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Abstract In this paper, we study the strong law of large numbers for the frequencies of occur-

rence of states and ordered couples of states for nonsymmetric Markov chain (NSMC) indexed by
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a recent result.
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1. Introduction

A tree is a graph G = {T, E} which is connected and contains no circuits. Thus G is a tree

if and only if given any two vertices σ 6= t ∈ T , there exists a unique path σ = z1, z2, . . . , zm = t

from σ to t with distinct z1, z2, . . . , zm. The distance between σ and t is defined to be m− 1, the

number of edges in the path connecting σ and t. Select a vertex as the root (denoted by o). For

any two vertices σ and t of tree T , we write σ ≤ t if σ is on the unique path from the root o to t.

We denote by σ ∧ t the vertex farthest from o satisfying σ ∧ t ≤ t and σ ∧ t ≤ σ. For any vertex

t of tree T , we denote by |t| the distance between o and t. The set of all vertices with distance

n from the root o is called the n-th level of T . For any vertex t of tree T , we denote the first

predecessor of t by 1t, and refer t to be the son of 1t. In this article, we only investigate the tree

T , on which each vertex has two sons on the next level. In this case, there are two branches on

the next level for each vertex. In order to distinguish them, we call them the left branch and the

right branch, respectively. For any vertex t of tree T , we call the son of t on the left branch the

left vertex, and the son of t on the right branch the right vertex.
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Denote by T l the subgraph of T containing all the left vertices of tree T , T r the subgraph

of T containing all the right vertices of tree T . We also denote by T (n) the subtree comprised of

level 0 (the root o) through level n, by T l
n the set of all the left vertices on T (n), and by T r

n the

set of all the right vertices on T (n). In addition, we denote by Ln the set of all vertices on level

n.

Let S be the subgraph of T , XS = {Xt, t ∈ S}, and denote by |S| the number of vertices of

S, xS the realization of XS .

Definition 1 Let G = {0, 1, . . . , b − 1} be a finite state space, X = {Xt, t ∈ T } be a collection

of G-valued random variables defined on probability space (Ω,F , P ). Let

p = (p(x), x ∈ G) (1)

be a distribution on G,

Pl = (Pl(y|x)), x, y ∈ G (2)

Pr = (Pr(y|x)), x, y ∈ G (3)

be two stochastic matrices on G2. If for any vertex t ∈ T , σi ∈ T satisfies σi ∧ t ≤ 1t, 1 ≤ i ≤ n,

we have

P (Xt = y, t ∈ T l|X1t
= x, Xσi

= xi, 1 ≤ i ≤ n)

= P (Xt = y, t ∈ T l|X1t
= x) = Pl(y|x), ∀x, y, x1, . . . , xn ∈ G, (4)

P (Xt = y, t ∈ T r|X1t
= x, Xσi

= xi, 1 ≤ i ≤ n)

= P (Xt = y, t ∈ T r|X1t
= x) = Pr(y|x), ∀x, y, x1, . . . , xn ∈ G, (5)

and

P (Xo = x) = p(x), ∀x ∈ G (6)

then X = {Xt, t ∈ T } will be called G-valued nonsymmetric Markov chain indexed by Cayley

tree T with the initial distribution (1) and the transition matrices (2) and (3), or called T -indexed

nonsymmetric Markov chain with state space G.

The above definition is the extensions of the definition of T -indexed Markov chain [2] and

the definition of nonsymmetric Markov chain on Cayley tree [3].

The subject of tree-indexed processes is rather young. Benjamini and Peres [2] gave the

notion of the tree-indexed Markov chains and studied the recurrence and ray-recurrence for them.

