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Abstract In this note we study the property (ω1), a variant of Weyl’s theorem by means of the

single valued extension property, and establish for a bounded linear operator defined on a Banach

space the necessary and sufficient condition for which property (ω1) holds. As a consequence of

the main result, the stability of property (ω1) is discussed.
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1. Introduction

Weyl [1] examined the spectra of all compact perturbations of a hermitian operator on Hilbert

space and found in 1909 that their intersection consisted precisely of those points of the spectrum

which were not isolated eigenvalues of finite multiplicity. This “ Weyl’s theorem ” has been

considered by many authors. Variants have been discussed by Harte and Lee [2] and Rakočevic̀

[3, 4]. In this note, we study a new variant of Weyl’s theorem which is called property (ω1) by

means of the single valued extension property and establish for a bounded linear operator defined

on a Banach space the necessary and sufficient conditions for which property (ω1) holds. Also,

the stability of property (ω1) is discussed.

Throughout this paper, X denotes an infinite dimensional complex Banach space, and B(X)

(K(X)) denotes the algebra of all bounded linear operators (compact operators) on X . For an

operator T ∈ B(X) we shall denote by n(T ) the dimension of the kernel N(T ), and by d(T )

the codimension of the range R(T ). We call T ∈ B(X) an upper semi-Fredholm operator if

n(T ) < ∞ and R(T ) is closed; But if d(T ) < ∞ and R(T ) is closed, T is a lower semi-Fredholm

operator. An operator T ∈ B(X) is said to be Fredholm if R(T ) is closed and both the deficiency

induces n(T ) and d(T ) are finite. If T ∈ B(X) is an upper (or a lower) semi-Fredholm operator,

the index of T , ind(T ), is defined to be ind(T ) = n(T ) − d(T ). The ascent of T , asc(T ), is the

least non-negative integer n such that N(T n) = N(T n+1) and the descent, des(T ), is the least
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non-negative integer n such that R(T n) = R(T n+1). The operator T is Weyl if it is Fredholm

of index zero, and T is said to be Browder if it is Fredholm “of finite ascent and descent”. The

upper semi-Fredholm spectrum σSF+
(T ) is defined by: σSF+

(T ) = {λ ∈ C : T − λI is not upper

semi-Fredholm}. Let ρ(T ) denote the resolvent set of the operator T and σ(T ) = C\ρ(T ) denote

the usual spectrum of T . And let σa(T ) denote the approximate point spectrum of the operator

T ∈ B(X), ρa(T ) = C\σa(T ). The Weyl spectrum σw(T ) and the Browder spectrum σb(T ) of

T are defined as σw(T ) = {λ ∈ C : T − λI is not Weyl }; σb(T ) = {λ ∈ C : T − λI is not

Browder }. Let σea(T ) = {λ ∈ C : T − λI /∈ SF−

+ (X)} and SF−

+ (X) = {T ∈ B(X), T is upper

semi-Fredholm operators and ind(T ) ≤ 0}. Let σab(T ) = ∩{σa(T +K) : K ∈ K(X)∩comm(T )},

it is well known that λ /∈ σab(T ) if and only if T − λI is upper semi-Fredholm and T − λI has

finite ascent. If

σ(T )\σw(T ) = π00(T ),

then Weyl’s theorem holds for T , where π00(T ) denotes the set of isolated points such that

dimN(T − λI) < ∞; the Browder’s theorem holds for T if

σw(T ) = σb(T ).

Let πa
00(T ) be the set of λ ∈ C such that λ is an isolated point of σa(T ) and 0 < dimN(T −λI) <

∞, T satisfies a-Weyl’s theorem if

σa(T )\σea(T ) = πa
00(T ).

We can prove that a-Weyl’s theorem =⇒ Weyl’s theorem =⇒ Browder’s theorem, but the con-

verse is generally false.

T ∈ B(X) is said to satisfy property (ω) (see [5]) if

σa(T )\σea(T ) = π00(T ).

If T has property (ω), then Weyl’s and Browder’s theorem hold for T . Many fundamental results

and theory of property (ω) and its stability were established by Ainena in [5] and [6].

An operator T ∈ B(X) has single valued extension property at λ0 ∈ C, SVEP at λ0 ∈ C for

short, if for every open disc Dλ0
centered at λ0 the only analytic function f : Dλ0

→ X , which

satisfies the equation (T − λI)f(λ) = 0 for all λ ∈ Dλ0
is the function f ≡ 0. Trivially, every

operator T has SVEP at every point of the resolvent ρ(T ) and C\σa(T ); also T has the SVEP

at λ ∈ ∂σ(T ). We say that T has SVEP if it has SVEP at every λ ∈ C (see [7]).

