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Abstract Let X be a nonempty subset of a group G. A subgroup H of G is said to be X-

s-permutable in G if there exists an element x ∈ X such that HP
x = P

x

H for every Sylow

subgroup P of G. In this paper, some new results are given under the assumption that some

suited subgroups of G are X-s-permutable in G.
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1. Introduction and statements of the results

All groups considered in this paper will be finite. We use conventional notions and notation,

as in Huppert [1]. G always denotes a finite group, π(G) is the set of the primes which divide

the order of G, Gp is a Sylow p-subgroup of G for some p ∈ π(G), and M <·G means that M is

a maximal subgroup of G.

Let F be a class of groups. We call F a formation provided that (i) if G ∈ F and H ⊳G, then

G/H ∈ F , and (ii) if G/M and G/N are in F , then G/(M ∩ N) is in F for normal subgroups

M , N of G. A formation F is said to be saturated if G/Φ(G) ∈ F implies that G ∈ F . In this

paper, U will denote the class of all supersolvable groups. Clearly, U is a saturated formation [1,

p.713, Satz 8.6].

From the permutability property with other subgroups, the concept of normal subgroup was

generalized. Two subgroups H and K of G are said to permute if HK = KH . It is easily seen

that two subgroups of G, H and K, permute, if and only if the set of HK is a subgroup of

G. A subgroup H of G is said to be permutable in G if it permutes with every subgroup of G;

H is called s-permutable (or S-quasinormal) in G if it permutes with every Sylow subgroup of

G. Recently, s-permutable subgroup was generalized as s-conditionally permutable subgroup [2]:

a subgroup H of G is an s-conditionally permutable subgroup of G if there exists an element

x ∈ G such that HP x = P xH for every Sylow subgroup P of G. More recently, the following
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new concept was introduced in [3].

Definition Let X be a nonempty subset of a group G. A subgroup H of G is said to be

X-s-permutable in G if there exists an element x ∈ X such that HP x = P xH for every Sylow

subgroup P of G.

We know that the Fitting subgroup F (G) is a useful conception in the study of the solvable

groups. In [4], the subgroup F̃ (G) of G was introduced, where F̃ (G) satisfies F̃ (G)/Φ(G) =

Soc(G/Φ(G)). It is easy to see that F̃ (G) is a generalization of F (G). We now define a sequence

of subgroups {F̃i(G)} of G by the rules

F̃1(G) = F̃ (G), F̃i(G)/F̃i−1(G) = F̃ (G/F̃i−1(G)) for i > 1.

Obviously, F̃n(G) is a generalization of Fn(G), the Fitting subgroup of degree n (see [1]). Since

G is finite and F̃i(G) > F̃i−1(G), there exists an integer m such that F̃m(G) = G.

On the other hand, the Fitting subgroup F (G) of G was generalized as F ∗(G), the unique

maximal normal quasinilpotent subgroup of G (see [5]), which has played an important role in the

proof of the theorem of the classification of finite simple groups [6]. Its definition and important

properties can be found in [5, Chapter X, § 13]. Similarly, we can also define a sequence of

subgroups F ∗

i (G) of G by the rules

F ∗

1
(G) = F ∗(G), F ∗

i (G)/F ∗

i−1
(G) = F ∗(G/F ∗

i−1
(G)) for i > 1.

And similarly, F ∗

i (G) > F ∗

i−1
(G) and there exists an integer m such that F ∗

m(G) = G.

Remark 1.1 The following example shows that F ∗(G) is not equal to F̃ (G) usually.

Example 1.2 Suppose that G is a non-split extension (Z2)
3L3(2) of an elementary abelian

subgroup (Z2)
3 of order 23 by L3(2). G is a maximal subgroup of G2(3) (ref. ATLAS, page 61).

Then F̃ (G) = G, but F ∗(G) = F (G) = (Z2)
3.

In [3], there are following interesting theorems which are the generalizations of some recent

results in the literature.

Theorem 1.3 ([3, Theorem 3.1]) Let F be a saturated formation containing U and let G be a

group and X a solvable normal subgroup of G. Then G ∈ F if and only if there exists a normal

subgroup H such that G/H ∈ F and every maximal subgroup of every Sylow subgroup of H is

X-s-permutable in G.

Theorem 1.4 ([3, Theorem 3.2]) Let F be a saturated formation containing U and let G be a

group and X a solvable normal subgroup of G. Then G ∈ F if and only if there exists a normal

subgroup H such that G/H ∈ F and every maximal subgroup of every Sylow subgroup of F̃ (H)

is X-s-permutable in G.

In this paper, we first unify Theorems 1.3 and 1.4 as follows:

Theorem 1.5 Let F be a saturated formation containing U and let G be a group and X a

solvable normal subgroup of G. Then G ∈ F if and only if there exist a normal subgroup H of G
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such that G/H ∈ F , and a positive integer n such that every maximal subgroup of every Sylow

subgroup of F̃n(H) is X-s-permutable in G.

