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Abstract It is well known that finding the crossing number of a graph on nonplanar surfaces is

very difficult. In this paper we study the crossing number of the circular graph C(10, 4) on the

projective plane and determine the nonorientable crossing number sequence of C(10, 4). On the

basis of the result, we show that the nonorientable crossing number sequence of C(10, 4) is not

convex.
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1. Introduction

Here we consider simple connected graphs with the vertex set V and the edge set E. For terms

and notations, we refer to [1, 2]. A drawing of G in the plane R2 is an immersion φ : G → R2

such that

(1) φ(v) ∩ φ(x) = ∅ for each v ∈ V (G) and x ∈ (V (G) ∪ E(G)) − {v}, and

(2) φ(e) ∩ φ(f) is finite for each pair {e, f} of edges of G.

A drawing is good, if for all φ(E), no one crosses itself, no two cross more than once, and

no more than two cross at a point in the plane. A crossing in a good drawing is a point of

intersection of two elements in φ(E). A good drawing is said to be optimal if it minimizes the

number of crossings. The crossing number cr0(G) of a graph G is the number of crossings in

any optimal drawing of G in the plane. Similarly, we can define the crossing number of a graph

G drawn on the nonorientable surfaces by c̃ri(G), where i is the genus of the nonorientable

surface in which graph G is drawn. Here, c̃r0(G) is the crossing number of G on the plane.

Archdeacon, Bonnington and Širáň [3] considered the crossing number sequence of graphs. A

sequence C0, C1, . . . , Cn, . . . is called the orientable crossing number of G if each Ck is the crossing

number of G in the orientable surface Sk, the sphere with k handles. We may define the concept

nonorientable crossing number sequence of graphs similarly. Širáň [4] introduced the concept
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of convex crossing number sequence of graphs. A sequence c1, c2, . . . , cn, . . . is called convex if

ci − ci+1 ≤ ci−1 − ci for each i. He conjectured that the orientable crossing number sequence is

convex. This idea is based on the following reasons [3]:

If adding the second handle saves more edges than adding the first handle, why not add the

second handle first? Later, Archdeacon et al, constructed a counter-example of this conjecture.

But what about nonorientable crossing number sequence? (That is, is every nonorientable cross-

ing number sequence of graphs convex?). Here, in this paper we consider the case of nonorientable

crossing number sequence.

Before stating our main results, we have to give some definitions for graph embeddings. An

embedding (or 2-cell embedding) of a graph G in a surface S is a drawing of G in S such that no

edge-crossing is permitted and edges meet only at their common vertices. Each component of S-

G is an open disc. By Euler’s equation, one may see that for every surface, there are graphs which

cannot be embedded in the surface. A circular graph C(m, n) is an m-cycle C = (1, 2, . . . , m)

together with the chords such as (i, j) with |i − j| ≡ 0(mod n). It is clear that all circular

graphs are 4-regular except C(2m, m). There are many papers written for the crossing number

of circular graphs on the plane [5–8], but little is known for the crossing numbers of them on the

surfaces. Here we study the crossing number sequence of C(10, 4) on the nonorientable surfaces

and show that its crossing number sequence on nonorientable surface is 5, 3, 0, 0, . . . . This shows

that there exists a graph whose nonorientable crossing number sequence is not convex.

2. The main result

Archdeacon, Glover, Huneke et al proved the following result:

Lemma 1 ([9, 10]) There are 103 minimal forbidden graphs for the projective plane.

If we are allowed to delete both vertices and edges, and also to contract edges, then the

resulting graph is called a minor. If a graph G has a minor isomorphic to one of those 103

forbidden graphs for the projective plane, then G cannot be embedded on the projective plane.

Lemma 2 ([11]) If n = 2l + 2 with l ≥ 3, then γ̄(C(n, l)) = 2, where γ̄ is the nonorientable

genus of circular graph C(n, l).

Lemma 3 ([12]) The crossing number of circular graph C(2m + 2, m) (m ≥ 3) is m + 1.

Let G be a nonplanar graph. Then G contains a subdivision of K5 or K3,3 by Kuratowski’s

Theorem [13]. It is clear that removing edges from G will decrease the possibility of existence

of such Kuratowski’s subgraphs. The removal number of a graph G is the least number of edges

of G such that after removing them, the resulting graph is planar. Similarly, we may define

the removal number of a graph with respect to a fixed surface. The following result shows the

relation between the crossing number and the removal number.

Lemma 4 Let G be a graph and S be a surface. Then the crossing number of G on S is no less

than the removal number of G on S.

Theorem A The crossing number of C(10, 4) on N1 is 3, i.e., c̃r1(C(10, 4)) = 3.
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By Lemma 4, our proof proceeds as follows.

