Property $\left(\omega_{1}\right)$ and Single Valued Extension Property

Chen Hui SUN, Xiao Hong CAO*, Lei DAI
College of Mathematics and Information Science, Shaanxi Normal University, Shaanxi 710062, P. R. China

Abstract

In this note we study the property $\left(\omega_{1}\right)$, a variant of Weyl's theorem by means of the single valued extension property, and establish for a bounded linear operator defined on a Banach space the necessary and sufficient condition for which property $\left(\omega_{1}\right)$ holds. As a consequence of the main result, the stability of property $\left(\omega_{1}\right)$ is discussed.

Keywords property (ω_{1}); single valued extension property.
Document code A
MR(2000) Subject Classification 47A53; 47A55; 47A15
Chinese Library Classification O177.2

1. Introduction

Weyl [1] examined the spectra of all compact perturbations of a hermitian operator on Hilbert space and found in 1909 that their intersection consisted precisely of those points of the spectrum which were not isolated eigenvalues of finite multiplicity. This " Weyl's theorem " has been considered by many authors. Variants have been discussed by Harte and Lee [2] and Rakočevic̀ $[3,4]$. In this note, we study a new variant of Weyl's theorem which is called property $\left(\omega_{1}\right)$ by means of the single valued extension property and establish for a bounded linear operator defined on a Banach space the necessary and sufficient conditions for which property $\left(\omega_{1}\right)$ holds. Also, the stability of property $\left(\omega_{1}\right)$ is discussed.

Throughout this paper, X denotes an infinite dimensional complex Banach space, and $B(X)$ $(K(X))$ denotes the algebra of all bounded linear operators (compact operators) on X. For an operator $T \in B(X)$ we shall denote by $n(T)$ the dimension of the kernel $N(T)$, and by $d(T)$ the codimension of the range $R(T)$. We call $T \in B(X)$ an upper semi-Fredholm operator if $n(T)<\infty$ and $R(T)$ is closed; But if $d(T)<\infty$ and $R(T)$ is closed, T is a lower semi-Fredholm operator. An operator $T \in B(X)$ is said to be Fredholm if $R(T)$ is closed and both the deficiency induces $n(T)$ and $d(T)$ are finite. If $T \in B(X)$ is an upper (or a lower) semi-Fredholm operator, the index of $T, \operatorname{ind}(T)$, is defined to be $\operatorname{ind}(T)=n(T)-d(T)$. The ascent of $T, \operatorname{asc}(T)$, is the least non-negative integer n such that $N\left(T^{n}\right)=N\left(T^{n+1}\right)$ and the descent, $\operatorname{des}(T)$, is the least

[^0]non-negative integer n such that $R\left(T^{n}\right)=R\left(T^{n+1}\right)$. The operator T is Weyl if it is Fredholm of index zero, and T is said to be Browder if it is Fredholm "of finite ascent and descent". The upper semi-Fredholm spectrum $\sigma_{S F_{+}}(T)$ is defined by: $\sigma_{S F_{+}}(T)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not upper semi-Fredholm $\}$. Let $\rho(T)$ denote the resolvent set of the operator T and $\sigma(T)=\mathbb{C} \backslash \rho(T)$ denote the usual spectrum of T. And let $\sigma_{a}(T)$ denote the approximate point spectrum of the operator $T \in B(X), \rho_{a}(T)=\mathbb{C} \backslash \sigma_{a}(T)$. The Weyl spectrum $\sigma_{w}(T)$ and the Browder spectrum $\sigma_{b}(T)$ of T are defined as $\sigma_{w}(T)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not Weyl $\} ; \sigma_{b}(T)=\{\lambda \in \mathbb{C}: T-\lambda I$ is not Browder $\}$. Let $\sigma_{e a}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin S F_{+}^{-}(X)\right\}$ and $S F_{+}^{-}(X)=\{T \in B(X), T$ is upper semi-Fredholm operators and $\operatorname{ind}(T) \leq 0\}$. Let $\sigma_{a b}(T)=\cap\left\{\sigma_{a}(T+K): K \in K(X) \cap \operatorname{comm}(T)\right\}$, it is well known that $\lambda \notin \sigma_{a b}(T)$ if and only if $T-\lambda I$ is upper semi-Fredholm and $T-\lambda I$ has finite ascent. If
$$
\sigma(T) \backslash \sigma_{w}(T)=\pi_{00}(T),
$$
then Weyl's theorem holds for T, where $\pi_{00}(T)$ denotes the set of isolated points such that $\operatorname{dim} N(T-\lambda I)<\infty$; the Browder's theorem holds for T if
$$
\sigma_{w}(T)=\sigma_{b}(T)
$$

