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Abstract Let S be a certain set of graphs. A graph is called a minimizing graph in the set S

if its least eigenvalue attains the minimum among all graphs in S . In this paper, we determine

the unique minimizing graph in Gn, where Gn denotes the set of connected graphs of order n

with cut vertices.

Keywords adjacency matrix; least eigenvalue; minimizing graph; cut vertex.

Document code A

MR(2000) Subject Classification 05C50; 15A18

Chinese Library Classification O157.5; O151.21

1. Introduction

Let G = (V, E) be a simple graph with vertex set V = V (G) = {v1, v2, . . . , vn} and edge

set E = E(G). The adjacency matrix of G is defined to be a (0, 1) matrix A(G) = [aij ], where

aij = 1 if vi is adjacent to vj , aij = 0 otherwise. The zeros of the characteristic polynomial

P (G, λ) = det(λI −A(G)) of A(G) are called the eigenvalues of G. Since A(G) is symmetric, its

eigenvalues are real and can be arranged as follows:

λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G).

One can find that λn(G), denoted by ρ(G), is exactly the spectral radius of A(G). If,

in addition, G is connected, then A(G) is irreducible; and by Perron-Frobenius Theorem, the

eigenvalue ρ(G) is simple and there exists a unique (up to a multiple) corresponding positive

eigenvector, usually referred to as the Perron vector of A(G). There are many results in literatures

concerning the spectral radius of the adjacency matrix of a graph, which involve the work in two

directions: one for the bounds of spectral radius, e.g. [1–3], and one for the structure of graphs

with extreme spectral radius subject to one or more given parameters, such as order and size

[4], maximal degree [5], diameter [6–8], matching number [9], chromatic number [10], domination

number [11], number of cut vertices [12], number of cut edges [13], number of pendant vertices
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[14]. One can also refer to [15–17] for basis results on the spectral radius of the adjacency matrix

of a graph.

However, much less is known about the least eigenvalue λ1(G) of the graph G, now denoted

by λmin(G). An eigenvector corresponding to λmin(G) of A(G) is called the least vector of G.

For a graph with at least one edge, the least eigenvalue is negative, and is less than or equal to

−1 with equality if and only if each component of the graph is complete; in addition, the least

vectors contain both positive and negative entries, which may be a real reason why the least

eigenvalue is not taken more attention than the spectral radius.

In the past, the main work on the least eigenvalue of a graph is about its bounds; one can

refer to [1], [18]–[20]. Recently, two papers of Bell et.al [21, 22] and one paper of ours [23] appear

in the same issue of the journal Linear Algebra and Its Applications. Bell et.al. studied the

graph whose least eigenvalue is minimal among all connected graphs of given order and size. We

determined the unique graph with the minimal least eigenvalue among all connected unicyclic

graphs of fixed order and fixed girth. We think there will be more work on the least eigenvalue

of a graph. In this paper, we continue this work, and characterize the unique graph with the

minimal least eigenvalue among all connected graphs of fixed order which contain cut vertices.

2. Preliminaries

Let x = (x1, x2, . . . , xn)T ∈ R
n, and let G be a graph on vertices v1, v2, . . . , vn. Then x can

be considered as a function defined on the vertex set of G, that is, for any vertex vi, we map it

to xi = x(vi). We often say xi is a value of vertex vi given by x. One can find that

xTA(G)x = 2
∑

uv∈E(G)

x(u)x(v), (2.1)

and λ is an eigenvector of G corresponding to an eigenvector x if and only if x 6= 0 and

λx(v) =
∑

u∈NG(v)

x(u), for each v ∈ V (G), (2.2)

where NG(v) denotes the neighborhood of v in G. The equation (2.2) is also called a (λ, x)-

eigenequation of G. In addition, for an arbitrary unit vector x ∈ R
n,

λmin(G) ≤ xTA(G)x (2.3)

with equality if and only if x is a least vector of G.

Let G1, G2 be two disjoint connected graphs, and let v1 ∈ V (G1), v2 ∈ V (G2). We obtain a

graph G from (G1 − v1) ∪ (G2 − v2) by adding a new vertex u and together with edges joining

u to the vertices of NG1
(v1) ∪ NG2

(v2). The graph G is called a coalescence of G1 and G2 at

vertices v1, v2 (see [16]), denoted by G1(v1) ·G2(v2). Intuitively, G1(v1) ·G2(v2) is obtained from

G1, G2 by identifying v1 with v2 and forming a new vertex u. The graph G1(v1) · G2(v2) is also

written as G1(u) · G2(u).

Lemma 2.1 ([23]) Let G1 and G2 be two disjoint nontrivial connected graphs, and let {v1, v2} ⊆

V (G1), u ∈ V (G2). Let G = G1(v2) · G2(u) and let G̃ = G1(v1) · G2(u). If there exists the least
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vector x of G such that |x(v1)| ≥ |x(v2)|, then

λmin(G̃) ≤ λmin(G) (2.4)

with equality if and only if x is the least vector of G̃, x(v1) = x(v2) and
∑

w∈NG2
(u) x(w) = 0.