Then we get a parallel result by replacing F̃ (G) by F ∗(G).

Theorem 1.6 Let F be a saturated formation containing U and let G be a group and X a

solvable normal subgroup of G. Then G ∈ F if and only if there exist a normal subgroup H

such that G/H ∈ F , and a positive integer n such that every maximal subgroup of every Sylow

subgroup of F ∗

n(H) is X-s-permutable in G.

From Theorem 1.6, we have following corollaries immediately.

Corollary 1.7 Let F be a saturated formation containing U and let G be a group and X

a solvable normal subgroup of G. Then G ∈ F if and only if there exist a solvable normal

subgroup H such that G/H ∈ F , and a positive integer n such that every maximal subgroup of

every Sylow subgroup of Fn(H) is X-s-permutable in G.

Corollary 1.8 Let F be a saturated formation containing U and let G be a group and X a

solvable normal subgroup of G. Then G ∈ F if and only if there exist a normal subgroup H

such that G/H ∈ F , and a positive integer n such that every maximal subgroup of every Sylow

subgroup of F ∗

n(H) is s-permutable in G.

Remark 1.9 Corollary 1.8 is a generalization of results in [7].

Corollary 1.10 Let F be a saturated formation containing U and let G be a group and X

a solvable normal subgroup of G. Then G ∈ F if and only if there exist a solvable normal

subgroup H such that G/H ∈ F , and a positive integer n such that every maximal subgroup of

every Sylow subgroup of Fn(H) is s-permutable in G.

Remark 1.11 The following example illustrates that the condition “X is solvable” is necessary

for Theorems 1.5 and 1.6. Hence the assumption of solvability (p-solvability) of the groups is

also necessary in the results of [2, 3].

Example 1.12 Suppose that G = A5 and X = A5. Since the only Sylow subgroups of G which

are not of prime order are Sylow 2-subgroups and A5 contains D10 and S3 (ref. ATLAS, page

2), every maximal subgroup of every Sylow subgroup of G is X-s-permutable in G. But G is not

supersolvable.

2. Preliminaries

Lemma 2.1 Let X be a nonempty subset of G. Suppose that N � G and H ≤ G. Then

(1) If H is X-s-permutable in G and H ≤ N , then H is X-s-permutable in N ;

(2) If H is X-s-permutable in G, then HN/N is XN/N -s-permutable in G/N ;

(3) Suppose that T is a subgroup of G containing N and every maximal subgroup of any

Sylow subgroup of T is X-s-permutable in G. Then every maximal subgroup of any Sylow

subgroup of T/N is XN/N -s-permutable in G/N .
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Proof For (1), (2), please see [3, Lemma 2.1]. Now we prove (3).

Let PN/N be a Sylow subgroup of T/N , where P is a Sylow subgroup of T . Let M/N be a

maximal subgroup of PN/N . Then M = N(P ∩M). Suppose that P1 is a maximal subgroup of

P containing P ∩ M , then M ≤ P1N . Since P ∩ M = P1 ∩ M , M = N(P ∩ M) = N(P1 ∩ M),

we have P1 ∩ N = P ∩ N by calculating the orders of N(P ∩ M) and N(P1 ∩ M). So P1N is

maximal in PN by the orders of P1N and PN . Therefore M = P1N . By the hypotheses, P1 is

X-s-permutable in G, hence M/N = P1N/N is XN/N -s-permutable in G/N by (2). 2

Lemma 2.2 Let M be a subgroup of G. Then

(1) F ∗(G) = F (G)E(G) and [F (G), E(G)] = 1, where E(G) is the layer of G;

(2) If M is normal in G, then F ∗(M) ≤ F ∗(G);

(3) F ∗(G) 6= 1 if G 6= 1; in fact, F ∗(G)/F (G) = Soc(F (G)CG(F (G))/F (G));

(4) F ∗(F ∗(G)) = F ∗(G) ≥ F (G); if F ∗(G) is solvable, then F ∗(G) = F (G);

(5) Let N = Z(E(G))Φ(F (G)). Then F ∗(G/N) = F ∗(G)/N ;

(6) Suppose that P is a normal subgroup of G contained in Op(G), then F ∗(G/Φ(P )) =

F ∗(G)/Φ(P );

(7) If K is a subgroup of G contained in Z(G), then F ∗(G/K) = F ∗(G)/K.

Proof (1)–(4) please see [5, Chapter X, § 13], (5) is [6, Proposition 4.10], (6) and (7) are the

corollaries of (5). 2

The following Lemma 2.3 is a corollary of Theorem 1.4.

Lemma 2.3 Suppose that H is a solvable normal subgroup of G such that G/H is supersolvable

and X is a normal solvable subgroup of G. If all maximal subgroups of any Sylow subgroup of

F (H) are X-s-permutable in G, then G is supersolvable.