Step 1. We shall prove that the removal number of C(10, 4) on N1 is at least 3;

Step 2. We shall provide an optimal drawing of C(10, 4) on N1 which implies that the crossing

number of C(10, 4) on N1 is 3.

Lemma 5 The removal number of C(10, 4) on N1 is at least 3 (i.e., deleting any two edges from

C(10, 4) will not result in a projective planar graph).

Proof Let

E1 = {(v2, v8), (v3, v7), (v5, v9), (v6, v10)},

E2 = {(v1, v10), (v3, v9), (v5, v6), (v7, v8)},

E3 = {(v1, v7), (v2, v6), (v6, v10)},

E4 = {(v1, v10), (v4, v10), (v5, v6)},

E5 = {(v1, v10), (v9, v10), (v5, v6)}.

We can find two graphs, called F4(10, 16) and E18(8, 15) in the Appendix A of [2] in those 103

graphs which are minimal forbidden for the projective plane. It is easy to see that F4(10, 16) and

E18(8, 15) are minors of C(10, 4) by deleting or contracting some edges of C(10, 4) (as shown in

Figures 1–5).
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Figure 1 F4(10, 16) and its minor C(10, 4)

where F4(10, 16) is obtained from C(10,4) by deleting (v2, v8), (v3, v7), (v5, v9), (v10, v6).
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Figure 2 F4(10, 16) and its minor C(10, 4)

where F4(10, 16) is obtained from C(10,4) by deleting (v1, v10), (v3, v9), (v5, v6), (v7, v8).
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By the symmetry of circular graphs, after changing the order of vertices of C = (v1, . . . , v10)

into an anticlockwise order, deleting (v1, v10), (v3, v9) is equivalent to deleting (v1, v10), (v2, v8)

on the right side of Figure 2, where we only consider the position of edges but not labels of

vertices.
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Figure 3 E18(8, 15) and its minor C(10, 4)

where E18(8, 15) is obtained from C(10,4) by deleting (v1, v7), (v2, v6), (v10, v6) and contracting

(v1, v2), (v5, v6).
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Figure 4 E18(8, 15) and its minor C(10, 4)

where E18(8, 15) is obtained from C(10,4) by deleting (v1, v10), (v4, v10), (v5, v6) and contracting

(v1, v5), (v9, v10).
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Figure 5 E18(8, 15) and its minor C(10, 4)

where E18(8, 15) is obtained from C(10,4) by deleting (v1, v10), (v9, v10), (v5, v6) and contracting

(v1, v5), (v4, v10).

By the symmetry of circular graphs, the deletion of (v1, v10) is equivalent to deletion of

(v4, v5) in Figure 5. Then by Lemma 1 and Figures 1–5, we have the following.
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Claim 6 For any two edges e1, e2 ∈ Ei (1 ≤ i ≤ 5), C(10, 4) − e1 − e2 cannot be embedded on

N1.

Now, by the symmetry of C(10, 4), we only consider the case of deleting edges e1 = (v10, v1), e2 =

(v1, v5) from C(10, 4). Suppose that C(10, 4)−e1−e2 may be embedded on N1. Then by Euler’s

formula, we have

Claim 7 If C(10, 4) − e1 − e2 can be embedded on N1, then all of such embeddings are quad-

rangular (i.e., each of 9 faces is a 4-gon.)

Jordan Curve Theorem states that any simple closed curve (cycle) C on the plane devides

the plane into two arcwise connected components. Similarly, we have the following generalized

version of Jordan Curve Theorem:

Claim 8 Any simple closed curve (cycle) C on a surface S which is contractible devides S into

two connected components such that they have C as their common boundary.

Here a curve (cycle) C on a surface S is contractible, if one of two components of S − C

is an open disc. Otherwise, C is noncontractible. If C is contractible, one of interior or outer

of C has genus zero, say the interior of C and we denote it by int(C). Now we concentrate

on the 4-cycles passing through the vertex v1. Since every edge is contained in exact two faces

(in an embedded graph), we see that there are exact three 4-cycles passing through (v7, v1) and

(v1, v2), C1 = (v1, v2, v8, v7), C2 = (v1, v2, v6, v7) and C3 = (v1, v2, v3, v7) such that two of them

are contractible.

Case 1 Two 4-cycles of C1, C2, C3 are contractible and one is noncontractible on N1.

Subcase 1.1 C1 = (v1, v2, v8, v7) is noncontractible and C2, C3 are contractible on N1.