Lemma 2.2 Let G be a graph with two nonadjacent vertices p, q, and let G̃ be obtained from

the graph G by adding the edge pq. Let x be the least vector of G. Then

(1) λmin(G̃) < λmin(G) if x(p)x(q) < 0;

(2) λmin(G̃) ≤ λmin(G) if x(p) = 0 or x(q) = 0. In this case, the equality holds if and only

if x is the least vector of G̃ and x(p) = x(q) = 0.

Proof Assuming that x has unit length, by (2.3) we have

λmin(G̃) ≤ xTA(G̃)x = 2
∑

uv∈E(G̃)

x(u)x(v) = 2
( ∑

uv∈E(G)

x(u)x(v) + x(p)x(q)
)

= λmin(G) + 2x(p)x(q).

If x(p)x(q) < 0, surely λmin(G̃) < λmin(G). If x(p) = 0 or x(q) = 0, then λmin(G̃) ≤ λmin(G). In

this case, if the equality holds, then x is also the least vector of G̃. Denoting β := λmin(G) =

λmin(G̃), and comparing the (β, x)-eigenequation of G and G̃ on the vertex p or q, we have

x(p) = x(q) = 0. The sufficiency is easily verified by above inequalities. 2

Let G1, G2 be two disjoint connected graphs, and let G1∨G2 denote the graph obtained from

G1∪G2 by joining each vertex of G1 to each vertex of G2. Denote by On an empty graph of order

n (without edges). Thus Op ∨Oq is a complete bipartite graph. Denote by G(p, q) (1 ≤ p ≤ q) a

graph of order (p + q + 1) obtained from Op ∨Oq by adding a new vertex together with an edge

joining this vertex to some vertex of Op; see Figure 1.1.

∨

 ��pO

qO

Figure 1.1 The graph G(p, q) where 1 ≤ p ≤ q

We need the following lemma for calculating the least eigenvalue of G(p, q).

Lemma 2.3 ([16]) Let G be a graph containing a vertex u, and let C (u) be the set of all cycles

of G containing u. Then

P (G, λ) = λP (G − u, λ) −
∑

v∈NG(u)

P (G − u − v, λ) − 2
∑

Z∈C (u)

P (G − V (Z), λ).

By Lemma 2.3, we have

P (G(p, q), λ) = λn−4[λ4 − (pq + 1)λ2 + (p − 1)q]
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so that

λmin(G(p, q)) = −

√
pq + 1 +

√
(pq + 1)2 − 4(p − 1)q

2
.

Given n such that p + q = n − 1, λmin(G(p, q)) attains a minimum when p takes uniquely at

p = ⌊n−1
2 ⌋ and hence q takes uniquely at q = ⌈n−1

2 ⌉.

3. Main results

Let S be a certain set of graphs. A graph is called a minimizing graph in the set S if

its least eigenvalue attains the minimum among all graphs in S . Recall that a cut vertex in a

connected graph is one whose deletion yields the resulting graph into two (or more) components.

For convenience, denote the set of all connected graphs of order n with cut vertices by Gn, and

denote by αn the minimum of the least eigenvalues among all graphs in Gn.

Lemma 3.1 αn is strictly decreasing in n.

Proof Let G be a minimizing graph in Gn, and let x be the least vector of G of unit length. We

assert that there exists at least one block B of G such that B contains two vertices p, q satisfying

x(p) + x(q) 6= 0. Otherwise, each block of G contains exactly two vertices (that is, G is a tree)

and the sum of their values given by x is zero. Discussing the (αn, x)-eigenequation of G on any

pendent vertex of G, we have αn = −1, a contradiction.

Let G̃ be obtained from G by adding a new vertex w and joining w to both p and q, and let

x̃ ∈ R
n+1 such that x̃(w) = 0 and x̃(v) = x(v) for any vertex v of G. We have

λmin(G̃) ≤ x̃TA(G̃)x̃ = 2
∑

uv∈E(G̃)

x̃(u)x̃(v) = 2
( ∑

uv∈E(G)

x̃(u)x̃(v) + x̃(w)[x̃(p) + x̃(q)]
)

= 2
∑

uv∈E(G)

x(u)x(v) = λmin(G).

If the equality holds, then x̃ is the least vector of G̃ corresponding to the eigenvalue λmin(G̃).

By considering the (λmin(G̃), x̃)-eigenequation of G̃ on vertex w, we have 0 = λmin(G̃)x̃(w) =

x̃(p) + x̃(q) = x(p) + x(q), a contradiction. Obviously, G̃ ∈ Gn+1, and then

αn+1 ≤ λmin(G̃) < λmin(G) = αn.