Berger and Ye [3] studied the existence of entropy rate for some stationary random fields on a

homogeneous tree. Pemantle [5] proved a mixing property and a weak law of large numbers for

a PPG-invariant and ergodic random field on a homogeneous tree. Ye and Berger [8, 9], by using

Pemantle’s result and a combinatorial approach, studied the asymptotic equipartition property

(AEP) in the sense of convergence in probability for a PPG-invariant and ergodic random field on

a homogeneous tree (a particular case of tree-indexed Markov chain and PPG-invariant random

fields). Yang and Liu [6] studied a strong law of large numbers for the frequency of occurrence of

states for Markov chains field on a homogeneous tree (a particular case of tree-indexed Markov
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chains and PPG-invariant random fields). Yang [7] studied some strong limit theorems for

countable homogeneous Markov chains indexed by a homogeneous tree and the strong law of

large numbers and the asymptotic equipartition property (AEP) for finite homogeneous Markov

chains indexed by a homogeneous tree. Recently, Huang and Yang [4] studied strong law of large

numbers and asymptotic equipartition property (AEP) for Markov chains indexed by an infinite

tree with uniformly bounded degree. Bao and Ye [1] studied strong law of large numbers and

asymptotic equipartition property (AEP) for nonsymmetric Markov chain fields on Cayley tree.

Bao and Ye [1] studied strong law of large numbers and asymptotic equipartition property

(AEP) for nonsymmetric Markov chain fields on Cayley tree with two states, and in that paper,

Pl and Pr have a unique common invariant probability measure. In this paper, we generalize

the nonsymmetric Markov chain to be any finite States, and only require the stochastic matrix

P = 1
2 (Pl + Pr) to be ergodic. Rather different from [1], the approach used in this paper is the

improvement of [7], that is, by constructing a martingale, we first study the local convergence

theorem for finite nonsymmetric Markov chain indexed by Cayley tree, then obtain some limit

theorems for the frequencies of occurrence of states and ordered couples of states for nonsymmet-

ric Markov chain indexed by that tree, and finally, we obtain the strong law of large numbers and

asymptotic equipartition property (AEP) with a.e. convergence for finite nonsymmetric Markov

chain indexed by Cayley tree. In fact, our present outcomes can generalize the result of [1].

2. Strong limit theorem

Lemma 1 Let X = {Xt, t ∈ T } be a T -indexed nonsymmetric Markov chain with state space

G as defined in Definition 1, and {gt(x, y), t ∈ T } be functions defined on G2. Let L0 = {o},

Fn = σ(XT (n)

),

tn(λ, ω) =
e

λ
∑

t∈T
(n)\{o}

gt(X1t
,Xt)

∏

t∈T (n)\{o} E[eλgt(X1t
,Xt)|X1t

]
, (7)

where λ is a real number. Then {tn(λ, ω),Fn, n ≥ 1} is a nonnegative martingale.

Proof Let

δl(t) =

{

1, t ∈ T l,

0, t ∈ T r,
δr(t) =

{

1, t ∈ T r,

0, t ∈ T l.
(8)

Obviously, we have

P (xT (n)

) = P (XT (n)

= xT (n)

) = P [Xo = xo]
∏

t∈T (n)\{o}

[Pl(xt|x1t
)]δ

l(t)[Pr(xt|x1t
)]δ

r(t). (9)

Hence

P (XLn = xLn |XT (n−1)

= xT (n−1)

) =
P (xT (n)

)

P (xT (n−1))
=

∏

t∈Ln

[Pl(xt|x1t
)]δ

l(t)[Pr(xt|x1t
)]δ

r(t). (10)

Then

E[eλ
∑

t∈Ln
gt(X1t

,Xt)|Fn−1] =
∑

xLn

eλ
∑

t∈Ln
gt(X1t

,xt)P (XLn = xLn |XT (n−1)

)
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=
∑

xLn

eλ
∑

t∈Ln
gt(X1t

,xt)
∏

t∈Ln

[Pl(xt|X1t
)]δ

l(t)[Pr(xt|X1t
)]δ

r(t)

=
∏

t∈Ln

∑

xt

eλgt(X1t
,xt)[Pl(xt|X1t

)]δ
l(t)[Pr(xt|X1t

)]δ
r(t)

=
∏

t∈Ln

E[eλgt(X1t
,Xt)|X1t

] a.e. . (11)

On the other hand, we also have

tn(λ, ω) = tn−1(λ, ω)
eλ

∑

t∈Ln
gt(X1t

,Xt)

∏

t∈Ln
E[eλgt(X1t

,Xt)|X1t
]
. (12)

Combining (11) and (12), we arrive at

E[tn(λ, ω)|Fn−1] = tn−1(λ, ω) a.e. .

