Congruences for a Restricted *m*-ary Overpartition Function

Qing Lin LU^{*}, Zheng Ke MIAO

School of Mathematical Sciences, Xuzhou Normal University, Jiangsu 221116, P. R. China

Abstract We discuss a family of restricted *m*-ary overpartition functions $\bar{b}_{m,j}(n)$, which is the number of *m*-ary overpartitions of *n* with at most i + j copies of the non-overlined part m^i allowed, and obtain a family of congruences for $\bar{b}_{m,lm-1}(n)$.

Keywords partition; overpartition; *m*-ary overpartition; generating function.

Document code A MR(2000) Subject Classification 05A17; 11P83 Chinese Library Classification 0157.1; 0156.1

1. Introduction

An overpartition of n is a non-increasing sequence of positive integers whose sum is n in which the first occurrence of an integer may be overlined. According to Corteel and Lovejoy [1], overpartitions were discussed by MacMahon and have proven useful in several combinatorial studies of basic hypergeometric series [2–5].

We denote by $\bar{p}(n)$ the number of overpartitions of n. Since the overlined parts form a partition into distinct parts and the non-overlined parts form an ordinary partition, we have the generating function

$$\sum_{n=0}^{\infty} \bar{p}(n)q^n = \prod_{n=1}^{\infty} \frac{1+q^n}{1-q^n}.$$

Let $m \ge 2$ be an integer. An *m*-ary partition of a positive integer *n* is a non-increasing sequence of non-negative integral powers of *m* whose sum is *n*. In 2005, Rødseth and Sellers [6] considered *m*-ary overpartition of *n*, which is a non-increasing sequence of non-negative integral powers of *m* whose sum is *n*, and where the first occurrence of a power of *m* may be overlined. They obtained a congruence property (Theorem 1.1) which is a lifting to general *m* of the wellknown Churchhouse congruences [7] for the binary partition function. They also considered the number of restricted *m*-ary overpartitions of *n*, where the largest part is at most m^{k-1} .

* Corresponding author

Received July 14, 2008; Accepted June 30, 2009

Supported by the National Natural Science Foundation of China (Grant Nos. 10771100; 10871166), the Natural Science Foundation of Jiangsu Province (Grant No. BK2007030) and the Natural Science Foundation of Jiangsu Educational Committee (Grant Nos. 06KJD110179; 07KJD110207).

E-mail address: qllu@xznu.edu.cn (Q. L. LU); zkmiao@xznu.edu.cn (Z. K. MIAO)

In this note, we consider another family of restricted *m*-ary overpartition function $\bar{b}_{m,j}(n)$, which is the number of *m*-ary overpartitions of *n* with at most i + j copies of the non-overlined part m^i allowed. For example, for m = 2, j = 1, we find

$$\sum_{n=0}^{\infty} \bar{b}_{2,1}(n)q^n = 1 + 2q + 3q^2 + 4q^3 + 6q^4 + \cdots,$$

where the 6 restricted binary overpartitions of 4 are

$$4, \bar{4}, 2+2, \bar{2}+2, 2+\bar{1}+1, \bar{2}+\bar{1}+1.$$

It is not difficult to see that m-1 is the smallest integer j which guarantees that $\bar{b}_{m,j}(n)$ is positive for all nonnegative integers n. This makes the study of this specific function especially attractive.

Theorem 1.1 For all $n \ge 0$, $m \ge 4$, $3 \le k \le m - 1$, and $1 \le t \le m - k + 1$, we have

$$\sum_{n=0}^{\infty} \bar{b}_{m,m-1}(m^{k+t}n+2m^{k+t-1}+\dots+2m^k)q^n$$

= $(2^{k+1}+2^k-2)4^{t-1}(1+q)B_{m,m+k+t-1}(q),$

where $B_{m,j}(q)$ is the generating function $\sum_{n\geq 0} \bar{b}_{m,j}(n)q^n$.

