Congruences for a Restricted m-ary Overpartition Function

Qing Lin LU*, Zheng Ke MIAO
School of Mathematical Sciences, Xuzhou Normal University, Jiangsu 221116, P. R. China

Abstract

We discuss a family of restricted m-ary overpartition functions $\bar{b}_{m, j}(n)$, which is the number of m-ary overpartitions of n with at most $i+j$ copies of the non-overlined part m^{i} allowed, and obtain a family of congruences for $\bar{b}_{m, l m-1}(n)$.

Keywords partition; overpartition; m-ary overpartition; generating function.
Document code A
MR(2000) Subject Classification 05A17; 11P83
Chinese Library Classification O157.1; O156.1

1. Introduction

An overpartition of n is a non-increasing sequence of positive integers whose sum is n in which the first occurrence of an integer may be overlined. According to Corteel and Lovejoy [1], overpartitions were discussed by MacMahon and have proven useful in several combinatorial studies of basic hypergeometric series [2-5].

We denote by $\bar{p}(n)$ the number of overpartitions of n. Since the overlined parts form a partition into distinct parts and the non-overlined parts form an ordinary partition, we have the generating function

$$
\sum_{n=0}^{\infty} \bar{p}(n) q^{n}=\prod_{n=1}^{\infty} \frac{1+q^{n}}{1-q^{n}}
$$

Let $m \geq 2$ be an integer. An m-ary partition of a positive integer n is a non-increasing sequence of non-negative integral powers of m whose sum is n. In 2005, Rødseth and Sellers [6] considered m-ary overpartition of n, which is a non-increasing sequence of non-negative integral powers of m whose sum is n, and where the first occurrence of a power of m may be overlined. They obtained a congruence property (Theorem 1.1) which is a lifting to general m of the wellknown Churchhouse congruences [7] for the binary partition function. They also considered the number of restricted m-ary overpartitions of n, where the largest part is at most m^{k-1}.

[^0]In this note, we consider another family of restricted m-ary overpartition function $\bar{b}_{m, j}(n)$, which is the number of m-ary overpartitions of n with at most $i+j$ copies of the non-overlined part m^{i} allowed. For example, for $m=2, j=1$, we find

$$
\sum_{n=0}^{\infty} \bar{b}_{2,1}(n) q^{n}=1+2 q+3 q^{2}+4 q^{3}+6 q^{4}+\cdots
$$

where the 6 restricted binary overpartitions of 4 are

$$
4, \overline{4}, 2+2, \overline{2}+2,2+\overline{1}+1, \overline{2}+\overline{1}+1
$$

It is not difficult to see that $m-1$ is the smallest integer j which guarantees that $\bar{b}_{m, j}(n)$ is positive for all nonnegative integers n. This makes the study of this specific function especially attractive.

Theorem 1.1 For all $n \geq 0, m \geq 4,3 \leq k \leq m-1$, and $1 \leq t \leq m-k+1$, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \bar{b}_{m, m-1}\left(m^{k+t} n+2 m^{k+t-1}+\cdots+2 m^{k}\right) q^{n} \\
& \quad=\left(2^{k+1}+2^{k}-2\right) 4^{t-1}(1+q) B_{m, m+k+t-1}(q)
\end{aligned}
$$

where $B_{m, j}(q)$ is the generating function $\sum_{n \geq 0} \bar{b}_{m, j}(n) q^{n}$.
Remark 1.2 Theorem 1.1 implies

$$
\begin{aligned}
& \bar{b}_{m, m-1}\left(m^{k+t} n+2 m^{k+t-1}+\cdots+2 m^{k}\right) \\
& \quad=\left(2^{k+1}+2^{k}-2\right) 4^{t-1}\left(\bar{b}_{m, m+k+t-1}(n)+\bar{b}_{m, m+k+t-1}(n-1)\right)
\end{aligned}
$$

Of course, it also implies the following congruence for $n \geq 0, m \geq 4,3 \leq k \leq m-1$, and $1 \leq t \leq m-k+1$:

$$
\bar{b}_{m, m-1}\left(m^{k+t} n+2 m^{k+t-1}+\cdots+2 m^{k}\right) \equiv 0\left(\bmod \left(2^{k+1}+2^{k}-2\right) 4^{t-1}\right)
$$

We prove Theorem 1.1 by using generating function dissections. In Section 2 below we give two preliminary lemmas. In Section 3 we complete the proof of Theorem 1.1. Finally, in Section 4 we state a theorem which deals with function $\bar{b}_{m, l m-1}(n)$.