Thus we conclude the proof of the lemma. 2

Theorem 1 Let X = {Xt, t ∈ T } and {gt(x, y), t ∈ T } be defined as Lemma 1, and

Gn(ω) =
∑

t∈T (n)\{0}

E[gt(X1t
, Xt)|X1t

], (13)

{an, n ≥ 1} be a sequence of nonnegative random variables. Let α > 0. Set

B = { lim
n→∞

an = ∞}, (14)

and

D(α) =
{

lim
n→∞

sup
1

an

∑

t∈T (n)\{0}

E[g2
t (X1t

, Xt)e
α|gt(X1t

,Xt)||X1t
] = M(ω) < ∞

}

⋂

B, (15)

Hn(ω) =
∑

t∈T (n)\{0}

gt(X1t
, Xt). (16)

Then

lim
n→∞

Hn(ω) − Gn(ω)

an

= 0 a.e. ω ∈ D(α). (17)

Proof The proof of the theorem is similar to that in [4], so we omit it. 2

Corollary 1 Let X = {Xt, t ∈ T } be a T -indexed nonsymmetric Markov chain with state space

G as defined in Definition 1. If {gt(x, y), t ∈ T } are the uniformly bounded functions defined on

G2, then

lim
n→∞

Hn(ω) − Gn(ω)

|T (n)|
= 0 a.e. . (18)

Proof Let an = |T (n)| in Theorem 1. We notice that {gt(x, y), t ∈ T } are uniformly bounded,

and then D(α) = Ω for ∀α > 0. This corollary follows from Theorem 1 directly. 2

Definition 2 Let

Sk(T (n)) = |{t ∈ T (n); Xt = k}|, Sk(T l
n) = |{t ∈ T l

n; Xt = k}|, Sk(T r
n) = |{t ∈ T r

n; Xt = k}|.
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Obviously, we have

Sk(T (n)) =
∑

t∈T (n)

Ik(Xt), (19)

Sk(T l
n) =

∑

t∈T (n)\{0}

Ik(Xt)δ
l(t), (20)

Sk(T r
n) =

∑

t∈T (n)\{0}

Ik(Xt)δ
r(t), (21)

where

Ik(i) =

{

1, i = k,

0, i 6= k.
(22)

Theorem 2 Let X = {Xt, t ∈ T } be a T-indexed nonsymmetric Markov chain with state space

G as defined in Definition 1. Let Sk(T l
n) and Sk(T r

n) be defined as (20) and (21), respectively.

Then we have

lim
n→∞

{Sk(T l
n)

|T (n)|
−

b−1
∑

l=0

Sl(T
(n−1))

2|T (n−1)|
Pl(k|l)

}

= 0, a.e., (23)

lim
n→∞

{Sk(T r
n)

|T (n)|
−

b−1
∑

l=0

Sr(T
(n−1))

2|T (n−1)|
Pr(k|l)

}

= 0, a.e. . (24)

Proof Let gt(x, y) = Ik(y)δl(t) in Theorem 1. Then we have

Hn(ω) =
∑

t∈T (n)\{0}

Ik(Xt)δ
l(t) = Sk(T l

n), (25)

Gn(ω) =
∑

t∈T (n)\{0}

∑

xt∈G

Ik(xt)δ
l(t)P (xt|X1t

)

=
∑

t∈T (n)\{0}

δl(t)Pl(k|X1t
) =

∑

t∈T (n)\{0}

b−1
∑

l=0

δl(t)Il(X1t
)Pl(k|l)

=

b−1
∑

l=0

∑

t∈T (n)\{0}

δl(t)Il(X1t
)Pl(k|l) =

b−1
∑

l=0

Sl(T
(n−1))Pl(k|l). (26)

Let an = |T (n)|. Obviously {gt(x, y), t ∈ T } are uniformly bounded functions defined on G2,

then from Corollary 1, we have

lim
n→∞

1

|T (n)|

[

Sk(T l
n) −

b−1
∑

l=0

Sl(T
(n−1))Pl(k|l)

]

= 0 a.e. .

