{F}$, and a positive integer n such that every maximal subgroup of every Sylow subgroup of $\tilde{F}_n(H)$ is X-s-permutable in G.

Then we get a parallel result by replacing $\tilde{F}(G)$ by $F^*(G)$.

Theorem 1.6 Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group and X a solvable normal subgroup of G. Then $G \in \mathcal{F}$ if and only if there exist a normal subgroup H such that $G/H \in \mathcal{F}$, and a positive integer n such that every maximal subgroup of every Sylow subgroup of $F_n^*(H)$ is X-s-permutable in G.

From Theorem 1.6, we have following corollaries immediately.

Corollary 1.7 Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group and X a solvable normal subgroup of G. Then $G \in \mathcal{F}$ if and only if there exist a solvable normal subgroup H such that $G/H \in \mathcal{F}$, and a positive integer n such that every maximal subgroup of every Sylow subgroup of $F_n(H)$ is X-s-permutable in G.

Corollary 1.8 Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group and X a solvable normal subgroup of G. Then $G \in \mathcal{F}$ if and only if there exist a normal subgroup H such that $G/H \in \mathcal{F}$, and a positive integer n such that every maximal subgroup of every Sylow subgroup of $F_n^*(H)$ is s-permutable in G.

Remark 1.9 Corollary 1.8 is a generalization of results in [7].

Corollary 1.10 Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group and X a solvable normal subgroup of G. Then $G \in \mathcal{F}$ if and only if there exist a solvable normal subgroup H such that $G/H \in \mathcal{F}$, and a positive integer n such that every maximal subgroup of every Sylow subgroup of $F_n(H)$ is s-permutable in G.

Remark 1.11 The following example illustrates that the condition "X is solvable" is necessary for Theorems 1.5 and 1.6. Hence the assumption of solvability (p-solvability) of the groups is also necessary in the results of [2, 3].

Example 1.12 Suppose that $G = A_5$ and $X = A_5$. Since the only Sylow subgroups of G which are not of prime order are Sylow 2-subgroups and A_5 contains D_{10} and S_3 (ref. ATLAS, page 2), every maximal subgroup of every Sylow subgroup of G is X-s-permutable in G. But G is not supersolvable.

2. Preliminaries

Lemma 2.1 Let X be a nonempty subset of G. Suppose that $N \subseteq G$ and $H \subseteq G$. Then

- (1) If H is X-s-permutable in G and $H \leq N$, then H is X-s-permutable in N;
- (2) If H is X-s-permutable in G, then HN/N is XN/N-s-permutable in G/N;
- (3) Suppose that T is a subgroup of G containing N and every maximal subgroup of any Sylow subgroup of T is X-s-permutable in G. Then every maximal subgroup of any Sylow subgroup of T/N is XN/N-s-permutable in G/N.

Proof For (1), (2), please see [3, Lemma 2.1]. Now we prove (3).

Let PN/N be a Sylow subgroup of T/N, where P is a Sylow subgroup of T. Let M/N be a maximal subgroup of PN/N. Then $M = N(P \cap M)$. Suppose that P_1 is a maximal subgroup of P containing $P \cap M$, then $M \leq P_1N$. Since $P \cap M = P_1 \cap M$, $M = N(P \cap M) = N(P_1 \cap M)$, we have $P_1 \cap N = P \cap N$ by calculating the orders of $N(P \cap M)$ and $N(P_1 \cap M)$. So P_1N is maximal in PN by the orders of P_1N and PN. Therefore $M = P_1N$. By the hypotheses, P_1 is X-s-permutable in P0, hence P1, P2, P3, P3, P4, P5, P4, P5, P4, P5, P5, P5, P6, P8, P9, P

Lemma 2.2 Let M be a subgroup of G. Then

- (1) $F^*(G) = F(G)E(G)$ and [F(G), E(G)] = 1, where E(G) is the layer of G;
- (2) If M is normal in G, then $F^*(M) \leq F^*(G)$;
- (3) $F^*(G) \neq 1$ if $G \neq 1$; in fact, $F^*(G)/F(G) = \text{Soc}(F(G)C_G(F(G))/F(G))$;
- (4) $F^*(F^*(G)) = F^*(G) \ge F(G)$; if $F^*(G)$ is solvable, then $F^*(G) = F(G)$;
- (5) Let $N = Z(E(G))\Phi(F(G))$. Then $F^*(G/N) = F^*(G)/N$;
- (6) Suppose that P is a normal subgroup of G contained in $O_p(G)$, then $F^*(G/\Phi(P)) = F^*(G)/\Phi(P)$;
 - (7) If K is a subgroup of G contained in Z(G), then $F^*(G/K) = F^*(G)/K$.

