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1. Introduction

Since p-Laplacian operator −∆p occurs in a variety of physical phenomena, many mathe-

maticians do researches from different angles on it. Some significant work has been done by us

too [1–6].

Later, in 2005, we extend the elliptic boundary value problem involving the p-Laplacian

operator we studied before to the following general form:

−div(α(gradu)) + |u|p−2u + g(x, u(x)) = f(x), a.e. in Ω

−〈ϑ, α(gradu)〉 ∈ βx(u(x)), a.e. on Γ
(1.1)

where α : RN → RN is a given monotone function, and there exist positive constants k1, k2 and

k3 such that for ∀ξ, ξ′ ∈ RN , the following conditions are satisfied:

(i) |α(ξ)| ≤ k1|ξ|p−1;

(ii) |α(ξ) − α(ξ′)| ≤ k2||ξ|p−2ξ − |ξ′|p−2ξ′|;

(iii) 〈α(ξ), ξ〉 ≥ k3|ξ|
p.
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We note that if α(ξ) = |ξ|p−2ξ, for ∀ξ ∈ RN , then (1.1) is reduced to the case involving the

p-Laplacian operator. We proved in [7] that (1.1) had a solution in L2(Ω), where 2N
N+1 < p < +∞

and N ≥ 1. And, in [8], we showed that (1.1) had a solution in Lp(Ω), where 2 ≤ p < +∞.

Can (1.1) be extended to the case of nonlinear elliptic systems? In this paper, we will find

a sufficient condition for the existence of solution in Lp(Ω) × Lq(Ω) of the following system by

using perturbations of accretive mappings:

−div(α1(gradu)) + ε1|u|
p−2u + g(x, u(x), v(x)) = f1(x), a.e. in Ω

−div(α2(gradv)) + ε2|v|q−2v + g(x, v(x), u(x)) = f2(x), a.e. in Ω

−〈ϑ, α1(grad(u))〉 ∈ βx(u(x)), a.e. on Γ

−〈ϑ, α2(grad(v))〉 ∈ βx(v(x)), a.e. on Γ

(1.2)

Necessary details of (1.2) will be provided in Section 3.

2. Preliminaries

2.1 Perturbations for m-accretive mappings

Let X be a real Banach space with a strictly convex dual space X ′. We shall use “ → ” and

“w − lim ” to denote strong and weak convergences, respectively. For any subset G of X , we

denote by intG its interior and G its closure, respectively. A mapping T : X → X ′ is said to be

hemi-continuous on X if w − limt→0 T (x + ty) = Tx for any x, y ∈ X.

Let J denote the normalized duality mapping from X into 2X′

defined by

J(x) = {f ∈ X ′ : (x, f) = ‖x‖ · ‖f‖, ‖f‖ = ‖x‖}, ∀x ∈ X

where (·, ·) denotes the generalized duality pairing between X and X ′. Since X ′ is strictly convex,

J is a single–valued mapping.

A multi–valued mapping A : X → 2X is said to be accretive if (v1 − v2, J(u1 − u2)) ≥ 0,

for any ui ∈ D(A) and vi ∈ Aui, i = 1, 2. The accretive mapping A is said to be m-accretive if

R(I + λA) = X for some λ > 0. We say that A : X → 2X is boundedly-inversely-compact if, for

any pair of bounded subsets G and G′ of X , the subset G
⋂

A−1(G′) is relatively compact in X .

A multi-valued operator B : X → 2X′

is said to be monotone if its graph G(B) is a monotone

subset of X ×X ′ in the sense that (u1 − u2, w1 − w2) ≥ 0, for any [ui, wi] ∈ G(B), i = 1, 2. The

monotone operator B is said to be maximal monotone if G(B) is maximal among all monotone

subsets of X × X ′ in the sense of inclusion.

Definition 2.1 ([9]) The normalized duality mapping J : X → X ′ is said to satisfy Condition

(I) if there exists a function η : X → [0, +∞) such that for u, v ∈ X,

‖Ju − Jv‖ ≤ η(u − v). (I)

Lemma 2.1 ([9]) Let Ω be a bounded domain in RN . Then the normalized duality mapping

Jp : Lp(Ω) → Lp′

(Ω) satisfies Condition (I), for 1 < p < +∞.