Remark 1.2 Theorem 1.1 implies

$$\bar{b}_{m,m-1}(m^{k+t}n+2m^{k+t-1}+\dots+2m^k)$$

= $(2^{k+1}+2^k-2)4^{t-1}(\bar{b}_{m,m+k+t-1}(n)+\bar{b}_{m,m+k+t-1}(n-1)).$

Of course, it also implies the following congruence for $n \ge 0$, $m \ge 4$, $3 \le k \le m-1$, and $1 \le t \le m-k+1$:

$$\bar{b}_{m,m-1}(m^{k+t}n+2m^{k+t-1}+\cdots+2m^k) \equiv 0 \pmod{(2^{k+1}+2^k-2)4^{t-1}}.$$

We prove Theorem 1.1 by using generating function dissections. In Section 2 below we give two preliminary lemmas. In Section 3 we complete the proof of Theorem 1.1. Finally, in Section 4 we state a theorem which deals with function $\bar{b}_{m,lm-1}(n)$.

2. Preliminary lemmas

Denote by $\bar{b}_m(n)$ the number of *m*-ary overpartitions of *n*, and put $\bar{b}_m(0) = 1$. It is clear that the generating function for $\bar{b}_m(n)$ is given by

$$\sum_{n\geq 0} \bar{b}_m(n)q^n = \prod_{i\geq 0} \left((1+q^{m^i}) \sum_{k\geq 0} q^{m^i k} \right) = \prod_{i\geq 0} \frac{1+q^{m^i}}{1-q^{m^i}}.$$

i

We see that the generating function for $\bar{b}_{m,j}(n)$ can be written as

$$B_{m,j}(q) = \sum_{n \ge 0} \bar{b}_{m,j}(n)q^n = \prod_{i \ge 0} \left((1 + q^{m^i}) \sum_{k=0}^{i+j} q^{m^i k} \right)$$

Congruences for a restricted m-ary overpartition function

$$= (1+q)(1+q+\dots+q^{j})B_{m,j+1}(q^{m}).$$
(1)

Lemma 2.1 For all $n \ge 0$, $m \ge 2$, and $1 \le k \le m - 1$, we have

$$\bar{b}_{m,m-1}(m^k n) = \bar{b}_{m,m+k-1}(n) + (2^k + 2^{k-1} - 2)\bar{b}_{m,m+k-1}(n-1).$$

Proof We prove this lemma by induction on k. We first consider the case k = 1. We have from (1) the following

$$B_{m,m-1}(q) = (1+q)(1+q+\dots+q^{m-1})B_{m,m}(q^m)$$
$$= (1+2q+\dots+2q^{m-1}+q^m)B_{m,m}(q^m).$$

Then the coefficient of q^{mn} on the left-hand side of (2) is simply $\bar{b}_{m,m-1}(mn)$. We see that the terms in $(1+2q+\cdots+2q^{m-1}+q^m)$ that contribute to a term of the form q^{mn} on the right-hand side of (2) are 1 and q^m , because $B_{m,m}(q^m)$ is a power series in q^m . Therefore, the coefficient of q^{mn} on the right-hand side of (2) is $\bar{b}_{m,m}(n) + \bar{b}_{m,m}(n-1)$.

Now, we assume the lemma is true for some k satisfying $1 \le k < m - 1$. This means we are assuming that

$$\bar{b}_{m,m-1}(m^k n) = \bar{b}_{m,m+k-1}(n) + (2^k + 2^{k-1} - 2)\bar{b}_{m,m+k-1}(n-1)$$

or that

$$\sum_{n\geq 0} \bar{b}_{m,m-1}(m^k n)q^n = (1 + (2^k + 2^{k-1} - 2)q)B_{m,m+k-1}(q)$$