Let $\pi_{00}^{a}(T)$ be the set of $\lambda \in \mathbb{C}$ such that λ is an isolated point of $\sigma_{a}(T)$ and $0<\operatorname{dim} N(T-\lambda I)<$ ∞, T satisfies a-Weyl's theorem if

$$
\sigma_{a}(T) \backslash \sigma_{e a}(T)=\pi_{00}^{a}(T)
$$

We can prove that a-Weyl's theorem \Longrightarrow Weyl's theorem \Longrightarrow Browder's theorem, but the converse is generally false.
$T \in B(X)$ is said to satisfy property (ω) (see [5]) if

$$
\sigma_{a}(T) \backslash \sigma_{e a}(T)=\pi_{00}(T)
$$

If T has property (ω), then Weyl's and Browder's theorem hold for T. Many fundamental results and theory of property (ω) and its stability were established by Ainena in [5] and [6].

An operator $T \in B(X)$ has single valued extension property at $\lambda_{0} \in \mathbb{C}$, SVEP at $\lambda_{0} \in \mathbb{C}$ for short, if for every open disc $D_{\lambda_{0}}$ centered at λ_{0} the only analytic function $f: D_{\lambda_{0}} \rightarrow X$, which satisfies the equation $(T-\lambda I) f(\lambda)=0$ for all $\lambda \in D_{\lambda_{0}}$ is the function $f \equiv 0$. Trivially, every operator T has SVEP at every point of the resolvent $\rho(T)$ and $\mathbb{C} \backslash \sigma_{a}(T)$; also T has the SVEP at $\lambda \in \partial \sigma(T)$. We say that T has SVEP if it has SVEP at every $\lambda \in \mathbb{C}$ (see [7]).

Weyl type theorems for operators satisfying SVEP have been studied by numerous authors, see for example $[8,9]$. The rest of this paper is organized as follows. In Section 2, we give the definition of property $\left(\omega_{1}\right)$ and a necessary and sufficient condition for T such that property $\left(\omega_{1}\right)$ holds. Then we study the property $\left(\omega_{1}\right)$ for an operator T on a Banach space such that T^{*} has SVEP, where T^{*} denotes the adjoint of T. At last, the stability of property $\left(\omega_{1}\right)$ is discussed.

2. Property $\left(\omega_{1}\right)$ and SVEP

The property $\left(\omega_{1}\right)$ is defined as follows:

Definition 2.1 Property $\left(\omega_{1}\right)$ holds for T if

$$
\sigma_{a}(T) \backslash \sigma_{e a}(T) \subseteq \pi_{00}(T)
$$

If T satisfies property $\left(\omega_{1}\right)$, then Browder's theorem holds for T. If T or T^{*} has SVEP, then T satisfies Browder's theorem [8]. For property $\left(\omega_{1}\right)$, we have:

Theorem 2.1 $T \in B(X)$ satisfies property $\left(\omega_{1}\right) \Longleftrightarrow T^{*}$ has SVEP at all $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$.
Proof Suppose T has property $\left(\omega_{1}\right)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Then $T-\lambda I$ is Browder. Thus $T^{*}-\lambda I$ is Browder, which means that $\lambda \in$ iso $\sigma\left(T^{*}\right) \cup \rho\left(T^{*}\right)$. Hence T^{*} has SVEP at λ.

Conversely, suppose that T^{*} has SVEP at all $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Let $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Then $T-\lambda I \in S F_{+}^{-}(X)$. Therefore, $T^{*}-\lambda I$ is lower semi-Fredholm and $\operatorname{ind}\left(T^{*}-\lambda I\right) \geq 0$. Since T^{*} has SVEP at λ, it follows that $\operatorname{asc}\left(T^{*}-\lambda I\right)<\infty\left(\right.$ see $\left[7\right.$, Theorem 15]). Then ind $\left(T^{*}-\lambda I\right) \leq 0$. Thus $T^{*}-\lambda I$ is Weyl. The fact that T^{*} has SVEP at λ tells us that $T^{*}-\lambda I$ is Browder. Hence $\lambda \in \pi_{00}(T)$ and T satisfies property $\left(\omega_{1}\right)$.

