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1. Introduction

The distance between normal matrices is an interesting topic and many mathematicians

obtained many beautiful results [2, 3, 7, 9, 11].

Let A and B be any normal n × n matrices. If their eigenvalues are denoted by λ1, . . . , λn

and µ1, . . . , µn, then the norm distance of A and B, (i.e., ‖A − B‖), given in terms of their

eigenvalues is the following:

min
σ∈Sn

max
1≤i≤n

|λi − µσ(i)| ≤ ‖A − B‖ ≤ max
σ∈Sn

max
1≤i≤n

|λi − µσ(i)|,

where A − B is normal and Sn denotes the set of permutations of n indices. The left side was

proved by Bhatia [1] and the right side was showed by Sunder [12]. The special case of A, B

being Hermitian was obtained by Weyl in [13].

Holbrook, Omladic and Semel in [8] introduced spectral function

F (λ1, . . . , λn, µ1, . . . , µn) = max
U∈U

‖A − UBU∗‖

and gave a clear study of the function, then sufficient conditions are given for the equality of the

spectral function and the maximal spectral distance.

The global property of the maximal spectral distance is considered in this paper, that is, if A

and B are mutually commutative non-commutative C∗-subalgebras of B(H) for a Hilbert space

H, whether for all normal operators A ∈ A, B ∈ B, the equality

‖A − B‖ = max
λ∈σ(A),µ∈σ(B)

|λ − µ|
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holds. This is easily known false. However, an equivalent condition for the equality is that A

and B are quantum C∗ independent.

Recall that A and B are quantum independent if for any state φ1 on A and φ2 on B, there

is a state φ on C∗(A,B), such that φ|A = φ1 and φ|B = φ2 as shown in [6].

Theorem 1.1 Let A and B be mutually commutative non-commutative C∗-subalgebras of B(H)

for a Hilbert space H. Then the following statements are equivalent:

(1) ‖A − B‖ = maxλ∈σ(A),µ∈σ(B) |λ − µ|, for all normal operators A ∈ A, B ∈ B.

(2) ‖A + B‖ = ‖A‖ + ‖B‖, for all positive operators A ∈ A, B ∈ B.

(3) A and B are quantum C∗ independent.

2. Proof of the theorem

In quantum theory, observables are represented by self-adjoint operators and preparations by

states on the ∗-algebra generated by the observables. If A and B represent the algebras generated

by the observables associated with two quantum subsystems, the quantum independence of A

and B can be constructed as follows: no choice of a state prepared on one system can prevent

the preparation of any state on the other subsystem.

Ross in [10] showed another characterization of quantum independence as follows:

Lemma 2.1 Let A and B be mutually commutative C∗-subalgebras of B(H) for a Hilbert space

H. Then the following statements are equivalent:

(1) A and B are quantum C∗ independent.

(2) 0 6= A ∈ A, 0 6= B ∈ B imply AB 6= 0.

Goldstein, Luczak, and Wilde in [5] showed that the condition 2 in Lemma 2.1 is equivalent

to that A > 0, B > 0 imply AB > 0.

To prove the theorem, we need introduce the definition of joint spectrum of operators.

Definition 2.2 Let A be a unital commutative C∗ algebras. Then the joint spectrum of

commuting operator tuple (A, B) is defined as

Sp(A, B) = {(φ(A), φ(B)) : where φ ∈ MA},

where MA is the set of all multiplicative linear functionals on A.

Dash [4] proved the joint spectrum of a commuting operator tuple is a compact set in C2.

Now we are ready to prove our theorem:

Proof (1) ⇒ (2). This is obvious by the fact ‖A‖ = max{λ : λ ∈ σ(A)} for any positive operator

A in a unital C∗ algebra.

(2) ⇒ (3). For positive operators A ∈ A, B ∈ B,

‖A + B‖2 = (‖A‖ + ‖B‖)2,

that is,

‖AB‖ = ‖A‖ · ‖B‖.
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Thus, we know that if A > 0, B > 0, then AB > 0. By Lemma 2.1, A and B are quantum C∗

independent.

(3) ⇒ (1). For any normal operator A ∈ A and B ∈ B,

σ(A − B) ⊆ σ(A) − σ(B).

Suppose that the statement 1 is not valid, then there exists normal operators A0 ∈ A, B0 ∈ B,

such that

‖A0 − B0‖ < max
λ∈σ(A0),µ∈σ(B0)

|λ − µ|,

then σ(A0 − B0) 6= σ(A0) − σ(B0). Thus there is λ0 ∈ σ(A0), µ0 ∈ σ(B0), such that (λ0, µ0) /∈

Sp(A0, B0).

By the Gelafand transformation, we know that the C∗ algebra C generated by A0, A∗
0, B0,

B∗
0 and I is isometry isomorphism to C(MC), which is the set of all complex-valued continu-

ous functions on MC. While Sp(A0, B0) is homeomorphism to MC as shown in [14], thus C is

isomorphism to C(Sp(A0, B0)).

Since Sp(A0, B0) and {(λ0, µ0)} are compact sets in C2, there is a δ > 0, such that

U((λ0, µ0), δ) ∩ Sp(A0, B0) = ∅.

Then if we take δ′ = δ
2 , we have

U((λ0, µ0), δ) ⊇ U1 × U2 and (U1 × U2) ∩ Sp(A0, B0) = ∅,

where U1 = {z : |z − λ0| < δ′}, U2 = {w : |w − µ0| < δ′}.

Note that σ(A0) \ U1 and σ(B0) \ U2 may be empty. Choose points z1, z2, w1, w2 in C such

that z2 ∈ (σ(A0) \ U1) ∪ {z1} and w2 ∈ (σ(B0) \ U2) ∪ {w1}. Put E1 = (σ(A0) \ U1) ∪ {z1},

E2 = (σ(B0) \ U2) ∪ {w1}, and

f(z) =
d(z, E1)

d(z, E1) + d(z, z2)
, g(w) =

d(w, E2)

d(w, E2) + d(w, w2)
,

where d(x, A) = inf{|x − y| : y ∈ A}. Then f and g are continuous everywhere, not zero and

f(E1) = g(E2) = {0}. Thus, f(z) 6= 0, g(w) 6= 0 and f(z)g(w) = 0, where (z, w) ∈ Sp(A0, B0).

By the continuous functional calculus:

‖f(A0)g(B0)‖ = 0 6= ‖f(A0)‖ · ‖g(B0)‖,

which makes a contradiction and thus completes the proof. 2

Remark 2.4 By the theorem, we notice that the maximal spectral distance is a very important

quantity for a C∗ algebra, and the theorem gives us a way to test the independence of two

quantum systems.
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