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Abstract We discuss a family of restricted m-ary overpartition functions b̄m,j(n), which is the

number of m-ary overpartitions of n with at most i + j copies of the non-overlined part mi

allowed, and obtain a family of congruences for b̄m,lm−1(n).
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1. Introduction

An overpartition of n is a non-increasing sequence of positive integers whose sum is n in

which the first occurrence of an integer may be overlined. According to Corteel and Lovejoy

[1], overpartitions were discussed by MacMahon and have proven useful in several combinatorial

studies of basic hypergeometric series [2–5].

We denote by p̄(n) the number of overpartitions of n. Since the overlined parts form a

partition into distinct parts and the non-overlined parts form an ordinary partition, we have the

generating function
∞
∑

n=0

p̄(n)qn =

∞
∏

n=1

1 + qn

1 − qn
.

Let m ≥ 2 be an integer. An m-ary partition of a positive integer n is a non-increasing

sequence of non-negative integral powers of m whose sum is n. In 2005, Rødseth and Sellers [6]

considered m-ary overpartition of n, which is a non-increasing sequence of non-negative integral

powers of m whose sum is n, and where the first occurrence of a power of m may be overlined.

They obtained a congruence property (Theorem 1.1) which is a lifting to general m of the well-

known Churchhouse congruences [7] for the binary partition function. They also considered the

number of restricted m-ary overpartitions of n, where the largest part is at most mk−1.
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In this note, we consider another family of restricted m-ary overpartition function b̄m,j(n),

which is the number of m-ary overpartitions of n with at most i + j copies of the non-overlined

part mi allowed. For example, for m = 2, j = 1, we find

∞
∑

n=0

b̄2,1(n)qn = 1 + 2q + 3q2 + 4q3 + 6q4 + · · · ,

where the 6 restricted binary overpartitions of 4 are

4, 4̄, 2 + 2, 2̄ + 2, 2 + 1̄ + 1, 2̄ + 1̄ + 1.

It is not difficult to see that m− 1 is the smallest integer j which guarantees that b̄m,j(n) is

positive for all nonnegative integers n. This makes the study of this specific function especially

attractive.

Theorem 1.1 For all n ≥ 0, m ≥ 4, 3 ≤ k ≤ m − 1, and 1 ≤ t ≤ m − k + 1, we have

∞
∑

n=0

b̄m,m−1(m
k+tn + 2mk+t−1 + · · · + 2mk)qn

= (2k+1 + 2k
− 2)4t−1(1 + q)Bm,m+k+t−1(q),

where Bm,j(q) is the generating function
∑

n≥0
b̄m,j(n)qn.

Remark 1.2 Theorem 1.1 implies

b̄m,m−1(m
k+tn + 2mk+t−1 + · · · + 2mk)

= (2k+1 + 2k
− 2)4t−1(b̄m,m+k+t−1(n) + b̄m,m+k+t−1(n − 1)).

Of course, it also implies the following congruence for n ≥ 0, m ≥ 4, 3 ≤ k ≤ m − 1, and

1 ≤ t ≤ m − k + 1:

b̄m,m−1(m
k+tn + 2mk+t−1 + · · · + 2mk) ≡ 0 (mod(2k+1 + 2k

− 2)4t−1).

We prove Theorem 1.1 by using generating function dissections. In Section 2 below we give

two preliminary lemmas. In Section 3 we complete the proof of Theorem 1.1. Finally, in Section

4 we state a theorem which deals with function b̄m,lm−1(n).

2. Preliminary lemmas

Denote by b̄m(n) the number of m-ary overpartitions of n, and put b̄m(0) = 1. It is clear

that the generating function for b̄m(n) is given by

∑

n≥0

b̄m(n)qn =
∏

i≥0

(

(1 + qmi

)
∑

k≥0

qmik
)

=
∏

i≥0

1 + qmi

1 − qmi
.