2. Preliminary lemmas

Denote by $\bar{b}_{m}(n)$ the number of m-ary overpartitions of n, and put $\bar{b}_{m}(0)=1$. It is clear that the generating function for $\bar{b}_{m}(n)$ is given by

$$
\sum_{n \geq 0} \bar{b}_{m}(n) q^{n}=\prod_{i \geq 0}\left(\left(1+q^{m^{i}}\right) \sum_{k \geq 0} q^{m^{i} k}\right)=\prod_{i \geq 0} \frac{1+q^{m^{i}}}{1-q^{m^{i}}}
$$

We see that the generating function for $\bar{b}_{m, j}(n)$ can be written as

$$
B_{m, j}(q)=\sum_{n \geq 0} \bar{b}_{m, j}(n) q^{n}=\prod_{i \geq 0}\left(\left(1+q^{m^{i}}\right) \sum_{k=0}^{i+j} q^{m^{i} k}\right)
$$

$$
\begin{equation*}
=(1+q)\left(1+q+\cdots+q^{j}\right) B_{m, j+1}\left(q^{m}\right) \tag{1}
\end{equation*}
$$

Lemma 2.1 For all $n \geq 0, m \geq 2$, and $1 \leq k \leq m-1$, we have

$$
\bar{b}_{m, m-1}\left(m^{k} n\right)=\bar{b}_{m, m+k-1}(n)+\left(2^{k}+2^{k-1}-2\right) \bar{b}_{m, m+k-1}(n-1)
$$

Proof We prove this lemma by induction on k. We first consider the case $k=1$. We have from (1) the following

$$
\begin{aligned}
B_{m, m-1}(q) & =(1+q)\left(1+q+\cdots+q^{m-1}\right) B_{m, m}\left(q^{m}\right) \\
& =\left(1+2 q+\cdots+2 q^{m-1}+q^{m}\right) B_{m, m}\left(q^{m}\right)
\end{aligned}
$$

Then the coefficient of $q^{m n}$ on the left-hand side of (2) is simply $\bar{b}_{m, m-1}(m n)$. We see that the terms in $\left(1+2 q+\cdots+2 q^{m-1}+q^{m}\right)$ that contribute to a term of the form $q^{m n}$ on the right-hand side of (2) are 1 and q^{m}, because $B_{m, m}\left(q^{m}\right)$ is a power series in q^{m}. Therefore, the coefficient of $q^{m n}$ on the right-hand side of (2) is $\bar{b}_{m, m}(n)+\bar{b}_{m, m}(n-1)$.

Now, we assume the lemma is true for some k satisfying $1 \leq k<m-1$. This means we are assuming that

$$
\bar{b}_{m, m-1}\left(m^{k} n\right)=\bar{b}_{m, m+k-1}(n)+\left(2^{k}+2^{k-1}-2\right) \bar{b}_{m, m+k-1}(n-1)
$$

or that

$$
\sum_{n \geq 0} \bar{b}_{m, m-1}\left(m^{k} n\right) q^{n}=\left(1+\left(2^{k}+2^{k-1}-2\right) q\right) B_{m, m+k-1}(q)
$$

Then we have

$$
\begin{aligned}
& \bar{b}_{m, m-1}\left(m^{k+1} n\right)=\left[q^{m n}\right]\left(1+\left(2^{k}+2^{k-1}-2\right) q\right) B_{m, m+k-1}(q) \\
&= {\left[q^{m n}\right]\left(1+\left(2^{k}+2^{k-1}-2\right) q\right)(1+q)\left(1+q+\cdots+q^{m+k-1}\right) B_{m, m+k}\left(q^{m}\right) } \\
&= {\left[q^{m n}\right]\left(1+\left(2^{k}+2^{k-1}-1\right) q+\left(2^{k}+2^{k-1}-2\right) q^{2}\right) \cdot\left(1+q+\cdots+q^{m+k-1}\right) B_{m, m+k}\left(q^{m}\right) } \\
&= {\left[q^{m n}\right]\left(1+q^{m}+\left(2^{k}+2^{k-1}-1\right) q \cdot q^{m-1}+\right.} \\
&\left.\left(2^{k}+2^{k-1}-2\right) q^{2} \cdot q^{m-2}\right) B_{m, m+k}\left(q^{m}\right)(\text { because of } 1 \leq k<m-1) \\
&= {\left[q^{m n}\right]\left(1+\left(2^{k+1}+2^{k}-2\right) q^{m}\right) B_{m, m+k}\left(q^{m}\right) } \\
&= {\left[q^{n}\right]\left(1+\left(2^{k+1}+2^{k}-2\right) q\right) B_{m, m+k}(q) } \\
&= \bar{b}_{m, m+k}(n)+\left(2^{k+1}+2^{k}-2\right) \bar{b}_{m, m+k}(n-1) .
\end{aligned}
$$