Definition 2.2 ([9]) Let A : X → 2X be an accretive mapping and J : X → X
′

be the
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normalized duality mapping. We say that A satisfies Condition (∗) if, for any f ∈ R(A) and

a ∈ D(A), there exists a constant C(a, f) such that, for any u ∈ D(A), v ∈ Au,

(v − f, J(u − a)) ≥ C(a, f). (*)

Lemma 2.2 ([9]) Let Ω be a bounded domain in RN and g : Ω×R → R be a function satisfying

Carathéodory’s conditions such that

(i) g(x, ·) is monotonically increasing on R;

(ii) the mapping u ∈ Lp(Ω) → g(x, u(x)) ∈ Lp(Ω), 1 < p < +∞, is well defined.

Then, the mapping B : Lp(Ω) → Lp(Ω) defined by (Bu)(x) = g(x, u(x)), for any x ∈ Ω,

satisfies Condition (∗).

Theorem 2.1 ([9]) Let X be a real Banach space with a strictly convex dual X ′. Let J : X → X ′

be the normalized duality mapping on X satisfying Condition (I). Let A, C1 : X → 2X be

accretive mappings such that

(i) either both A and C1 satisfy Condition (∗), or D(A) ⊂ D(C1) and C1 satisfies Condition

(∗);

(ii) A + C1 is m-accretive and boundedly-inversely-compact.

If C2 : X → X is a bounded continuous mapping such that, for any y ∈ X , there is a constant

C(y) satisfying (C2(u + y), Ju) ≥ −C(y) for any u ∈ X , then:

(a) [R(A) + R(C1)] ⊂ R(A + C1 + C2);

(b) int[R(A) + R(C1)] ⊂ intR(A + C1 + C2).

2.2 Basic results for product space

Our discussion is based on some results for product space, which can be found in [10].

The product space of Banach spaces X1 and X2, which is denoted by X1 ×X2, is a set of all

(ordered) pair of (x1, x2) of elements x1 in X1 and x2 in X2. X1 × X2 is a vector space if the

linear operation is defined by

k1(x1, y1) + k2(x2, y2) = (k1x1 + k2x2, k1y1 + k2y2).

Furthermore, X1 × X2 becomes a normed space if the norm is defined by

‖(x1, x2)‖ = (‖x1‖
2 + ‖x2‖

2)
1

2 .

The above norm ensures that (X1 × X2)
′ = X ′

1 × X ′
2, where X ′

1 and X ′
2 are dual spaces of X1

and X2, respectively.

(X1 × X2)
′ = X ′

1 × X ′
2 means that: (i) each element (f, g) ∈ X ′

1 × X ′
2 defines an element

F ∈ (X1 × X2)
′ by ((x1, x2), F ) = (x1, f) + (x2, g) and, conversely, each F ∈ (X1 × X2)

′ is

expressed in this form by a unique (f, g) ∈ X ′
1 × X ′

2; (ii) the norm of the above F ∈ (X1 × X2)
′

is exactly equal to ‖(f, g)‖ = (‖f‖2 + ‖g‖2)
1

2 .

It is easily seen that X1 × X2 is a Banach space since both X1 and X2 are Banach spaces.
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3. Main results

3.1 Explanation of nonlinear elliptic system (1.2)

In this paper, unless otherwise stated, we shall assume that 2N
N+1 < p < +∞ and 2N

N+1 <

q < +∞, where N ≥ 1. We use ‖ · ‖p and ‖ · ‖q to denote the norm of spaces Lp(Ω) and Lq(Ω),

respectively.

In system(1.2), Ω is a bounded conical domain of a Euclidean space RN with its boundary

Γ ∈ C1 ([1]). We shall assume that Green’s Formula is available. f1(x) ∈ Lp(Ω) and f2(x) ∈

Lq(Ω) are given functions. ε1 and ε2 are non-negative constants, and ϑ denotes the exterior

normal derivative of Γ.