Remark 2.1 T has SVEP cannot imply property $\left(\omega_{1}\right)$ holds for T. For example, if $T \in B\left(\ell^{2}\right)$ is defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, 0,0, x_{3}, x_{4}, \ldots\right)
$$

then $\sigma(T)=\{\lambda \in \mathbb{C}: 0 \leq|\lambda| \leq 1\}, \pi_{00}(T)=\emptyset$. Since $\sigma_{a}(T)=\{\lambda \in \mathbb{C}:|\lambda|=1\} \cup\{0\}$ and $\operatorname{asc}(T)=1$, we know that T has SVEP. But $\sigma_{e a}(T)=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and $\sigma_{a}(T) \backslash \sigma_{e a}(T)=\{0\}$. Hence T does not have property $\left(\omega_{1}\right)$. However, by using Theorem 2.1, T^{*} satisfies property $\left(\omega_{1}\right)$.

Theorem 2.2 The following statements are equivalent:
(1) $T \in B(X)$ has property $\left(\omega_{1}\right)$ and $\sigma_{a}(T)=\sigma(T)$;
(2) T^{*} has SVEP at all $\lambda \in \sigma(T) \backslash \sigma_{e a}(T)$;
(3) $\sigma_{w}(T)=\sigma_{b}(T)$ and for any $\lambda \in \mathbb{C} \backslash \sigma_{S F_{+}}(T)$, $\operatorname{ind}(T-\lambda I) \geq 0$;
(4) T has SVEP at all $\lambda \notin \sigma_{e a}(T)$ and $\sigma_{a b}(T)=\sigma_{b}(T)$.

Proof $(1) \Leftrightarrow(2)$. Using Theorem 2.1, we know that (1) implies (2).
For the converse, we need to prove that $\sigma_{a}(T)=\sigma(T)$. Let $\lambda \notin \sigma_{a}(T)$. Then $T-\lambda I$ is bounded from below and $T^{*}-\lambda I$ is surjective. If $\lambda \in \sigma(T)$, then $\lambda \in \sigma(T) \backslash \sigma_{e a}(T)$, which means that T^{*} has SVEP λ. Thus $\operatorname{asc}\left(T^{*}-\lambda I\right)<\infty$ and $T^{*}-\lambda I$ is invertible. Therefore $T-\lambda I$ is invertible, which is in contradiction to the fact that $\lambda \in \sigma(T)$. Hence $\sigma_{a}(T)=\sigma(T)$.
$(1) \Leftrightarrow(3)$. Suppose T satisfies property $\left(\omega_{1}\right)$ and $\sigma_{a}(T)=\sigma(T)$. If there exists a $\lambda \in$ $\mathbb{C} \backslash \sigma_{S F_{+}}(T)$, such that $\operatorname{ind}(T-\lambda I)<0$. If $\lambda \notin \sigma_{a}(T)$, since $\sigma_{a}(T)=\sigma(T)$ we know that $T-\lambda I$ is invertible. It is in contradiction to the fact that $\operatorname{ind}(T-\lambda I)<0$. If $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$, the condition T satisfies property $\left(\omega_{1}\right)$ tells us that $T-\lambda I$ is Browder. Then ind $(T-\lambda I)=0$, it is a contradiction again. Hence for any $\lambda \in \mathbb{C} \backslash \sigma_{S F_{+}}(T), \operatorname{ind}(T-\lambda I) \geq 0$. Since property $\left(\omega_{1}\right)$ implies Browder's theorem, we know that $\sigma_{w}(T)=\sigma_{b}(T)$.

Conversely, let $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Then $T-\lambda I \in S F_{+}^{-}(X)$. Since for any $\lambda \in \mathbb{C} \backslash \sigma_{S F_{+}}(T)$, $\operatorname{ind}(T-\lambda I) \geq 0$, it follows that $T-\lambda I$ is Weyl. The fact $\sigma_{w}(T)=\sigma_{b}(T)$ tells us that $T-\lambda I$ is