This completes the proof of Lemma 2.1.
Lemma 2.2 For all $n \geq 0, m \geq 4,3 \leq k \leq m-1$, we have

$$
\bar{b}_{m, m-1}\left(m^{k+1} n+2 m^{k}\right)=\left(2^{k+1}+2^{k}-2\right)\left(\bar{b}_{m, m+k}(n)+\bar{b}_{m, m+k}(n-1)\right)
$$

Proof By Lemma 2.1, we have

$$
\begin{aligned}
& \bar{b}_{m, m-1}\left(m^{k+1} n+2 m^{k}\right)=\left[q^{m n+2}\right]\left(1+\left(2^{k}+2^{k-1}-2\right) q\right) B_{m, m+k-1}(q) \\
& \quad=\left[q^{m n+2}\right]\left(1+\left(2^{k}+2^{k-1}-2\right) q\right)(1+q)\left(1+q+\cdots+q^{m+k-1}\right) B_{m, m+k}\left(q^{m}\right) \\
& \left.\quad=\left[q^{m n+2}\right]\left(2^{k+1}+2^{k}-2\right) q^{2}\left(1+q^{m}\right) B_{m, m+k}\left(q^{m}\right) \text { (because of } 3 \leq k \leq m-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[q^{n}\right]\left(2^{k+1}+2^{k}-2\right)(1+q) B_{m, m+k}(q) \\
& =\left(2^{k+1}+2^{k}-2\right)\left(\bar{b}_{m, m+k}(n)+\bar{b}_{m, m+k}(n-1)\right)
\end{aligned}
$$

This completes the proof of Lemma 2.2.

3. Proof of Theorem 1.1

We prove Theorem 1.1 by induction on t. The case $t=1$ is handled in Lemma 2.2. We now assume

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \bar{b}_{m, m-1}\left(m^{k+t-1} n+2 m^{k+t-2}+\cdots+2 m^{k}\right) q^{n} \\
& \quad=\left(2^{k+1}+2^{k}-2\right) 4^{t-2}(1+q) B_{m, m+k+t-2}(q)
\end{aligned}
$$

for $2 \leq t \leq m-k+2$, i.e.,

$$
\begin{aligned}
& \bar{b}_{m, m-1}\left(m^{k+t-1} n+2 m^{k+t-2}+\cdots+2 m^{k}\right) \\
& \quad=\left(2^{k+1}+2^{k}-2\right) 4^{t-2}\left(\bar{b}_{m, m+k+t-2}(n)+\bar{b}_{m, m+k+t-2}(n-1)\right)
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \bar{b}_{m, m-1}\left(m^{k+t} n+2 m^{k+t-1}+\cdots+2 m^{k}\right) \\
& \quad=\left[q^{m n+2}\right]\left(2^{k+1}+2^{k}-2\right) 4^{t-2}(1+q) B_{m, m+k+t-2}(q) \\
& \quad=\left[q^{m n+2}\right]\left(2^{k+1}+2^{k}-2\right) 4^{t-2}(1+q)(1+q) \cdot\left(1+q+\cdots+q^{m+k+t-2}\right) B_{m, m+k+t-1}\left(q^{m}\right) \\
& \quad=\left[q^{m n+2}\right]\left(2^{k+1}+2^{k}-2\right) 4^{t-1} q^{2}\left(1+q^{m}\right) B_{m, m+k+t-1}\left(q^{m}\right) \\
& \quad=\left[q^{n}\right]\left(2^{k+1}+2^{k}-2\right) 4^{t-1}(1+q) B_{m, m+k+t-1}(q) \\
& \quad=\left(2^{k+1}+2^{k}-2\right) 4^{t-1}\left(\bar{b}_{m, m+k+t-1}(n)+\bar{b}_{m, m+k+t-1}(n-1)\right) .
\end{aligned}
$$

This completes the proof of Theorem 1.1.

4. More congruences for $\bar{b}_{m, j}(n)$

In this section, we consider the congruence properties for $\bar{b}_{m, j}(n)$ with $j=l m-1$. Proceeding in a way similar to, but a little bit more complicated than, the proof of Theorem 1.1, we can prove the following result which is an extension of Theorem 1.1.