Weyl type theorems for operators satisfying SVEP have been studied by numerous authors,

see for example [8, 9]. The rest of this paper is organized as follows. In Section 2, we give the

definition of property (ω1) and a necessary and sufficient condition for T such that property (ω1)

holds. Then we study the property (ω1) for an operator T on a Banach space such that T ∗ has

SVEP, where T ∗ denotes the adjoint of T . At last, the stability of property (ω1) is discussed.

2. Property (ω1) and SVEP

The property (ω1) is defined as follows:
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Definition 2.1 Property (ω1) holds for T if

σa(T )\σea(T ) ⊆ π00(T ).

If T satisfies property (ω1), then Browder’s theorem holds for T . If T or T ∗ has SVEP, then

T satisfies Browder’s theorem [8]. For property (ω1), we have:

Theorem 2.1 T ∈ B(X) satisfies property (ω1) ⇐⇒ T ∗ has SVEP at all λ ∈ σa(T )\σea(T ).

Proof Suppose T has property (ω1). Let λ ∈ σa(T )\σea(T ). Then T − λI is Browder. Thus

T ∗ − λI is Browder, which means that λ ∈ isoσ(T ∗) ∪ ρ(T ∗). Hence T ∗ has SVEP at λ.

Conversely, suppose that T ∗ has SVEP at all λ ∈ σa(T )\σea(T ). Let λ ∈ σa(T )\σea(T ).

Then T −λI ∈ SF−

+ (X). Therefore, T ∗−λI is lower semi-Fredholm and ind(T ∗−λI) ≥ 0. Since

T ∗ has SVEP at λ, it follows that asc(T ∗−λI) < ∞ (see [7, Theorem 15]). Then ind(T ∗−λI) ≤ 0.

Thus T ∗ − λI is Weyl. The fact that T ∗ has SVEP at λ tells us that T ∗ −λI is Browder. Hence

λ ∈ π00(T ) and T satisfies property (ω1). 2

Remark 2.1 T has SVEP cannot imply property (ω1) holds for T . For example, if T ∈ B(ℓ2)

is defined by

T (x1, x2, x3, . . .) = (x1, 0, 0, x3, x4, . . .),

then σ(T ) = {λ ∈ C : 0 ≤ |λ| ≤ 1}, π00(T ) = ∅. Since σa(T ) = {λ ∈ C : |λ| = 1} ∪ {0} and

asc(T ) = 1, we know that T has SVEP. But σea(T ) = {λ ∈ C : |λ| = 1} and σa(T )\σea(T ) = {0}.

Hence T does not have property (ω1). However, by using Theorem 2.1, T ∗ satisfies property (ω1).

Theorem 2.2 The following statements are equivalent:

(1) T ∈ B(X) has property (ω1) and σa(T ) = σ(T );

(2) T ∗ has SVEP at all λ ∈ σ(T )\σea(T );

(3) σw(T ) = σb(T ) and for any λ ∈ C\σSF+
(T ), ind(T − λI) ≥ 0;

(4) T has SVEP at all λ /∈ σea(T ) and σab(T ) = σb(T ).

Proof (1) ⇔ (2). Using Theorem 2.1, we know that (1) implies (2).

For the converse, we need to prove that σa(T ) = σ(T ). Let λ /∈ σa(T ). Then T − λI is

bounded from below and T ∗−λI is surjective. If λ ∈ σ(T ), then λ ∈ σ(T )\σea(T ), which means

that T ∗ has SVEP λ. Thus asc(T ∗ − λI) < ∞ and T ∗ − λI is invertible. Therefore T − λI is

invertible, which is in contradiction to the fact that λ ∈ σ(T ). Hence σa(T ) = σ(T ).

(1)⇔(3). Suppose T satisfies property (ω1) and σa(T ) = σ(T ). If there exists a λ ∈

C\σSF+
(T ), such that ind(T − λI) < 0. If λ /∈ σa(T ), since σa(T ) = σ(T ) we know that

T −λI is invertible. It is in contradiction to the fact that ind(T −λI) < 0. If λ ∈ σa(T )\σea(T ),

the condition T satisfies property (ω1) tells us that T − λI is Browder. Then ind(T − λI) = 0,

it is a contradiction again. Hence for any λ ∈ C\σSF+
(T ), ind(T − λI) ≥ 0. Since property (ω1)

implies Browder’s theorem, we know that σw(T ) = σb(T ).