Proof (1)–(4) please see [5, Chapter X, \S 13], (5) is [6, Proposition 4.10], (6) and (7) are the corollaries of (5). \square

The following Lemma 2.3 is a corollary of Theorem 1.4.

Lemma 2.3 Suppose that H is a solvable normal subgroup of G such that G/H is supersolvable and X is a normal solvable subgroup of G. If all maximal subgroups of any Sylow subgroup of F(H) are X-s-permutable in G, then G is supersolvable.

Lemma 2.4 ([7, Lemma 2.6]) Let H be a normal subgroup of G. If $H \cap \Phi(G) = 1$ and $F(H) \neq 1$, then F(H) is the direct product of minimal normal subgroups of G which are contained in F(H). In particular, if $\Phi(G) = 1$ and $F(G) \neq 1$, then F(G) is the direct product of minimal normal subgroups of G which are contained in F(G).

Lemma 2.5 ([7, Theorem 3.1]) Suppose that G is a group and every maximal subgroup of any Sylow subgroup of $F^*(G)$ is s-permutable in G, then G is supersolvable.

3. The proofs

The Proof of Theorem 1.5 We only need to prove the sufficiency. Suppose that the theorem is false and let G be a counterexample of minimal order.

If n=1, then $G \in \mathcal{F}$ by Theorem 1.4, a contradiction. Thus suppose that $n \geq 2$. Denote $N = \tilde{F}_{n-1}(H)$ and consider factor groups G/N and H/N.

By Lemma 2.1(3), we know that every Sylow subgroup of $\tilde{F}(H/N) = \tilde{F}_n(H)/N$ is XN/N-s-permutable in G/N. Applying Theorem 1.4 for G/N and H/N, we can get that $G/N \in \mathcal{F}$. Hence $G/\tilde{F}_n(H) \cong (G/N)/(\tilde{F}_n(H)/N) \in \mathcal{F}$. Now by the hypotheses we know that every maximal

880 M. B. SU and Y. M. LI

subgroup of any Sylow subgroup of $\tilde{F}_n(H)$ is X-s-permutable in G, thus $G \in \mathcal{F}$ by applying Theorem 1.3 for G and $\tilde{F}_n(H)$, a contradiction.

These complete the proof of Theorem 1.5. \square

To prove Theorem 1.6, we give some preliminary results. The following is a generalization of Lemma 2.3.

Theorem 3.1 Suppose that G is a group and X is a normal solvable subgroup of G and H is a normal subgroup of G such that G/H is supersolvable. If all maximal subgroups of any Sylow subgroup of $F^*(H)$ are X-s-permutable in G, then G is supersolvable.

Proof Suppose that the theorem is false and let G be a counterexample of minimal order. Then

(1) Every proper normal subgroup of G containing $F^*(H)$ is supersolvable.

If N is a proper normal subgroup of G containing $F^*(H)$, we have $F^*(H) = F^*(F^*(H)) \le F^*(N) \le F^*(H)$ by Lemma 2.2 (2). So $F^*(H) = F^*(N)$. Consequently, N satisfies the hypotheses of the theorem by Lemma 2.1 (1), the minimal choice of G implies that N is supersolvable.

(2) H = G and $F^*(G) = F(G) < G$.

If H < G, then H is supersolvable by (1). Thus G is supersolvable by Lemma 2.3. a contradiction. Hence H = G.

If $F^*(G) = G$, then G is supersolvable by applying Theorem 1.1 for the special case $\mathcal{F} = \mathcal{U}$, a contradiction. Hence $F^*(G) < G$. Thus $F^*(G) = F(G)$ by Lemma 2.2(4).

Now, let P be the Sylow p-subgroup of F(G) for an arbitrary prime $p \in \pi(F(G))$.