Suppose α1 : RN → RN is a given monotone function, and there exist positive constants k1,

k2 and k3 such that for ∀ξ, ξ′ ∈ RN , the following conditions are satisfied:

(i) |α1(ξ)| ≤ k1|ξ|p−1;

(ii) |α1(ξ) − α1(ξ
′)| ≤ k2||ξ|p−2ξ − |ξ′|p−2ξ′|;

(iii) 〈α1(ξ), ξ〉 ≥ k3|ξ|p.

Moreover, suppose α2 : RN → RN is another given monotone function, and there exist

positive constants k′
1, k′

2 and k′
3 such that for ∀ξ, ξ′ ∈ RN , the following conditions are satisfied:

(iv) |α2(ξ)| ≤ k′
1|ξ|

q−1;

(v) |α2(ξ) − α2(ξ
′)| ≤ k′

2||ξ|
q−2ξ − |ξ′|q−2ξ′|;

(vi) 〈α2(ξ), ξ〉 ≥ k′
3|ξ|

q.

Let ϕ : Γ × R → R be a given function such that, for each x ∈ Γ, ϕx = ϕ(x, ·) : R → R is a

proper, convex and lower-semi-continuous function with ϕx(0) = 0. Let βx be the subdifferential

of ϕx, i.e., βx ≡ ∂ϕx. Suppose that 0 ∈ βx(0) and for each t ∈ R, the function x ∈ Γ →

(I + λβx)−1(t) ∈ R is measurable for λ > 0.

Suppose that g : Ω × R × R → R is a given function satisfying Carathéodory’s conditions

such that for any 1 < p < +∞, the mapping u(x) ∈ Lp(Ω) → g(x, u(x), v(x)) ∈ Lp(Ω) is well-

defined for all fixed v(x) ∈ Lq(Ω) and for any 1 < q < +∞, the mapping v(x) ∈ Lq(Ω) →

g(x, v(x), u(x)) ∈ Lq(Ω) is well-defined for all fixed u(x) ∈ Lp(Ω). We shall also assume that

there exists a function 0 ≤ T (x) ∈ Lmin(p,q)(Ω) such that g(x, s, t)t ≥ 0, for |t| ≥ T (x), x ∈ Ω

and for fixed number s ∈ R; and g(x, s, t)s ≥ 0, for |s| ≥ T (x), x ∈ Ω and for fixed number

t ∈ R.

We note that (1.2) is an extension of (1.1). Moreover, −div(α1(grad·)) and −div(α2(grad·))

are generalized p-Laplacian operator and generalized q-Laplacian operator, respectively.

3.2 Discussion of system (1.2)

We’ll use Theorem 2.1 to discuss the existence of solution of system (1.2) as we have done

before.

Lemma 3.1 ([11]) Let X be a Banach space and J : X → X ′ be the normalized duality
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mapping. Then, X is strictly convex if and only if

x∗ ∈ Jx, y∗ ∈ Jy, x 6= y =⇒ (x − y, x∗ − y∗) > 0.

By using Lemma 3.1, we can easily get the following result:

Proposition 3.1 The dual space (Lp(Ω) × Lq(Ω))′ of Lp(Ω) × Lq(Ω) is strictly convex.

Definition 3.1 Define J : Lp(Ω) × Lq(Ω) → (Lp(Ω) × Lq(Ω))′ by J(u, v) = (Jpu, Jqv), for

(u, v) ∈ Lp(Ω)×Lq(Ω), where Jp and Jq are normalized duality mappings on Lp(Ω) and Lq(Ω),

respectively.

Proposition 3.2 The mapping J : Lp(Ω)×Lq(Ω) → (Lp(Ω)×Lq(Ω))′ defined in Definition 3.1

is the normalized duality mapping on Lp(Ω) × Lq(Ω) and satisfies Condition (I).

Proof Let (u, v) ∈ Lp(Ω) × Lq(Ω), then

((u, v), J(u, v)) = ((u, v), (Jpu, Jqv)) = (u, Jpu) + (v, Jqv)

= ‖u‖2
p + ‖v‖2

q = ‖(u, v)‖2,

and moreover,

‖J(u, v)‖2 = ‖Jpu‖
2 + ‖Jqv‖

2 = ‖u‖2
p + ‖v‖2

q = ‖(u, v)‖2,

which imply that J is the normalized duality mapping from Lp(Ω)×Lq(Ω) to (Lp(Ω)×Lq(Ω))′.