That is

lim
n→∞

{Sk(T l
n)

|T (n)|
−

b−1
∑

l=0

Sl(T
(n−1))

2|T (n−1)|
Pl(k|l)

}

= 0 a.e. . (27)

Similarly, let gt(x, y) = Ik(y)δr(t). We have

lim
n→∞

{Sk(T r
n)

|T (n)|
−

b−1
∑

l=0

Sl(T
(n−1))

2|T (n−1)|
Pr(k|l)

}

= 0 a.e. . (28)
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Thus we have completed the proof of this theorem. 2

3. Strong law of large numbers and Shannon-McMillan theorem

Theorem 3 Let X = {Xt, t ∈ T } be a T -indexed nonsymmetric Markov chain with state space

G as defined in Definition 1. Let Sk(T (n)) be defined as (19). Suppose that stochastic matrix

P = 1
2 (Pl + Pr) is ergodic. Then we have

lim
n→∞

Sk(T (n))

|T (n)|
= π(k) a.e., (29)

where (π(0), . . . , π(b − 1)) is the invariant probability measure determined by P .

Proof Obviously

Sk(T l
n) + Sk(T r

n) = Sk(T (n)) − Ik(X0). (30)

By (23),(24) and (30), we have

lim
n→∞

{Sk(T (n))

|T (n)|
−

b−1
∑

l=0

Sl(T
(n−1))

|T (n−1)|
P (k|l)

}

= 0 a.e. . (31)

Multiplying the k-th equality of (31) by P (m|k), then adding them together and using (31) once

again, we have

lim
n→∞

{

b−1
∑

l=0

Sk(T (n))P (m|k)

|T (n)|
−

Sm(T (n+1))

|T (n+1)|
+

Sm(T (n+1))

|T (n+1)|
−

b−1
∑

l=0

Sl(T
(n−1))

|T (n−1)|
P (2)(m|l)

}

= lim
n→∞

{Sm(T (n+1))

|T (n+1)|
−

b−1
∑

l=0

Sl(T
(n−1))

|T (n−1)|
P (2)(m|l)

}

= 0 a.e.,

where P (N)(m|l) is the N -step transition probability determined by the stochastic matrix P . By

induction we have

lim
n→∞

{Sm(T (n+N))

|T (n+N)|
−

b−1
∑

l=0

Sl(T
(n−1))

|T (n−1)|
P (N+1)(m|l)

}

= 0 a.e. . (32)

Noticing that:

1

|T (n−1)|

b−1
∑

l=0

Sl(T
(n−1)) = 1, (33)

and

lim
n→∞

P (N)(k|l) = π(k), k ∈ G, (34)

then (29) follows from (32), (33) and (34). 2

Corollary 2 Let X = {Xt, t ∈ T } be a T -indexed nonsymmetric Markov chain with state space

G as defined in Definition 1. Let Sk(T l
n) and Sk(T r

n) be defined as (20) and (21), respectively.

Suppose that stochastic matrix P = 1
2 (Pl + Pr) is ergodic. Then we have

lim
n→∞

Sk(T l
n)

|T (n)|
=

1

2

b−1
∑

l=0

π(l)Pl(k|l), a.e., (35)
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lim
n→∞

Sk(T r
n)

|T (n)|
=

1

2

b−1
∑

l=0

π(l)Pr(k|l), a.e. . (36)

Proof This corollary follows from Theorems 2 and 3 directly. 2

Corollary 3 ([1]) Let G = {0, 1}, X = {Xt, t ∈ T } be the T -indexed nonsymmetric Markov

chain with state space G. Let Sk(T l
n) and Sk(T r

n) be defined as (20) and (21), respectively.