(3) $\Phi(P) = 1$, i.e., P is an elementary abelian p-group.

If $\Phi(P) \neq 1$, then we consider the factor group $G/\Phi(P)$. By Lemma 2.2(6), $F^*(G/\Phi(P)) = F^*(G)/\Phi(P) = F(G)/\Phi(P)$. Then we have all maximal subgroups of any Sylow subgroup of $F^*(G/\Phi(P))$ are $X\Phi(P)/\Phi(P)$ -s-permutable subgroups of $G/\Phi(P)$ by Lemma 2.1(3). By the minimality of G, $G/\Phi(P)$ is supersolvable. Since $\Phi(P) \leq \Phi(G)$, G is supersolvable, a contradiction.

(4) There is no subgroup of order p which is normal in G. In particular, Z(G) = 1.

If not, let P_0 be such a subgroup of G. Then $P_0 \leq P$. Since $P_0 \leq Z(P) \leq Z(F(G))$, $F(G) \leq C_G(P_0) \leq G$. Note that $C_G(P_0)$ is normal in G, $F^*(C_G(P_0)) = F^*(G) = F(G)$. If further $C_G(P_0) < G$, then $C_G(P_0)$ is supersolvable by (1). Since $G/C_G(P_0)$ is cyclic, G is supersolvable by Lemma 2.3, a contradiction. If $C_G(P_0) = G$, then $P_0 \leq Z(G)$. By Lemma 2.2(7), $F^*(G/P_0) = F^*(G)/P_0$. Now we have all maximal subgroups of any Sylow subgroup of $F^*(G/P_0)$ are XP_0/P_0 -s-permutable subgroups of G/P_0 by Lemma 2.1(3). The minimal choice of G implies that G/P_0 is supersolvable and so G is supersolvable, a contradiction.

(5) $P \cap \Phi(G) \neq 1$.

If $P \cap \Phi(G) = 1$, then we have $P = L_1 \times L_2 \times \cdots \times L_r$ by Lemma 2.4, where L_i $(i = 1, 2, \dots, r)$ are minimal normal subgroups of G contained in P. Now pick a maximal subgroup P_0 of P such that P_0 is normal in G_p . Then P_0 is X-s-permutable in G by the hypotheses. So there exists

 $x \in X$ such that $P_0G_q^x \leq G$ for any $q \in \pi(G)$, where $q \neq p$. Hence

$$[P_0, G_q^x] \le P \cap P_0 G_q^x = P_0,$$

which means that P_0 is normalized by G_q^x . Therefore P_0 is normal in G. Then P/P_0 is a G-composite factor of P of order p. On the other hand, we know that $1 \le L_1 \le L_1 L_2 \le L_1 L_2 \cdots L_r = P$ is a G-composite series of P. According to Jordan-Hölder theorem, P/P_0 is isomorphic to some L_t . Thus $|L_t| = p$, contrary to (4).

Now let p be a fixed prime in $\pi(F(G))$. Pick a minimal normal subgroup L of G contained in $P \cap \Phi(G)$.

(6)
$$F(G) = P$$
.

Let $Q \neq 1$ be the Sylow q-subgroup of F(G) and Q_0 a minimal normal subgroup of G contained in Q, where $q \neq p$. By Lemma 2.2 (1), $F^*(G/L) = F(G/L) \cdot E(G/L) = F(G)/L \cdot E/L$, where E(G/L) is the Layer of G/L. Since [F(G/L), E(G/L)] = 1 by Lemma 2.2 (1), we suppose $[Q_0, E] \leq L \cap Q_0 = 1$, i.e., $E \leq C_G(Q_0)$. We have $C_G(Q_0) < G$ by step (4). Clearly, $F^*(G) = F(G) \leq C_G(Q_0)$, we have $C_G(Q_0)$ is supersolvable by step (1). Then E = L. This implies that $F^*(G/L) = F(G)/L = F^*(G)/L$. By Lemma 2.1 (3) and the minimality of G, we have G/L is supersolvable. Consequently, G is supersolvable, a contradiction. Hence F(G) is a p-group.

(7)
$$F^*(G/L) = G/L$$
.