From Lemma 2.1, we know that both Jp and Jq satisfy condition (I). That means there exists

a function η1 : Lp(Ω) → [0, +∞) such that

‖Jpu − Jpv‖ ≤ η1(u − v), ∀u, v ∈ Lp(Ω);

and there exists η2 : Lq(Ω) → [0, +∞) such that

‖Jqw − Jqz‖ ≤ η2(w − z), ∀w, z ∈ Lq(Ω).

Define η : Lp(Ω) × Lq(Ω) → [0, +∞) as follows:

η(a, b) = (η2
1(a) + η2

2(b))
1

2 , ∀(a, b) ∈ Lp(Ω) × Lq(Ω).

Then for any (u, w), (v, z) ∈ Lp(Ω) × Lq(Ω), we have

‖J(u, w)−J(v, z)‖ = ‖(Jpu−Jpv, Jqw−Jqz)‖ = (‖Jpu−Jpv‖
2+‖Jqw−Jqz‖

2)
1

2 ≤ η((u−v, w−z)).

This completes the proof. 2

Lemma 3.2 ([7]) Define the mapping Bp : W 1,p(Ω) → (W 1,p(Ω))′ by

(w, Bpu) =

∫

Ω

〈α(gradu), gradw〉dx + ε1

∫

Ω

|u(x)|p−2u(x)w(x)dx

for any u, w ∈ W 1,p(Ω). Then, Bp is everywhere defined, monotone, hemi-continuous and coer-

cive.

Similarly, the mapping Bq : W 1,q(Ω) → (W 1,q(Ω))′ defined by

(w, Bqv) =

∫

Ω

〈α(gradv), gradw〉dx + ε2

∫

Ω

|v(x)|q−2v(x)w(x)dx
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for any v, w ∈ W 1,q(Ω), is also everywhere defined, monotone, hemi-continuous and coercive.

Here 〈·, ·〉 and | · | denote the Euclidean inner-product and Euclidean norm in RN .

Lemma 3.3 ([7]) The mapping Φp : W 1,p(Ω) → R defined by Φp(u) =
∫

Γ ϕx(u|Γ(x))dΓ(x), for

any u ∈ W 1,p(Ω), is proper, convex and lower-semi-continuous on W 1,p(Ω).

Similarly, the mapping Φq : W 1,q(Ω) → R defined by Φq(v) =
∫

Γ ϕx(v|Γ(x))dΓ(x), for any

v ∈ W 1,q(Ω), is also a proper, convex and lower-semi-continuous on W 1,q(Ω).

Similar to the proof of the corresponding result in [7], we have the following Lemma:

Lemma 3.4 Define the mapping Ap : Lp(Ω) → 2Lp(Ω) as follows:

D(Ap) = {u ∈ Lp(Ω)|there exists an f ∈ Lp(Ω) such that f ∈ Bpu + ∂Φp(u)}.

For u ∈ D(Ap), we set Apu = {f ∈ Lp(Ω)|f ∈ Bpu + ∂Φp(u)}. T hen Ap is m-accretive.

Define the mapping Aq : Lq(Ω) → 2Lq(Ω) as follows:

D(Aq) = {v ∈ Lq(Ω)|there exists a g ∈ Lq(Ω) such that g ∈ Bqv + ∂Φq(v)}.

For v ∈ D(Aq), we set Aqv = {g ∈ Lq(Ω)|g ∈ Bqv + ∂Φq(v)}. Then Aq is also m-accretive.

Definition 3.2 Define a mapping Ap,q : Lp(Ω) × Lq(Ω) → 2Lp(Ω)×Lq(Ω) as follows:

For (u, v) ∈ Lp(Ω) × Lq(Ω), we set Ap,q(u, v) = (Apu, Aqv).

Proposition 3.3 The mapping Ap,q : Lp(Ω) × Lq(Ω) → 2Lp(Ω)×Lq(Ω) is m-accretive.

Proof To see that Ap,q is accretive, let ui ∈ Lp(Ω), vi ∈ Lq(Ω), i = 1, 2, then from Lemma 3.4,

we have

(Ap,q(u1, v1) − Ap,q(u2, v2), J((u1, v1) − (u2, v2)))

= (Apu1 − Apu2, Jp(u1 − u2)) + (Aqv1 − Aqv2, Jq(v1 − v2)) ≥ 0.