Then we have

$$\begin{split} \bar{b}_{m,m-1}(m^{k+1}n) &= [q^{mn}](1 + (2^k + 2^{k-1} - 2)q)B_{m,m+k-1}(q) \\ &= [q^{mn}](1 + (2^k + 2^{k-1} - 2)q)(1 + q)(1 + q + \dots + q^{m+k-1})B_{m,m+k}(q^m) \\ &= [q^{mn}](1 + (2^k + 2^{k-1} - 1)q + (2^k + 2^{k-1} - 2)q^2) \cdot (1 + q + \dots + q^{m+k-1})B_{m,m+k}(q^m) \\ &= [q^{mn}](1 + q^m + (2^k + 2^{k-1} - 1)q \cdot q^{m-1} + (2^k + 2^{k-1} - 2)q^2 \cdot q^{m-2})B_{m,m+k}(q^m) \text{ (because of } 1 \le k < m - 1) \\ &= [q^{mn}](1 + (2^{k+1} + 2^k - 2)q^m)B_{m,m+k}(q^m) \\ &= [q^n](1 + (2^{k+1} + 2^k - 2)q)B_{m,m+k}(q) \\ &= \bar{b}_{m,m+k}(n) + (2^{k+1} + 2^k - 2)\bar{b}_{m,m+k}(n - 1). \end{split}$$

This completes the proof of Lemma 2.1. \Box

Lemma 2.2 For all $n \ge 0$, $m \ge 4$, $3 \le k \le m - 1$, we have

$$\bar{b}_{m,m-1}(m^{k+1}n+2m^k) = (2^{k+1}+2^k-2)(\bar{b}_{m,m+k}(n)+\bar{b}_{m,m+k}(n-1)).$$

Proof By Lemma 2.1, we have

$$\bar{b}_{m,m-1}(m^{k+1}n+2m^k) = [q^{mn+2}](1+(2^k+2^{k-1}-2)q)B_{m,m+k-1}(q)$$

= $[q^{mn+2}](1+(2^k+2^{k-1}-2)q)(1+q)(1+q+\cdots+q^{m+k-1})B_{m,m+k}(q^m)$
= $[q^{mn+2}](2^{k+1}+2^k-2)q^2(1+q^m)B_{m,m+k}(q^m)$ (because of $3 \le k \le m-1$)

941

$$= [q^{n}](2^{k+1} + 2^{k} - 2)(1+q)B_{m,m+k}(q)$$

= $(2^{k+1} + 2^{k} - 2)(\bar{b}_{m,m+k}(n) + \bar{b}_{m,m+k}(n-1)).$

This completes the proof of Lemma 2.2. \square

3. Proof of Theorem 1.1

We prove Theorem 1.1 by induction on t. The case t = 1 is handled in Lemma 2.2. We now assume

$$\sum_{n=0}^{\infty} \bar{b}_{m,m-1}(m^{k+t-1}n+2m^{k+t-2}+\dots+2m^k)q^n$$
$$= (2^{k+1}+2^k-2)4^{t-2}(1+q)B_{m,m+k+t-2}(q)$$

for $2 \le t \le m - k + 2$, i.e.,

$$\bar{b}_{m,m-1}(m^{k+t-1}n+2m^{k+t-2}+\dots+2m^k)$$

= $(2^{k+1}+2^k-2)4^{t-2}(\bar{b}_{m,m+k+t-2}(n)+\bar{b}_{m,m+k+t-2}(n-1)).$

Then we have

$$\bar{b}_{m,m-1}(m^{k+t}n + 2m^{k+t-1} + \dots + 2m^k)
= [q^{mn+2}](2^{k+1} + 2^k - 2)4^{t-2}(1+q)B_{m,m+k+t-2}(q)
= [q^{mn+2}](2^{k+1} + 2^k - 2)4^{t-2}(1+q)(1+q) \cdot (1+q+\dots + q^{m+k+t-2})B_{m,m+k+t-1}(q^m)
= [q^{mn+2}](2^{k+1} + 2^k - 2)4^{t-1}q^2(1+q^m)B_{m,m+k+t-1}(q^m)
= [q^n](2^{k+1} + 2^k - 2)4^{t-1}(1+q)B_{m,m+k+t-1}(q)
= (2^{k+1} + 2^k - 2)4^{t-1}(\bar{b}_{m,m+k+t-1}(n) + \bar{b}_{m,m+k+t-1}(n-1)).$$

This completes the proof of Theorem 1.1. \square

4. More congruences for $\bar{b}_{m,j}(n)$

In this section, we consider the congruence properties for $\bar{b}_{m,j}(n)$ with j = lm - 1. Proceeding in a way similar to, but a little bit more complicated than, the proof of Theorem 1.1, we can prove the following result which is an extension of Theorem 1.1.