Lemma 3.2 Let G be a minimizing graph in Gn, and let x be the least vector of G. Then x

contains no zero entries.

Proof Assume to the contrary, G contains a vertex u such that x(u) = 0. If u is a cut-

vertex of G, then G can be considered as a coalescence of two subgraphs, and written as G =

G1(u) ·G2(u). Note that one graph among G1 and G2, say G1, contains a vertex x(w) 6= 0. Now

let G̃ = G1(w) · G2(u). Surely G̃ ∈ Gn, and by Lemma 2.1, λmin(G̃) < λmin(G) as x(u) 6= x(w),

a contradiction. If u is not a cut vertex of G. Then G− u ∈ Gn−1. Let x̃ be subvector of x only

by deleting the entry corresponding to u. Assume that x has unit length, then

αn−1 ≤ λmin(G − u) ≤ x̃TA(G − u)x̃ = xTA(G)x = λmin(G) = αn,
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a contradiction to Lemma 3.1. 2

Lemma 3.3 Each block of a minimizing graph in Gn is a complete bipartite graph.

Proof Let G be a minimizing graph in Gn, and let x be a unit least vector of G. By Lemma

3.2, x contains no zero entries. Let B be any block of G. Denote by V +
B = {v ∈ B : x(v) > 0},

V −

B = {v ∈ B : x(v) < 0}. By Lemma 2.2(1), every pair of vertices of B with opposite signs are

adjacent. So there exists an edge between each vertex of V +
B and each vertex of V −

B .

Furthermore, there exist no edges within V +
B or V −

B ; otherwise, let uv be such an edge.

If uv is not a cut edge, the graph G − uv is connected and also belongs to Gn. However,

xTA(G − uv)x < xTA(G)x, a contradiction. If uv is a cut edge, then G − uv contains exactly

two components, say G1 and G2. Let x̃ be obtained from x by replacing x(v) by −x(v) for each

vertex v ∈ V (G1) and preserving the values of other vertices. We have

λmin(G) ≤ x̃TA(G)x̃ < xTA(G)x = λmin(G),

a contradiction. The result follows. 2

Theorem 3.4 The graph G(⌊n−1
2 ⌋, ⌈n−1

2 ⌉) of Figure 1.1 is the unique minimizing graph in Gn.

Proof Let G be a minimizing graph in Gn, and let x be the least vector of G of unit length. We

first assert that G has exactly two blocks. Otherwise, let G1, G2, . . . , Gk (k ≥ 3) be all blocks of

G and G1 have exactly one vertex belonging to other blocks. By Lemmas 3.2 and 3.3, x contains

no zero entries, and each block of G is bipartite complete with opposite signs on bipartition of the

vertex set. So we can get a new graph G̃ ∈ Gn from G by joining the vertices of G2∪G3∪· · ·∪Gk

with opposite signs. By Lemma 2.2(1), λmin(G̃) < λmin(G), a contradiction.

Now assume G1, G2 are the all blocks of G, which share a common vertex u. We will

prove that one of G1, G2 contains only two vertices. Denote by V +
i = {v ∈ Gi : x(v) > 0},

V −

i = {v ∈ Gi : x(v) < 0} for i = 1, 2. By Lemma 3.3, G1 and G2 are both complete bipartite

with bipartitions (V +
1 , V −

1 ) and (V +
2 , V −

2 ), respectively. Without loss of generality, we assume

that x(u) < 0 and there exist vertices u1 ∈ V +
1 , u2 ∈ V +

2 such that x(u1) ≥ x(u2); see Figure 3.1.

2u1u ∨ ∨

1V −1V +

2V +
2V −

u

U

Figure 3.1 Illustration of the Proof of Theorem 3.4

If for some i (1 ≤ i ≤ 2), V +
i or V −

i contains only one vertex, then Gi contains exactly two

vertices since it is a block and also bipartite with (V +
i , V −

i ) as the bipartition. The result follows

in this case. Now assume that each of V +
1 , V −

1 , V +
2 , V −

2 contains two or more vertices. Let

U := V −

2 −{u} 6= Ø. Deleting all edges between U and u2, and adding all possible edges between

U and V +
1 , we obtain a graph G̃ ∈ Gn. Observe that

xTA(G̃)x − xTA(G)x =
∑

v∈V
+

1
,w∈U

x(v)x(w) −
∑

v=u2,w∈U

x(v)x(w)
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<
∑

v=u1,w∈U

x(v)x(w) −
∑

v=u2,w∈U

x(v)x(w)

= [x(u1) − x(u2)]
∑

w∈U

x(w) ≤ 0.

So this case cannot occur.

By above discussion, G is of structure of the graph G(p, q) of Figure 1.1 for some p or q.

From the discussion after Lemma 2.3, we find G = G(⌊n−1
2 ⌋, ⌈n−1

2 ⌉), and the result follows. 2
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