Conversely, let λ ∈ σa(T )\σea(T ). Then T − λI ∈ SF−

+ (X). Since for any λ ∈ C\σSF+
(T ),

ind(T − λI) ≥ 0, it follows that T − λI is Weyl. The fact σw(T ) = σb(T ) tells us that T − λI is
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Browder. Then λ ∈ π00(T ), which means that T has property (ω1). If λ /∈ σa(T ), then T −λI is

bounded from below, ind(T −λI) ≤ 0. The condition implies that ind(T −λI) ≥ 0. Thus T −λI

is invertible and λ /∈ σ(T ). Hence σa(T ) = σ(T ).

(1)⇔(4). Suppose T has property (ω1) and σa(T ) = σ(T ). Let λ /∈ σea(T ). If T − λI is

bounded from below, then T has SVEP at λ. If λ ∈ σa(T )\σea(T ), since T has property (ω1),

we know that λ ∈ isoσ(T ). Thus T also has SVEP at λ. In what follows we will prove that

σab(T ) = σb(T ). Let λ /∈ σab(T ). Then T − λI is upper semi-Fredholm, ind(T − λI) ≤ 0 and

asc(T − λI) < ∞. From (3), we know that T − λI is Browder.

For the converse, suppose T has SVEP at all λ /∈ σea(T ) and σab(T ) = σb(T ). Let λ ∈

σa(T )\σea(T ). Then T −λI ∈ SF−

+ (X). Since T has SVEP at λ, we know that asc(T −λI) < ∞.

Thus λ /∈ σab(T ), which implies that T − λI is Browder. Hence T satisfies property (ω1). If

λ /∈ σa(T ), then λ /∈ σab(T ). Thus λ /∈ σb(T ) and T − λI is invertible. Hence σa(T ) = σ(T ). 2

It is well known that Browder’s theorem holds for T if and only if T ∗ satisfies Browder’s

theorem. But for property (ω1), similar consequence is generally false. For example, if T ∈ B(ℓ2)

is defined by

T (x1, x2, x3, . . .) = (x1, 0, x4, x5, . . .),

then

T ∗(x1, x2, x3, . . .) = (x1, 0, 0, x3, x4, . . .).

From Remark 2.1, we know that T has property (ω1), but T ∗ doesn’t satisfy property (ω1).

Corollary 2.1 Suppose T ∗ has SVEP and σw(T ∗) = σa(T ∗), then both T and T ∗ have property

(ω1).

Proof Using Theorem 2.1, we only need to prove that T ∗ satisfies property (ω1). Let λ0 ∈

σa(T ∗)\σea(T ∗). Then T ∗ − λ0I ∈ SF−

+ (X) and 0 < n(T ∗ − λ0I) < ∞. Since T ∗ has SVEP,

it follows that asc(T ∗ − λ0I) < ∞ ([7]). Thus there exists ǫ > 0 such that T ∗ − λI is bounded

from below if 0 < |λ − λ0| < ǫ. For this λ, the fact σw(T ∗) = σa(T ∗) tells us that T ∗ − λI is

Weyl. Since T ∗ has SVEP, we know that T ∗−λI is Browder. Then T ∗−λI is invertible. Hence

λ0 ∈ isoσ(T ∗) and λ0 ∈ π00(T
∗). Therefore T ∗ has property (ω1). 2

Example 2.1 Let T ∗ ∈ B(ℓ2) be defined by

T ∗(x1, x2, x3, . . .) = (0, 0,
x2

2
,
x3

3
, . . . ,

xn

n
, . . .).

Then T ∗ is quasinilpotent, hence T ∗ has SVEP and σw(T ∗) = σa(T ∗) = {0}. Using Corollary

2.1, we know that both T and T ∗ satisfy property (ω1).

Remark 2.2 (1) If T ∗ has SVEP, the consequences (1)–(4) in Theorem 2.2 are valid.

(2) Using Theorem 2.2, we know that T ∗ has SVEP implies that for any λ ∈ C\σSF+
(T ),

ind(T − λI) ≥ 0. Hence the spectral mapping theorem holds for σea(T ). In addition, σea(T ) =

σw(T ). In fact, let λ /∈ σea(T ). Then T −λI is upper semi-Fredholm and ind(T −λI) ≤ 0. Since

for any λ ∈ C\σSF+
(T ), ind(T −λI) ≥ 0, it follows that T −λI is Weyl. Hence σea(T ) = σw(T ).
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In the following, let H(T ) be the class of all complex-valued functions which are analytic on

a neighborhood of σ(T ) and are not constant on any component of σ(T ). If T ∗ has SVEP, then

for any f ∈ H(T ), σea(f(T )) = f(σea(T )) and σw(f(T )) = f(σw(T )).