Lemma 2.4 ([7, Lemma 2.6]) Let H be a normal subgroup of G. If H∩Φ(G) = 1 and F (H) 6= 1,

then F (H) is the direct product of minimal normal subgroups of G which are contained in F (H).

In particular, if Φ(G) = 1 and F (G) 6= 1, then F (G) is the direct product of minimal normal

subgroups of G which are contained in F (G).

Lemma 2.5 ([7, Theorem 3.1]) Suppose that G is a group and every maximal subgroup of any

Sylow subgroup of F ∗(G) is s-permutable in G, then G is supersolvable.

3. The proofs

The Proof of Theorem 1.5 We only need to prove the sufficiency. Suppose that the theorem

is false and let G be a counterexample of minimal order.

If n = 1, then G ∈ F by Theorem 1.4, a contradiction. Thus suppose that n ≥ 2. Denote

N = F̃n−1(H) and consider factor groups G/N and H/N .

By Lemma 2.1(3), we know that every Sylow subgroup of F̃ (H/N) = F̃n(H)/N is XN/N -s-

permutable in G/N . Applying Theorem 1.4 for G/N and H/N , we can get that G/N ∈ F . Hence

G/F̃n(H) ∼= (G/N)/(F̃n(H)/N) ∈ F . Now by the hypotheses we know that every maximal
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subgroup of any Sylow subgroup of F̃n(H) is X-s-permutable in G, thus G ∈ F by applying

Theorem 1.3 for G and F̃n(H), a contradiction.

These complete the proof of Theorem 1.5. 2

To prove Theorem 1.6, we give some preliminary results. The following is a generalization of

Lemma 2.3.

Theorem 3.1 Suppose that G is a group and X is a normal solvable subgroup of G and H is

a normal subgroup of G such that G/H is supersolvable. If all maximal subgroups of any Sylow

subgroup of F ∗(H) are X-s-permutable in G, then G is supersolvable.

Proof Suppose that the theorem is false and let G be a counterexample of minimal order. Then

(1) Every proper normal subgroup of G containing F ∗(H) is supersolvable.

If N is a proper normal subgroup of G containing F ∗(H), we have F ∗(H) = F ∗(F ∗(H)) ≤

F ∗(N) ≤ F ∗(H) by Lemma 2.2 (2). So F ∗(H) = F ∗(N). Consequently, N satisfies the hypothe-

ses of the theorem by Lemma 2.1 (1), the minimal choice of G implies that N is supersolvable.

(2) H = G and F ∗(G) = F (G) < G.

If H < G, then H is supersolvable by (1). Thus G is supersolvable by Lemma 2.3. a

contradiction. Hence H = G.

If F ∗(G) = G, then G is supersolvable by applying Theorem 1.1 for the special case F = U ,

a contradiction. Hence F ∗(G) < G. Thus F ∗(G) = F (G) by Lemma 2.2(4).

Now, let P be the Sylow p-subgroup of F (G) for an arbitrary prime p ∈ π(F (G)).

(3) Φ(P ) = 1, i.e., P is an elementary abelian p-group.

If Φ(P ) 6= 1, then we consider the factor group G/Φ(P ). By Lemma 2.2(6), F ∗(G/Φ(P )) =

F ∗(G)/Φ(P ) = F (G)/Φ(P ). Then we have all maximal subgroups of any Sylow subgroup

of F ∗(G/Φ(P )) are XΦ(P )/Φ(P )-s-permutable subgroups of G/Φ(P ) by Lemma 2.1(3). By

the minimality of G, G/Φ(P ) is supersolvable. Since Φ(P ) ≤ Φ(G), G is supersolvable, a

contradiction.

(4) There is no subgroup of order p which is normal in G. In particular, Z(G) = 1.

If not, let P0 be such a subgroup of G. Then P0 ≤ P . Since P0 ≤ Z(P ) ≤ Z(F (G)),

F (G) ≤ CG(P0) ≤ G. Note that CG(P0) is normal in G, F ∗(CG(P0)) = F ∗(G) = F (G). If

further CG(P0) < G, then CG(P0) is supersolvable by (1). Since G/CG(P0) is cyclic, G is

supersolvable by Lemma 2.3, a contradiction. If CG(P0) = G, then P0 ≤ Z(G). By Lemma

2.2(7), F ∗(G/P0) = F ∗(G)/P0. Now we have all maximal subgroups of any Sylow subgroup of

F ∗(G/P0) are XP0/P0-s-permutable subgroups of G/P0 by Lemma 2.1(3). The minimal choice

of G implies that G/P0 is supersolvable and so G is supersolvable, a contradiction.

(5) P ∩ Φ(G) 6= 1.