We see that the generating function for b̄m,j(n) can be written as

Bm,j(q) =
∑

n≥0

b̄m,j(n)qn =
∏

i≥0

(

(1 + qmi

)

i+j
∑

k=0

qmik
)
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= (1 + q)(1 + q + · · · + qj)Bm,j+1(q
m). (1)

Lemma 2.1 For all n ≥ 0, m ≥ 2, and 1 ≤ k ≤ m − 1, we have

b̄m,m−1(m
kn) = b̄m,m+k−1(n) + (2k + 2k−1

− 2)b̄m,m+k−1(n − 1).

Proof We prove this lemma by induction on k. We first consider the case k = 1. We have from

(1) the following

Bm,m−1(q) = (1 + q)(1 + q + · · · + qm−1)Bm,m(qm)

= (1 + 2q + · · · + 2qm−1 + qm)Bm,m(qm).

Then the coefficient of qmn on the left-hand side of (2) is simply b̄m,m−1(mn). We see that the

terms in (1+2q+ · · ·+2qm−1 + qm) that contribute to a term of the form qmn on the right-hand

side of (2) are 1 and qm, because Bm,m(qm) is a power series in qm. Therefore, the coefficient of

qmn on the right-hand side of (2) is b̄m,m(n) + b̄m,m(n − 1).

Now, we assume the lemma is true for some k satisfying 1 ≤ k < m − 1. This means we are

assuming that

b̄m,m−1(m
kn) = b̄m,m+k−1(n) + (2k + 2k−1

− 2)b̄m,m+k−1(n − 1)

or that
∑

n≥0

b̄m,m−1(m
kn)qn = (1 + (2k + 2k−1

− 2)q)Bm,m+k−1(q).

Then we have

b̄m,m−1(m
k+1n) = [qmn](1 + (2k + 2k−1

− 2)q)Bm,m+k−1(q)

= [qmn](1 + (2k + 2k−1
− 2)q)(1 + q)(1 + q + · · · + qm+k−1)Bm,m+k(qm)

= [qmn](1 + (2k + 2k−1
− 1)q + (2k + 2k−1

− 2)q2) · (1 + q + · · · + qm+k−1)Bm,m+k(qm)

= [qmn](1 + qm + (2k + 2k−1
− 1)q · qm−1+

(2k + 2k−1
− 2)q2

· qm−2)Bm,m+k(qm) (because of 1 ≤ k < m − 1)

= [qmn](1 + (2k+1 + 2k
− 2)qm)Bm,m+k(qm)

= [qn](1 + (2k+1 + 2k
− 2)q)Bm,m+k(q)

= b̄m,m+k(n) + (2k+1 + 2k
− 2)b̄m,m+k(n − 1).

This completes the proof of Lemma 2.1. 2

Lemma 2.2 For all n ≥ 0, m ≥ 4, 3 ≤ k ≤ m − 1, we have

b̄m,m−1(m
k+1n + 2mk) = (2k+1 + 2k

− 2)(b̄m,m+k(n) + b̄m,m+k(n − 1)).

Proof By Lemma 2.1, we have

b̄m,m−1(m
k+1n + 2mk) = [qmn+2](1 + (2k + 2k−1

− 2)q)Bm,m+k−1(q)

= [qmn+2](1 + (2k + 2k−1
− 2)q)(1 + q)(1 + q + · · · + qm+k−1)Bm,m+k(qm)

= [qmn+2](2k+1 + 2k
− 2)q2(1 + qm)Bm,m+k(qm) (because of 3 ≤ k ≤ m − 1)



942 Q. L. LU and Z. K. MIAO

= [qn](2k+1 + 2k
− 2)(1 + q)Bm,m+k(q)

= (2k+1 + 2k
− 2)(b̄m,m+k(n) + b̄m,m+k(n − 1)).