Corollary 2.2 If T ∈ B(X), then

(1) T ∗ has SVEP at all λ ∈ σ(T )\σea(T ) ⇐⇒ for any f ∈ H(T ), property (ω1) holds for

f(T ) and σa(T ) = σ(T ).

(2) If T ∗ has SVEP and σw(T ∗) = σa(T ∗), then for any f ∈ H(T ), both f(T ) and f(T ∗)

satisfy property (ω1).

Proof (1) Using Theorem 2.2, we only need to prove that if T ∗ has SVEP at all λ ∈ σ(T )\σea(T ),

f(T ) has property (ω1). Let µ0 ∈ σa(f(T ))\σea(f(T )). Then f(T ) − µ0I ∈ SF−

+ (X). Let

f(T ) − µ0I = (T − λ1I)n1(T − λ2I)n2 · · · (T − λkI)nkg(T ),

where λi 6= λj and g(T ) is invertible. Then T − λiI is upper semi-Fredholm and
∑k

i=1
ind[(T −

λiI)ni ] = ind(f(T ) − µ0I) ≤ 0. If T − λiI is invertible, then T − λiI is Browder. If λi ∈ σ(T ),

since T ∗ has SVEP at all λ ∈ σ(T )\σea(T ) implies that for any λ ∈ C\σSF+
(T ), ind(T −λI) ≥ 0,

it follows that T − λiI is Weyl. Thus T ∗ − λiI is Weyl. The fact that T ∗ has SVEP at λi tells

us that T ∗ −λiI is Browder. Then T −λiI is Browder. Therefore f(T )− µ0I is Browder, which

means that f(T ) has property (ω1).

(2) If T ∗ has SVEP, then let f ∈ H(T ), f(T ∗) = f(T )∗ has SVEP [10, Theorem 3.3.9].

Using Remark 2.2, we know that σw(f(T ∗)) = σw(f(T )) = f(σw(T )) = f(σw(T ∗)). The fact

that σa(f(T ∗)) = f(σa(T ∗)) and Corollary 2.1 imply that both f(T ) and f(T ∗) have property

(ω1). 2

The Weyl’s theorem for T is not sufficient for the Weyl’s theorem for T + F with finite rank

[11]. So does a-Weyl’s theorem [12]. But if σa(T ) = σ(T ), we have:

Theorem 2.3 T ∈ B(X), if F is a compact operator commuting with T and σa(T ) = σ(T ),

then T + F satisfies property (ω1) if and only if property (ω1) holds for T .

Proof Suppose T + F has property (ω1). Let λ0 ∈ σa(T )\σea(T ). Then T − λ0I ∈ SF−

+ (X).

Thus T +F −λ0I ∈ SF−

+ (X). If T +F −λ0I is bounded from below, then asc(T +F −λ0I) < ∞.

Thus asc(T − λ0I) < ∞ (see [13]). There exists ǫ > 0 such that T − λI is bounded from below

if 0 < |λ − λ0| < ǫ. Since σa(T ) = σ(T ), we know that T − λI is invertible. Then λ0 ∈ isoσ(T ),

which means that T − λ0I is Browder. If λ0 ∈ σa(T + F )\σea(T + F ), the fact that T + F has

property (ω1) tells us that T + F − λ0I is Browder. Thus T − λ0I is Browder and λ0 ∈ π00(T ).

Hence T satisfies property (ω1).

Conversely, suppose property (ω1) holds for T . Let λ0 ∈ σa(T + F )\σea(T + F ). Then

T + F − λ0I ∈ SF−

+ (X). Thus T − λ0I ∈ SF−

+ (X). If T − λ0I is bounded from below, since

σa(T ) = σ(T ), we know that T − λ0I is invertible. Therefore T + F − λ0I is Browder. If

λ0 ∈ σa(T )\σea(T ), the condition that T has property (ω1) implies that T − λ0I is Browder.

Thus property (ω1) holds for T + F . 2
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Corollary 2.3 Suppose T ∈ B(X), then for every compact operator F commuting with T ,

T + F satisfies property (ω1) and σa(T ) = σ(T ) ⇐⇒ T ∗ has SVEP at all λ ∈ σ(T )\σea(T ).
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