Now, let u∗ ∈ Lp(Ω), v∗ ∈ Lq(Ω), then it follows from Lemma 3.4 that there exist u ∈ Lp(Ω)

and v ∈ Lq(Ω) such that u∗ = u + λApu and v∗ = v + λAqv. Therefore,

(u∗, v∗) = (u, v) + λ(Apu, Aqv) = (u, v) + λAp,q(u, v),

which implies that R(I + λAp,q) = Lp(Ω) × Lq(Ω). This completes the proof. 2

Similar to the proof of the corresponding result in [7], we have the following Lemma:

Lemma 3.5 Both the mappings Ap : Lp(Ω) → 2Lp(Ω) and Aq : Lq(Ω) → 2Lq(Ω) have a compact

resolvent, for 2N
N+1 < p, q ≤ 2 and N ≥ 1.

Proposition 3.4 The mapping Ap,q : Lp(Ω) × Lq(Ω) → 2L
p(Ω)×L

q(Ω) has a compact resolvent,

for 2N
N+1 < p, q ≤ 2 and N ≥ 1.

Proof Since Ap,q is m-accretive, it suffices to prove that if (u, v) + λAp,q(u, v) = (f, h) (λ > 0)

and {(f, h)} is bounded in Lp(Ω)×Lq(Ω), then {(u, v)} is relatively compact in Lp(Ω)×Lq(Ω).

In fact, from (u, v) + λAp,q(u, v) = (f, h),we have u + λApu = f and v + λAqv = h. Since

{(f, h)} is bounded in Lp(Ω) × Lq(Ω), then {f} is bounded in Lp(Ω) and {h} is bounded in
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Lq(Ω). Lemma 3.5 implies that {u} is relatively compact in Lp(Ω) and {v} is relatively compact

in Lq(Ω).

Therefore, {(u, v)} is relatively compact in Lp(Ω) × Lq(Ω). This completes the proof. 2

Definition 3.3 Define g+(x) = lim infs,t→+∞ g(x, s, t) and g−(x) = lim sups,t→−∞ g(x, s, t).

Further, define a function g1 : Ω × R × R → R by

g1(x, s, t) =











(infa≥s,b≥t g(x, a, b))
∧

(s − T (x))
∧

(t − T (x)), ∀s, t ≥ T (x)

(supa≤s,b≤t g(x, a, b))
∨

(s + T (x))
∨

(t + T (x)), ∀s, t ≤ −T (x)

0, for the rests and t

We note that for each x ∈ Ω, g1(x, s, t) is increasing in t if s ∈ R is fixed and is also

increasing in s if t ∈ R is fixed. Moreover, lims,t→±∞ g1(x, s, t) = g±(x) for x ∈ Ω. And, if we

define g2(x, s, t) = g(x, s, t) − g1(x, s, t), then g2(x, s, t)s ≥ 0 for |s| ≥ T (x), x ∈ Ω and for fixed

t ∈ R; and g2(x, s, t)t ≥ 0 for |t| ≥ T (x), x ∈ Ω and for fixed s ∈ R.

Lemma 3.6 The mapping g1 : Ω × R × R → R satisfies Carathéodory’s condition and the

functions g±(x) are measurable on Ω.

Proof We use Q to denote the set of rational numbers in the following proof. Now, for s, t ∈ R,

g1(·, s, t) is measurable on Ω since

{x|g1(x, s, t) < α}

= {x|s ≤ T (x)}
⋃

{x|t ≤ T (x)}
⋃

{x|0 < t − T (x) < α}
⋃

{x|0 < s − T (x) < α}
⋃

{x|∃r1, r2 ∈ Q, r1 > s, r2 > t, g1(x, r1, r2) < α},

when α ≥ 0, and,

{x|g1(x, s, t) < α} = {x|s + T (x) < α}
⋂

{x|t + T (x) < α}
⋂

{x|∃r1, r2 ∈ Q, r1 < s, r2 < t, g1(x, r1, r2) < α},

when α ≤ 0.