Suppose that Pl and Pr are two strictly positive 2 × 2 stochastic matrices defined on G2 with a

unique common invariant probability measure (π(0), π(1)). Then we have

lim
n→∞

Sk(T l
n)

|T (n)|
=

1

2

1
∑

l=0

π(l)Pl(k|l), a.e., (37)

lim
n→∞

Sk(T r
n)

|T (n)|
=

1

2

1
∑

l=0

π(l)Pr(k|l), a.e. . (38)

Proof Obviously, π is the unique invariant probability measure for P . Let b = 2 in Corollary

2. This corollary can be obtained from Corollary 2 directly. 2

Definition 3 Let

Sk,m(T (n) \ {0}) = |{t ∈ T (n) : (X1t
, Xt) = (k, m)}|,

Sl
k,m(T (n) \ {0}) = |{t ∈ T l

n : (X1t
, Xt) = (k, m)}|,

Sr
k,m(T (n) \ {0}) = |{t ∈ T r

n : (X1t
, Xt) = (k, m)}|.

Obviously, we have

Sk,m(T (n) \ {0}) =
∑

t∈T (n)\{0}

Im(Xt)Ik(X1t
), (39)

Sl
k,m(T (n) \ {0}) =

∑

t∈T (n)\{0}

Im(Xt)Ik(X1t
)δl(t), (40)

Sr
k,m(T (n) \ {0}) =

∑

t∈T (n)\{0}

Im(Xt)Ik(X1t
)δr(t), (41)

Sk,m(T (n) \ {0}) = Sl
k,m(T (n) \ {0}) + Sr

k,m(T (n) \ {0}). (42)

Theorem 4 Let X = {Xt, t ∈ T } be a T -indexed nonsymmetric Markov chain with state space

G as defined in Definition 1. Let Sl
k,m(T (n) \ {0}), Sr

k,m(T (n) \ {0}) be defined as (40) and (41),

respectively. Then we have

lim
n→∞

Sl
k,m(T (n) \ {0})

|T (n)|
=

1

2
π(k)Pl(m|k), a.e., (43)

lim
n→∞

Sr
k,m(T (n) \ {0})

|T (n)|
=

1

2
π(k)Pr(m|k), a.e. . (44)
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Proof Let gt(x, y) = Ik(x)Im(y)δl(t), an = |T (n)|. Then we have

Hn(ω) =
∑

t∈T (n)\{0}

Im(Xt)Ik(X1t
)δl(t) = Sl

k,m(T (n) \ {0}), (45)

Gn(ω) =
∑

t∈T (n)\{0}

∑

xt

Ik(X1t
)Im(xt)δ

l(t)P (xt|X1t
)

=
∑

t∈T (n)\{0}

Ik(X1t
)δl(t)Pl(m|k)

=
∑

t∈T (n−1)

Ik(Xt)Pl(m|k) = Sk(T (n−1))Pl(m|k). (46)

Obviously, {gt(x, y), t ∈ T } are uniformly bounded, then from Corollary 1, we have

lim
n→∞

{Sl
k,m(T (n) \ {0})

|T (n)|
−

Sk(T (n−1))

2|T (n−1)|
Pl(m|k)

}

= 0 a.e. . (47)

Then (43) follows from (29) and (47).

Similarly, let gt(x, y) = Ik(x)Im(y)δr(t), an = |T (n)|, (44) can be obtained in the same way.

Thus we have completed the proof of this theorem. 2

Corollary 4 Let X = {Xt, t ∈ T } be a T -indexed nonsymmetric Markov chain with state space

G as defined in Definition 1, Sk,m(T (n) \ {0}) be defined as (39). Then we have

lim
n→∞

Sk,m(T (n) \ {0})

|T (n)|
=

1

2
π(k)(Pl(m|k) + Pr(m|k)) a.e. . (48)

Proof Combing (42)–(44), we obtain (48) directly. 2

Let T be a tree, (Xt)t∈T be a stochastic process indexed by tree T with state space G. Denote

P (xT (n)

) = P (XT (n)

= xT (n)

). Let

fn(ω) = −
1

|T (n)|
lnP (XT (n)

). (49)

Then fn(ω) is called the entropy density of XT (n)

. If (Xt)t∈T is a T -indexed nonsymmetric

Markov chain with state space G, then we have

P (xT (n)

) = P (XT (n)

= xT (n)

) = P (X0 = x0)
∏

t∈T l
n

Pl(xt|x1t
)

∏

t∈T r
n

Pr(xt|x1t
). (50)