If P ∩Φ(G) = 1, then we have P = L1×L2×· · ·×Lr by Lemma 2.4, where Li (i = 1, 2, . . . , r)

are minimal normal subgroups of G contained in P . Now pick a maximal subgroup P0 of P such

that P0 is normal in Gp. Then P0 is X-s-permutable in G by the hypotheses. So there exists
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x ∈ X such that P0G
x
q ≤ G for any q ∈ π(G), where q 6= p. Hence

[P0, G
x
q ] ≤ P ∩ P0G

x
q = P0,

which means that P0 is normalized by Gx
q . Therefore P0 is normal in G. Then P/P0 is a G-

composite factor of P of order p. On the other hand, we know that 1�L1�L1L2�L1L2 · · ·Lr = P

is a G-composite series of P . According to Jordan-Hölder theorem, P/P0 is isomorphic to some

Lt. Thus |Lt| = p, contrary to (4).

Now let p be a fixed prime in π(F (G)). Pick a minimal normal subgroup L of G contained

in P ∩ Φ(G).

(6) F (G) = P .

Let Q 6= 1 be the Sylow q-subgroup of F (G) and Q0 a minimal normal subgroup of G

contained in Q, where q 6= p. By Lemma 2.2 (1), F ∗(G/L) = F (G/L) ·E(G/L) = F (G)/L ·E/L,

where E(G/L) is the Layer of G/L. Since [F (G/L), E(G/L)] = 1 by Lemma 2.2 (1), we suppose

[Q0, E] ≤ L ∩ Q0 = 1, i.e., E ≤ CG(Q0). We have CG(Q0) < G by step (4). Clearly, F ∗(G) =

F (G) ≤ CG(Q0), we have CG(Q0) is supersolvable by step (1). Then E = L. This implies that

F ∗(G/L) = F (G)/L = F ∗(G)/L. By Lemma 2.1 (3) and the minimality of G, we have G/L is

supersolvable. Consequently, G is supersolvable, a contradiction. Hence F (G) is a p-group.

(7) F ∗(G/L) = G/L.

If F ∗(G/L) < G/L, we have F ∗(G/L) = F (G/L) ·E(G/L) = F (G)/L ·E/L, where E(G/L)

is the Layer of G/L by Lemma 2.2 (1). Since F ∗(G) = F (G) ≤ F (G)E < G, F (G)E is

supersolvable by (1), F (G)E/L = F ∗(G/L) is supersolvable. Thus F ∗(G/L) = F (G/L) =

F (G)/L = F ∗(G)/L. By Lemma 2.1 (3) and the minimality of G, we have G/L is supersolvable.

Consequently, G is supersolvable, a contradiction.

(8) G/P is a non abelian simple group.

By (6), (7) and Lemma 2.2 (3), G/P ∼= (G/L)/(P/L) = F ∗(G/L)/F (G/L) = Soc(F (G/L) ·

CG/L(F (G/L))/F (G/L)). Let Soc(F (G/L) · CG/L(F (G/L))/F (G/L)) = (N1/L)/F (G/L) ×

(N2/L)/F (G/L)× · · · × (Ns/L)/F (G/L), where (Ni/L)/F (G/L) is a minimal normal subgroup

of (G/L)/F (G/L). If s > 1, then for each i, Ni is a proper normal subgroup of G containing

F ∗(G). Then Ni is supersolvable by (1). Consequently, G is solvable, a contradiction. Thus

s = 1 and G/P is a non abelian simple group.

(9) The final contradiction.

Since XP/P is a solvable normal subgroup of G/P , XP/P = 1 by (8). It means that

X ≤ P . For any maximal subgroup P1 of P . By hypotheses, P1 is X-s-permutable in G, then

there exists some x ∈ X such that P1G
x
q = Gx

q P1 for any q ∈ π(G) and Gq ∈ Sylq(G). Then

P1Gq = GqP1, i.e., P1 is s-permutable in G. By Lemma 2.5, we know that G is supersolvable,

the final contradiction.

These complete the proof of the theorem. 2

Theorem 3.2 Let F be a saturated formation containing U and suppose that G is a group and

X is a normal solvable subgroup of G. Then G ∈ F if and only if there exists a normal subgroup



882 M. B. SU and Y. M. LI

H of G such that G/H ∈ F and all maximal subgroups of any Sylow subgroup of F ∗(H) are

X-s-permutable in G.

Proof We only need prove the sufficiency. By hypotheses and Lemma 2.1 (1), all maximal

subgroups of all Sylow subgroups of F ∗(H) are X-s-permutable in H . We have H is supersolvable

by Theorem 3.1. Hence F ∗(H) = F (H). By Theorem 1.4, G ∈ F . 2

The Proof of Theorem 1.6 Replacing F̃ (H) by F ∗(H) in the proof of Theorem 1.5 gives the

proof of Theorem 1.6. 2
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