Next, let x ∈ Ω be such that g(x, ·, ·) is continuous on R × R. We’ll show that

(i) For fixed s ∈ R, ∀t ∈ R such that t > T (x), tn ↑ t, we have limn→∞ g1(x, s, tn) =

g1(x, s, t);

(ii) For fixed s ∈ R, ∀t ∈ R such that t ≥ T (x), tn ↓ t, we have limn→∞ g1(x, s, tn) =

g1(x, s, t).

In fact, for (i), we notice that g(x, s, t) satisfies Carathéodory’s condition and tn ↑ t, then

lim
n→∞

g(x, s, tn) = g(x, s, t).

Therefore, for ∀ε > 0, there exists N1 such that for fixed s ∈ R,

g(x, s, b) > g(x, s, t) −
ε

2
,

when tN1
≤ b ≤ t and n ≥ N1.
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From the definition of g1(x, s, t), we can also know that there exists N2 such that for n ≥ N2,

|g1(x, s, tn) − g1(x, s, t)
∧

inf
tn≤b≤t

g(x, s, b)| ≤
ε

2
.

Therefore, if n ≥ max(N1, N2), then

g1(x, s, tn) > g1(x, s, t) − ε.

That is,

0 < g1(x, s, t) − g1(x, s, tn) < ε,

when n ≥ max(N1, N2), which implies that (i) is true.

For (ii), noticing the fact that g1(x, s, t) is increasing in t if s ∈ R is fixed and x ∈ Ω, we can

see from tn ↓ t that for fixed s ∈ R and x ∈ Ω,

g1(x, s, t) ≤ g1(x, s, tn).

From the definition of g1(x, s, t), we can also know that there exists N such that for ∀ε > 0,

when n ≥ N ,

|g1(x, s, tn) − g1(x, s, t)
∧

inf
tn≤b≤t

g(x, s, b)| < ε.

Therefore,

g1(x, s, t) ≤ g1(x, s, tn) < g1(x, s, t) + ε,

for n ≥ N, which implies that (ii) is true.

Similarly, we can show that for fixed s ∈ R, ∀t ∈ R such that t < −T (x), g1(x, s, t) is still

continuous for t. In the same way, g1(x, s, t) is continuous for s > T (x) or s < −T (x). Combining

the previous results that for each x ∈ Ω, g1(x, s, t) is increasing in t for each fixed s ∈ R, and is

also increasing in s for each fixed t ∈ R, we know that g1(x, s, t) is continuous for (s, t) ∈ R×R.

Hence g1 satisfies Caratheodory’s conditions. The measurable of g±(x) on Ω is obvious from

its definition. This completes the proof. 2

Based the assumption of g(x, s, t) and Lemma 3.6, using similar proving method of Proposi-

tion 3.5 in [9], we have the following two results:

Lemma 3.7 C
(1)
1 : Lp(Ω) → Lp(Ω) defined by C

(1)
1 (u, v) = g1(x, u(x), v(x)) for any u ∈ Lp(Ω),

for fixed v(x) ∈ Lq(Ω) and x ∈ Ω, is bounded, continuous and m-accretive. Also C
(2)
1 : Lq(Ω) →

Lq(Ω) defined by C
(2)
1 (v, u) = g1(x, v(x), u(x)) for any v ∈ Lq(Ω), for fixed u(x) ∈ Lp(Ω) and

x ∈ Ω, is bounded, continuous and m-accretive.

Lemma 3.8 The mapping C
(1)
2 : Lp(Ω) → Lp(Ω) defined by C

(1)
2 (u, v) = g2(x, u(x), v(x)) =

g(x, u(x), v(x)) − g1(x, u(x), v(x)) satisfies the condition

(C
(1)
2 (u + y, v), Jpu) ≥ −C(y), (3.1)

for any u, y ∈ Lp(Ω), where C(y) is a constant depending on y. The mapping C
(2)
2 : Lq(Ω) →

Lq(Ω) defined by C
(2)
2 (v, u) = g2(x, v(x), u(x)) = g(x, v(x), u(x)) − g1(x, v(x), u(x)) also satisfies

(3.1), i.e.,

(C
(2)
2 (v + y, u), Jqv) ≥ −C′(y)
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for any v, y ∈ Lq(Ω), where C′(y) is a constant depending on y.