Let us consider C2 = (v1, v2, v6, v7). Since C2 is contractible, int(C2) is an open disc. If there

exists a vertex x ∈ int(C2) (other than v1, v2, v6, v7), then C(10, 4)−(v1, v10)−(v1, v5)−{v2, v6, v7}

will have at least three distinct components, a contrary to the fact that this subgraph has exact

two components. So, C2 is a facial cycle (i.e., a 4-gon). Similarly, C3 is also a facial cycle. So,

we may suppose that the local rotation of edges around v2 and v7 are, respectively,

ρ(v2) : (v2, v8) → (v2, v3) → (v2, v1) → (v2, v6),

ρ(v7) : (v7, v8) → (v7, v6) → (v7, v1) → (v7, v3).

Since every face is a 4-gon (Claim 6), there exists a vertex x ∈ N(v6)∩N(v8)−{v2}−{v7} (i.e.,

(x, v8, v2, v6) bounds a 4-gon). This is impossible since |N(v6) ∩ N(v8)| = 2.

Subcase 1.2 C2 = (v1, v2, v6, v7) is noncontractible and C1, C3 are contractible on N1.

After a similar discussion as we did in Subcase 1.1, we conclude that both C1 and C3 are

facial cycles and this allows us to suppose that the local rotation of edges around v2 and v7 are,

respectively:

ρ(v2) : (v2, v1) → (v2, v8) → (v2, v6) → (v2, v3),

ρ(v7) : (v7, v6) → (v7, v8) → (v7, v1) → (v7, v3).
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As we have reasoned in Subcase 1.1, there exists a vertex x ∈ N(v6)∩N(v8)−{v2} − {v7}, also

a contradiction.

Subcase 1.3 C3 = (v1, v2, v3, v7) is noncontractible and C1, C2 are contractible on N1.

Let us consider C1 = (v1, v2, v8.v7) and C2 = (v1, v2, v6, v7). Since both of C1 and C2 are

contractible and C(10, 4) − (v1, v10) − (v1, v5) − {v2, v7} has exact two components, both of C1

and C2 are facial cycles. So, we may further suppose that the local rotation of edges around v2

and v7 are, respectively,

ρ(v2) : (v2, v1) → (v2, v6) → (v2, v3) → (v2, v8),

ρ(v7) : (v7, v3) → (v7, v6) → (v7, v1) → (v7, v8).

Since each face is a 4-gon, there exists a vertex x ∈ N(v6) ∩ N(v3) − {v2} − {v7} such that

(v2, v6, x, v3) is a 4-gon. This contradicts the fact that N(v3) ∩ N(v6) = {v2, v7}.

Case 2 C1, C2, C3 are all contractible on N1.

Subcase 2.1 Both C1 and C2 are facial cycles.

Then C3 must be nonfacial (since otherwise (v1, v2) should be contained in the boundaries of

three distinct facial cycles). So, we may assume that the local rotation of edges around v2 and

v7 are, respectively,

ρ(v2) : (v2, v1) → (v2, v8) → (v2, v3) → (v2, v6),

ρ(v7) : (v7, v3) → (v7, v8) → (v7, v1) → (v7, v6).

Thus, we have

Claim 9 {v6, v8} ∩ int(C3) 6= ∅, where int (C3) denotes the open disc bounded by C3.

This implies that C(10, 4)− (v1, v10)− (v1, v5)−{v2, v7} has at least three distinct components,

a contradiction as desired.

Subcase 2.2 Both C2 and C3 are facial.

Then C1 must be nonfacial. This allows us to assume that the local rotation of edges around v2

and v7 are, respectively,

ρ(v2) : (v2, v1) → (v2, v6) → (v2, v8) → (v2, v3),

ρ(v7) : (v7, v8) → (v7, v6) → (v7, v1) → (v7, v3).

Thus, {v3, v6} ∩ int(C1) 6= ∅. This implies that C(10, 4) − (v1, v10) − (v1, v5) − {v2, v7} has at

least three distinct components. A contradiction.

Subcase 2.3 Both C1 and C3 are facial.

Now C2 is nonfacial. As we have discussed in Subcase 2.1, we have that {v3, v8} ∩ int(C2) 6=

∅, which implies that C(10, 4) − (v1, v10) − (v1, v5) − {v2, v7} has three components. Also a

contradiction to the fact that this subgraph has exact two components. This completes the

proof of Lemma 5. 2

Now, Theorem A follows from Lemma 5 and the optimal drawing of C(10, 4) shown in Figure
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6.

Theorem B The nonorientable crossing number sequence of C(10, 4) is 5, 3, 0, 0, . . . .

Proof By Lemmas 2, 3 and Theorem A, we can complete the proof. 2

Remark Theorem B shows that the nonorientable crossing number sequence is not always

convex.
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Figure 6 A drawing of C(10, 4) on N1
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