Obviously, by (49) and (50), we have

fn(ω) = −
1

|T (n)|

{

lnP (X0) +
∑

t∈T l
n

lnPl(Xt|X1t
) +

∑

t∈T r
n

lnPr(Xt|X1t
)
}

. (51)

By (51), we have

lim
n→∞

fn(ω) = − lim
n→∞

1

|T (n)|

∑

t∈T l
n

b−1
∑

k=0

b−1
∑

m=0

Ik(X1t
)Im(Xt) lnPl(m|k)−

lim
n→∞

1

|T (n)|

∑

t∈T r
n

b−1
∑

k=0

b−1
∑

m=0

Ik(X1t
)Im(Xt) lnPr(m|k)
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= −

b−1
∑

k=0

b−1
∑

m=0

lim
n→∞

Sl
k,m(T (n) \ {0})

|T (n)|
lnPl(m|k)−

b−1
∑

k=0

b−1
∑

m=0

lim
n→∞

Sr
k,m(T (n) \ {0})

|T (n)|
lnPr(m|k). (52)

The convergence of fn(ω) to a constant in a sense (L1 convergence, convergence in Probability,

a.e. convergence) is called the Shannon-McMillan theorem or the entropy theorem or the AEP

in information theory.

Theorem 5 Let X = {Xt, t ∈ T } be a T -indexed nonsymmetric Markov chain with state space

G as defined in Definition 1, fn(ω) be defined as (52). Then

lim
n→∞

fn(ω) = −
1

2

b−1
∑

k=0

b−1
∑

m=0

π(k)Pl(m|k) lnPl(m|k)−

1

2

b−1
∑

k=0

b−1
∑

m=0

π(k)Pr(m|k) lnPr(m|k) a.e. . (53)

Proof This theorem can be obtained from (52) and Theorem 4 directly. 2

Corollary 5 ([7]) Let {Xt, t ∈ T } be G-valued Markov chain indexed by Cayley tree T with

the initial distribution (1) and the transition matrix P = (P (y|x), x, y ∈ G). Suppose that P is

an ergodic stochastic matrix. Let fn(ω) be the entropy density of XT (n)

. Then we have

lim
n→∞

fn(ω) = −

b−1
∑

k=0

b−1
∑

m=0

π(k)P (m|k) ln P (m|k) a.e., (54)

where (π(0), . . . , π(b − 1)) is the invariant probability measure determined by P .

Proof Let Pl = Pr in Theorem 5. (54) can be obtained from (53) directly. 2

References

[1] BAO Zhenhua, YE Zhongxing. Strong law of large numbers and asymptotic equipartition property for

nonsymmetric Markov chain fields on Cayley trees [J]. Acta Math. Sci. Ser. B Engl. Ed., 2007, 27(4):
829–837.

[2] BENJAMINI I, PERES Y. Markov chains indexed by trees [J]. Ann. Probab., 1994, 22(1): 219–243.

[3] BERGER T, YE Zhongxing. Entropic aspects of random fields on trees [J]. IEEE Trans. Inform. Theory,
1990, 36(5): 1006–1018.

[4] HUANG Huilin, YANG Weiguo. Strong law of large numbers for Markov chains indexed by an infinite tree

with uniformly bounded degree [J]. Sci. China Ser. A, 2008, 51(2): 195–202.

[5] PEMANTLE R. Automorphism invariant measures on trees [J]. Ann. Probab., 1992, 20(3): 1549–1566.

[6] YANG Weiguo, LIU Wen. Strong law of large numbers for Markov chains field on a Bethe tree [J]. Statist.
Probab. Lett., 2000, 49(3): 245–250.

[7] YANG Weiguo. Some limit properties for Markov chains indexed by a homogeneous tree [J]. Statist. Probab.
Lett., 2003, 65(3): 241–250.

[8] YE Zhongxing, BERGER T. Ergodicity, regularity and asymptotic equipartition property of random fields

on trees [J]. J. Combin. Inform. System Sci., 1996, 21(2): 157–184.
[9] YE Zhongxing, BERGER T. Information Measures for Discrete Random Fields [M]. Beijing: Science Press,

1998.