Proposition 3.5 The mapping C1 : Lp(Ω) × Lq(Ω) → Lp(Ω) × Lq(Ω) defined by

C1(u, v) = (C
(1)
1 (u, v), C

(2)
1 (v, u))

for (u, v) ∈ Lp(Ω) × Lq(Ω), is bounded, continuous and m-accretive.

The mapping C2 : Lp(Ω) × Lq(Ω) → Lp(Ω) × Lq(Ω) defined by

C2(u, v) = (C
(1)
2 (u, v), C

(2)
2 (v, u))

for (u, v) ∈ Lp(Ω) × Lq(Ω), satisfies the condition

(C2((u, v) + (w, y)), J(u, v)) ≥ −C(w, y)

for any u, w ∈ Lp(Ω), v, y ∈ Lq(Ω), where C(w, y) is a constant depending on w and y, and J is

the normalized duality mapping from Lp(Ω) × Lq(Ω) to Lp′

(Ω) × Lq′

(Ω) defined in Proposition

3.1.

Proof The result follows from Lemmas 3.7 and 3.8.

Proposition 3.6 The mapping C1 : Lp(Ω) × Lq(Ω) → Lp(Ω) × Lq(Ω) defined in Proposition

3.5 satisfies Condition (∗).

Proof By Lemma 2.2, we can know that both C
(1)
1 : Lp(Ω) → Lp(Ω) and C

(2)
1 : Lq(Ω) → Lq(Ω)

satisfy Condition (∗), then it is not difficult to check that C1 : Lp(Ω)×Lq(Ω) → Lp(Ω)× Lq(Ω)

satisfies Condition (∗) in view of the definition of C1. This completes the proof. 2

Remark 3.1 ([7]) If βx ≡ 0, ∀x ∈ Γ, then ∂Φp(u) ≡ 0, ∀u ∈ W 1,p(Ω) and ∂Φq(v) ≡ 0,

∀v ∈ W 1,q(Ω).

Lemma 3.9 If βx ≡ 0, ∀x ∈ Γ, then we have

(i) {f ∈ Lp(Ω)|
∫

Ω
fdx = 0} ⊂ R(Ap), for 2N

N+1 < p < +∞ and N ≥ 1, and

(ii) {f ∈ Lq(Ω)|
∫

Ω fdx = 0} ⊂ R(Aq), for 2N
N+1 < q < +∞ and N ≥ 1.

Proposition 3.7 If βx ≡ 0, ∀x ∈ Γ, then we have

{(f1, f2) ∈ Lp(Ω) × Lq(Ω)|

∫

Ω

f1(x)dx = 0 =

∫

Ω

f2(x)dx} ⊂ R(Ap,q).

Proof From the fact that (f1, f2) ∈ Lp(Ω) × Lq(Ω) with
∫

Ω f1(x)dx = 0 =
∫

Ω f2(x)dx, and

Lemma 3.9, we have f1(x) ∈ R(Ap) and f2(x) ∈ R(Aq). Then (f1, f2) ∈ R(Ap,q) from the

definition of Ap,q. This completes the proof. 2

Definition 3.4 ([9]) For t ∈ R and x ∈ Γ, let β0
x(t) ∈ βx(t) be the element with least absolute

value if βx(t) 6= ∅ and β0
x(t) = ±∞, where t > 0 or < 0, respectively, in case βx(t) = ∅. Finally,

let β±(x) = limt→±∞ β0
x(t) (in the extended sense) for x ∈ Γ. Then, β±(x) define measurable

functions on Γ.
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Lemma 3.10 If f1(x) ∈ Lp(Ω) satisfies
∫

Γ

β−(x)dΓ(x) <

∫

Ω

f1(x)dx <

∫

Γ

β+(x)dΓ(x). (3.2)

Then, f1(x) ∈ intR(Ap), for 2N
N+1 < p < +∞ and N ≥ 1.

Similarly, if f2(x) ∈ Lq(Ω) satisfies (3.2), then, f2(x) ∈ intR(Aq), for 2N
N+1 < q < +∞ and

N ≥ 1.