Theorem 4.1 For all $n \geq 0, m \geq 4,1 \leq l \leq m / 2-1, l+2 \leq k \leq m-l$, and $1 \leq t \leq m-k+1$, we have

$$
\begin{aligned}
& \sum_{n \geq 0} \bar{b}_{m, l m-1}\left(m^{k+t} n+(l+1) m^{k+t-1}+\cdots+(l+1) m^{k}\right) q^{n} \\
& \quad=2^{t}(l+1)^{t-1} \prod_{\substack{0 \leq r \leq k \\
r \neq k-1}}(2 l)^{r}\left(1+q+\cdots+q^{l}\right) B_{m, m+k+t-1}(q) .
\end{aligned}
$$

Remark 4.2 Theorem 4.1 implies the following congruence:

$$
\bar{b}_{m, l m-1}\left(m^{k+t} n+(l+1) m^{k+t-1}+\cdots+(l+1) m^{k}\right) \equiv 0\left(\bmod 2^{t}(l+1)^{t-1} \prod_{\substack{0 \leq r \leq k \\ r \neq k-1}}(2 l)^{r}\right)
$$

We now sketch a proof of Theorem 4.1. We can first prove
Lemma 4.3 For all $n \geq 0, m \geq 2$, and $l \geq 1$, we have

$$
\bar{b}_{m, l m-1}(m n)=\bar{b}_{m, l m}(n)+2 \bar{b}_{m, l m}(n-1)+\cdots+2 \bar{b}_{m, l m}(n-l+1)+\bar{b}_{m, l m}(n-l)
$$

By using Lemma 4.3 and induction on k, we can prove
Lemma 4.4 For all $n \geq 0, m \geq 3,1 \leq l \leq m-2$, and $2 \leq k \leq m-l$, we have

$$
\begin{gathered}
\bar{b}_{m, l m-1}\left(m^{k} n\right)=\bar{b}_{m, l m+k-1}(n)+2 \prod_{\substack{0 \leq r \leq k-1 \\
r \neq k-2}}(2 l)^{r}\left(\bar{b}_{m, l m+k-1}(n-1)+\cdots+\right. \\
\left.\bar{b}_{m, l m+k-1}(n-l)\right) .
\end{gathered}
$$

By using Lemma 4.4, we can prove
Lemma 4.5 For all $n \geq 0, m \geq 4,1 \leq l \leq m / 2-1$, and $l+2 \leq k \leq m-l$, we have

$$
\sum_{n \geq 0} \bar{b}_{m, l m-1}\left(m^{k+1} n+(l+1) m^{k}\right)=2 \prod_{\substack{0 \leq r \leq k \\ r \neq k-1}}(2 l)^{r}\left(1+q+\cdots+q^{l}\right) B_{m, m+k}(q) .
$$

Finally, by using Lemma 4.5 and induction on t, we can prove Theorem 4.1.

References

[1] CORTEEL S, LOVEJOY J. Overpartitions [J]. Trans. Amer. Math. Soc., 2004, 356: 1623-1635.
[2] CORTEEL S. Particle seas and basic hypergeometric series [J]. Adv. in Appl. Math., 2003, 31(1): $199-214$.
[3] CORTEEL S, LOVEJOY J. Frobenius partitions and the combinatorics of Ramanujan's ${ }_{1} \psi_{1}$ summation [J]. J. Combin. Theory Ser. A, 2002, 97(1): 177-183.
[4] JOICHI J T, STANTON D. Bijective proofs of basic hypergeometric series identities [J]. Pacific J. Math., 1987, 127(1): 103-120.
[5] PAK I. Partition bijections, a survey [J]. Ramanujan J., 2006, 12(1): 5-75.
[6] RØDSETH ØJ, SELLERS J A. On m-ary overpartitions [J]. Ann. Comb., 2005, 9(3): 345-353.
[7] CHURCHHOUSE R F. Congruence properties of the binary partition function [J]. Proc. Cambridge Philos. Soc., 1969, 66: 371-376.

[^0]: Received July 14, 2008; Accepted June 30, 2009
 Supported by the National Natural Science Foundation of China (Grant Nos. 10771100; 10871166), the Natural Science Foundation of Jiangsu Province (Grant No. BK2007030) and the Natural Science Foundation of Jiangsu Educational Committee (Grant Nos. 06KJD110179; 07KJD110207).

 * Corresponding author

 E-mail address: qllu@xznu.edu.cn (Q. L. LU); zkmiao@xznu.edu.cn (Z. K. MIAO)