Theorem 4.1 For all $n \ge 0$, $m \ge 4$, $1 \le l \le m/2 - 1$, $l + 2 \le k \le m - l$, and $1 \le t \le m - k + 1$, we have

$$\sum_{n\geq 0} \bar{b}_{m,lm-1}(m^{k+t}n+(l+1)m^{k+t-1}+\dots+(l+1)m^k)q^n$$

= $2^t(l+1)^{t-1}\prod_{\substack{0\leq r\leq k\\r\neq k-1}} (2l)^r(1+q+\dots+q^l)B_{m,m+k+t-1}(q).$

Remark 4.2 Theorem 4.1 implies the following congruence:

$$\bar{b}_{m,lm-1}(m^{k+t}n + (l+1)m^{k+t-1} + \dots + (l+1)m^k) \equiv 0 \ \left(\mod 2^t (l+1)^{t-1} \prod_{\substack{0 \le r \le k \\ r \ne k = -1}} (2l)^r \right).$$

We now sketch a proof of Theorem 4.1. We can first prove

Lemma 4.3 For all $n \ge 0$, $m \ge 2$, and $l \ge 1$, we have

$$\bar{b}_{m,lm-1}(mn) = \bar{b}_{m,lm}(n) + 2\bar{b}_{m,lm}(n-1) + \dots + 2\bar{b}_{m,lm}(n-l+1) + \bar{b}_{m,lm}(n-l).$$

By using Lemma 4.3 and induction on k, we can prove

Lemma 4.4 For all $n \ge 0$, $m \ge 3$, $1 \le l \le m-2$, and $2 \le k \le m-l$, we have

$$\bar{b}_{m,lm-1}(m^k n) = \bar{b}_{m,lm+k-1}(n) + 2 \prod_{\substack{0 \le r \le k-1 \\ r \ne k-2}} (2l)^r (\bar{b}_{m,lm+k-1}(n-1) + \dots + \bar{b}_{m,lm+k-1}(n-l)).$$

By using Lemma 4.4, we can prove

Lemma 4.5 For all $n \ge 0$, $m \ge 4$, $1 \le l \le m/2 - 1$, and $l + 2 \le k \le m - l$, we have

$$\sum_{n\geq 0} \bar{b}_{m,lm-1}(m^{k+1}n + (l+1)m^k) = 2 \prod_{\substack{0\leq r\leq k\\r\neq k-1}} (2l)^r (1+q+\dots+q^l) B_{m,m+k}(q).$$

Finally, by using Lemma 4.5 and induction on t, we can prove Theorem 4.1.

References

- [1] CORTEEL S, LOVEJOY J. Overpartitions [J]. Trans. Amer. Math. Soc., 2004, 356: 1623-1635.
- [2] CORTEEL S. Particle seas and basic hypergeometric series [J]. Adv. in Appl. Math., 2003, **31**(1): 199–214.
 [3] CORTEEL S, LOVEJOY J. Frobenius partitions and the combinatorics of Ramanujan's 1\$\u03c4\$1 summation [J].
- J. Combin. Theory Ser. A, 2002, 97(1): 177–183.
 [4] JOICHI J T, STANTON D. Bijective proofs of basic hypergeometric series identities [J]. Pacific J. Math.,
- 1987, **127**(1): 103–120.
 [5] PAK I. Partition bijections, a survey [J]. Ramanujan J., 2006, **12**(1): 5–75.
- [6] RØDSETH ØJ, SELLERS J A. On m-ary overpartitions [J]. Ann. Comb., 2005, 9(3): 345–353.
- [7] CHURCHHOUSE R F. Congruence properties of the binary partition function [J]. Proc. Cambridge Philos. Soc., 1969, 66: 371–376.