This completes the proof of Lemma 2.2. 2

3. Proof of Theorem 1.1

We prove Theorem 1.1 by induction on t. The case t = 1 is handled in Lemma 2.2. We now

assume

∞
∑

n=0

b̄m,m−1(m
k+t−1n + 2mk+t−2 + · · · + 2mk)qn

= (2k+1 + 2k
− 2)4t−2(1 + q)Bm,m+k+t−2(q)

for 2 ≤ t ≤ m − k + 2, i.e.,

b̄m,m−1(m
k+t−1n + 2mk+t−2 + · · · + 2mk)

= (2k+1 + 2k
− 2)4t−2(b̄m,m+k+t−2(n) + b̄m,m+k+t−2(n − 1)).

Then we have

b̄m,m−1(m
k+tn + 2mk+t−1 + · · · + 2mk)

= [qmn+2](2k+1 + 2k
− 2)4t−2(1 + q)Bm,m+k+t−2(q)

= [qmn+2](2k+1 + 2k
− 2)4t−2(1 + q)(1 + q) · (1 + q + · · · + qm+k+t−2)Bm,m+k+t−1(q

m)

= [qmn+2](2k+1 + 2k
− 2)4t−1q2(1 + qm)Bm,m+k+t−1(q

m)

= [qn](2k+1 + 2k
− 2)4t−1(1 + q)Bm,m+k+t−1(q)

= (2k+1 + 2k
− 2)4t−1(b̄m,m+k+t−1(n) + b̄m,m+k+t−1(n − 1)).

This completes the proof of Theorem 1.1. 2

4. More congruences for b̄m,j(n)

In this section, we consider the congruence properties for b̄m,j(n) with j = lm−1. Proceeding

in a way similar to, but a little bit more complicated than, the proof of Theorem 1.1, we can

prove the following result which is an extension of Theorem 1.1.

Theorem 4.1 For all n ≥ 0, m ≥ 4, 1 ≤ l ≤ m/2− 1, l + 2 ≤ k ≤ m− l, and 1 ≤ t ≤ m− k + 1,

we have

∑

n≥0

b̄m,lm−1(m
k+tn + (l + 1)mk+t−1 + · · · + (l + 1)mk)qn

= 2t(l + 1)t−1
∏

0≤r≤k

r 6=k−1

(2l)r(1 + q + · · · + ql)Bm,m+k+t−1(q).
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Remark 4.2 Theorem 4.1 implies the following congruence:

b̄m,lm−1(m
k+tn + (l + 1)mk+t−1 + · · · + (l + 1)mk) ≡ 0

(

mod 2t(l + 1)t−1
∏

0≤r≤k

r 6=k−1

(2l)r
)

.

We now sketch a proof of Theorem 4.1. We can first prove

Lemma 4.3 For all n ≥ 0, m ≥ 2, and l ≥ 1, we have

b̄m,lm−1(mn) = b̄m,lm(n) + 2b̄m,lm(n − 1) + · · · + 2b̄m,lm(n − l + 1) + b̄m,lm(n − l).

By using Lemma 4.3 and induction on k, we can prove

Lemma 4.4 For all n ≥ 0, m ≥ 3, 1 ≤ l ≤ m − 2, and 2 ≤ k ≤ m − l, we have

b̄m,lm−1(m
kn) =b̄m,lm+k−1(n) + 2

∏

0≤r≤k−1

r 6=k−2

(2l)r(b̄m,lm+k−1(n − 1) + · · ·+

b̄m,lm+k−1(n − l)).

By using Lemma 4.4, we can prove

Lemma 4.5 For all n ≥ 0, m ≥ 4, 1 ≤ l ≤ m/2 − 1, and l + 2 ≤ k ≤ m − l, we have

∑

n≥0

b̄m,lm−1(m
k+1n + (l + 1)mk) = 2

∏

0≤r≤k

r 6=k−1

(2l)r(1 + q + · · · + ql)Bm,m+k(q).

Finally, by using Lemma 4.5 and induction on t, we can prove Theorem 4.1.
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