If $F^*(G/L) < G/L$, we have $F^*(G/L) = F(G/L) \cdot E(G/L) = F(G)/L \cdot E/L$, where E(G/L) is the Layer of G/L by Lemma 2.2 (1). Since $F^*(G) = F(G) \le F(G)E < G$, F(G)E is supersolvable by (1), $F(G)E/L = F^*(G/L)$ is supersolvable. Thus $F^*(G/L) = F(G/L) = F(G)/L = F^*(G)/L$. By Lemma 2.1 (3) and the minimality of G, we have G/L is supersolvable. Consequently, G is supersolvable, a contradiction.

(8) G/P is a non abelian simple group.

By (6), (7) and Lemma 2.2 (3), $G/P \cong (G/L)/(P/L) = F^*(G/L)/F(G/L) = Soc(F(G/L) \cdot C_{G/L}(F(G/L))/F(G/L))$. Let $Soc(F(G/L) \cdot C_{G/L}(F(G/L))/F(G/L)) = (N_1/L)/F(G/L) \times (N_2/L)/F(G/L) \times \cdots \times (N_s/L)/F(G/L)$, where $(N_i/L)/F(G/L)$ is a minimal normal subgroup of (G/L)/F(G/L). If s > 1, then for each i, N_i is a proper normal subgroup of G containing $F^*(G)$. Then N_i is supersolvable by (1). Consequently, G is solvable, a contradiction. Thus s = 1 and G/P is a non abelian simple group.

(9) The final contradiction.

Since XP/P is a solvable normal subgroup of G/P, XP/P=1 by (8). It means that $X \leq P$. For any maximal subgroup P_1 of P. By hypotheses, P_1 is X-s-permutable in G, then there exists some $x \in X$ such that $P_1G_q^x = G_q^xP_1$ for any $q \in \pi(G)$ and $G_q \in \operatorname{Syl}_q(G)$. Then $P_1G_q = G_qP_1$, i.e., P_1 is s-permutable in G. By Lemma 2.5, we know that G is supersolvable, the final contradiction.

These complete the proof of the theorem. \Box

Theorem 3.2 Let \mathcal{F} be a saturated formation containing \mathcal{U} and suppose that G is a group and X is a normal solvable subgroup of G. Then $G \in \mathcal{F}$ if and only if there exists a normal subgroup

H of G such that $G/H \in \mathcal{F}$ and all maximal subgroups of any Sylow subgroup of $F^*(H)$ are X-s-permutable in G.

Proof We only need prove the sufficiency. By hypotheses and Lemma 2.1 (1), all maximal subgroups of all Sylow subgroups of $F^*(H)$ are X-s-permutable in H. We have H is supersolvable by Theorem 3.1. Hence $F^*(H) = F(H)$. By Theorem 1.4, $G \in \mathcal{F}$. \square

The Proof of Theorem 1.6 Replacing $\tilde{F}(H)$ by $F^*(H)$ in the proof of Theorem 1.5 gives the proof of Theorem 1.6. \square

Acknowledgement The authors would like to thank Prof. B. Stellmacher, Prof. Li Huiling, Prof. Shi Wujie and Prof. Li Xianhua for their help.

References

- [1] HUPPERT B. Endliche Gruppen (I) [M]. Springer-Verlag, Berlin-New York, 1967.
- [2] HUANG Jianhong, GUO Wenbin. s-conditionally permutable subgroups of finite groups [J]. Chinese Ann. Math. Ser. A, 2007, 28(1): 17–26.
- [3] SHI Lei, GUO Wenbin, YI Xiaolan. X-s-permutable subgroups [J]. J. Math. Res. Exposition, 2008, 28(2): 257–265.
- [4] GUO Wenbin. The Theory of Class of Groups [M]. Kluwer Academic Publishers Group, Dordrecht; Science Press, Beijing, 2000.
- [5] HUPPERT B, BLACKBURN B. Finite Groups (III) [M]. Springer-Verlag, Berlin-New York, 1982.
- [6] GORENSTEIN D, LYONS R, SOLOMON R. The Classification of the Finite Simple Groups [M]. American Mathematical Society, Providence, RI. 1994.
- [7] LI Yangming, WANG Yanming, WEI Huaquan. The influence of π-quasinormality of some subgroups of a finite group [J]. Arch. Math. (Basel), 2003, 81(3): 245–252.