From Lemma 3.10, we can easily get the following result:

Proposition 3.8 Let f1(x) ∈ Lp(Ω), f2(x) ∈ Lq(Ω) satisfy (3.2). Then, we have (f1, f2) ∈

intR(Ap,q).

Proposition 3.9 Let (f1, f2) ∈ Lp(Ω)×Lq(Ω), (u, v) ∈ Lp(Ω)×Lq(Ω) and (f1, f2) ∈ Ap,q(u, v).

Then, the following hold

(a) −div(α1(gradu)) + ε1|u|p−2u = f1(x), a.e., x ∈ Ω; −〈ϑ, α1(gradu)〉 ∈ βx(u(x)), a.e.,

x ∈ Γ;

(b) −div(α2(gradv)) + ε2|v|q−2v = f2(x), a.e., x ∈ Ω; −〈ϑ, α2(gradv)〉 ∈ βx(v(x)), a.e.,

x ∈ Γ.

Proof The proof is similar to that of Proposition 2.2 in [7].

Theorem 3.1 Let (f1, f2) ∈ Lp(Ω) × Lq(Ω) satisfy
∫

Γ

β−(x)dΓ(x) +

∫

Ω

g−(x)dx <

∫

Ω

f1(x)dx <

∫

Γ

β+(x)dΓ(x) +

∫

Ω

g+(x)dx. (3.3)

and
∫

Γ

β−(x)dΓ(x) +

∫

Ω

g−(x)dx <

∫

Ω

f2(x)dx <

∫

Γ

β+(x)dΓ(x) +

∫

Ω

g+(x)dx. (3.4)

Then, system (1.2) has a solution in Lp(Ω) × Lq(Ω).

Proof Let Ap,q be the m-accretive mapping as in Definition 3.2 and Ci : Lp(Ω) × Lq(Ω) →

Lp(Ω) × Lq(Ω) be as in Proposition 3.5, i.e., (Ci(u, v))(x) = (gi(x, u(x), v(x)), gi(x, v(x), u(x)))

for x ∈ Ω, and i = 1, 2. We need to prove that Ap,q + C1 is boundedly-inversely-compact. In

fact, we only need to show that if (w, y) ∈ Ap,q(u, v) + C1(u, v) with {(w, y)} and {(u, v)} being

bounded in Lp(Ω) × Lq(Ω), then {(u, v)} is relatively compact in Lp(Ω) × Lq(Ω).

For this, we need to discuss the following two cases:

(i) 2N
N+1 < p, q ≤ 2, for N ≥ 1, from the above we can see that (w, y)−C1(u, v) ∈ Ap,q(u, v)

with {(w, y) − C1(u, v)} and {(u, v)} bounded in Lp(Ω) × Lq(Ω) which gives that {(u, v)} is

relatively compact in Lp(Ω)×Lq(Ω) since Ap,q is m-accretive and has a compact resolvent from

Proposition 3.4.

(ii) If p, q ≥ 2, or 2N
N+1 < p ≤ 2 and q ≥ 2, or 2N

N+1 < q ≤ 2 and p > 2, we know

from (w, y) ∈ Ap,q(u, v) + C1(u, v) that w ∈ Apu + C
(1)
1 (u, v) and y ∈ Aqu + C

(2)
1 (v, u). Since

{(u, v)} is bounded in Lp(Ω)×Lq(Ω), then {u} is bounded in Lp(Ω) and {v} bounded in Lq(Ω).

Similar to the proof of the corresponding result in [7], we know that {u} is relatively compact in
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Lp(Ω) and {v} is relatively compact in Lq(Ω), which imply that {(u, v)} is relatively compact in

Lp(Ω) × Lq(Ω).

Notice the facts of Propositions 3.1–3.3, 3.5 and 3.6, it is easy to show that all the conditions

of Theorem 2.1 required are satisfied. Further, from Propositions 3.7 and 3.8, we have (f1, f2) ∈

int[R(Ap,q) + R(C1)]. Therefore, Proposition 3.9 implies that the Theorem 3.1 holds. This

completes the proof. 2

Remark 3.2 System (1.2) can be further extended to the case of containing finite such equations

and the corresponding boundaries.
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