Browder. Then $\lambda \in \pi_{00}(T)$, which means that T has property $\left(\omega_{1}\right)$. If $\lambda \notin \sigma_{a}(T)$, then $T-\lambda I$ is bounded from below, $\operatorname{ind}(T-\lambda I) \leq 0$. The condition implies that $\operatorname{ind}(T-\lambda I) \geq 0$. Thus $T-\lambda I$ is invertible and $\lambda \notin \sigma(T)$. Hence $\sigma_{a}(T)=\sigma(T)$.
$(1) \Leftrightarrow(4)$. Suppose T has property $\left(\omega_{1}\right)$ and $\sigma_{a}(T)=\sigma(T)$. Let $\lambda \notin \sigma_{e a}(T)$. If $T-\lambda I$ is bounded from below, then T has SVEP at λ. If $\lambda \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$, since T has property $\left(\omega_{1}\right)$, we know that $\lambda \in$ iso $\sigma(T)$. Thus T also has SVEP at λ. In what follows we will prove that $\sigma_{a b}(T)=\sigma_{b}(T)$. Let $\lambda \notin \sigma_{a b}(T)$. Then $T-\lambda I$ is upper semi-Fredholm, $\operatorname{ind}(T-\lambda I) \leq 0$ and $\operatorname{asc}(T-\lambda I)<\infty$. From (3), we know that $T-\lambda I$ is Browder.

For the converse, suppose T has SVEP at all $\lambda \notin \sigma_{e a}(T)$ and $\sigma_{a b}(T)=\sigma_{b}(T)$. Let $\lambda \in$ $\sigma_{a}(T) \backslash \sigma_{e a}(T)$. Then $T-\lambda I \in S F_{+}^{-}(X)$. Since T has SVEP at λ, we know that $\operatorname{asc}(T-\lambda I)<\infty$. Thus $\lambda \notin \sigma_{a b}(T)$, which implies that $T-\lambda I$ is Browder. Hence T satisfies property (ω_{1}). If $\lambda \notin \sigma_{a}(T)$, then $\lambda \notin \sigma_{a b}(T)$. Thus $\lambda \notin \sigma_{b}(T)$ and $T-\lambda I$ is invertible. Hence $\sigma_{a}(T)=\sigma(T)$.

It is well known that Browder's theorem holds for T if and only if T^{*} satisfies Browder's theorem. But for property $\left(\omega_{1}\right)$, similar consequence is generally false. For example, if $T \in B\left(\ell^{2}\right)$ is defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, 0, x_{4}, x_{5}, \ldots\right)
$$

then

$$
T^{*}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, 0,0, x_{3}, x_{4}, \ldots\right)
$$

From Remark 2.1, we know that T has property $\left(\omega_{1}\right)$, but T^{*} doesn't satisfy property $\left(\omega_{1}\right)$.
Corollary 2.1 Suppose T^{*} has SVEP and $\sigma_{w}\left(T^{*}\right)=\sigma_{a}\left(T^{*}\right)$, then both T and T^{*} have property $\left(\omega_{1}\right)$.

Proof Using Theorem 2.1, we only need to prove that T^{*} satisfies property $\left(\omega_{1}\right)$. Let $\lambda_{0} \in$ $\sigma_{a}\left(T^{*}\right) \backslash \sigma_{e a}\left(T^{*}\right)$. Then $T^{*}-\lambda_{0} I \in S F_{+}^{-}(X)$ and $0<n\left(T^{*}-\lambda_{0} I\right)<\infty$. Since T^{*} has SVEP, it follows that $\operatorname{asc}\left(T^{*}-\lambda_{0} I\right)<\infty([7])$. Thus there exists $\epsilon>0$ such that $T^{*}-\lambda I$ is bounded from below if $0<\left|\lambda-\lambda_{0}\right|<\epsilon$. For this λ, the fact $\sigma_{w}\left(T^{*}\right)=\sigma_{a}\left(T^{*}\right)$ tells us that $T^{*}-\lambda I$ is Weyl. Since T^{*} has SVEP, we know that $T^{*}-\lambda I$ is Browder. Then $T^{*}-\lambda I$ is invertible. Hence $\lambda_{0} \in$ iso $\sigma\left(T^{*}\right)$ and $\lambda_{0} \in \pi_{00}\left(T^{*}\right)$. Therefore T^{*} has property $\left(\omega_{1}\right)$.

Example 2.1 Let $T^{*} \in B\left(\ell^{2}\right)$ be defined by

$$
T^{*}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0,0, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots, \frac{x_{n}}{n}, \ldots\right) .
$$

Then T^{*} is quasinilpotent, hence T^{*} has SVEP and $\sigma_{w}\left(T^{*}\right)=\sigma_{a}\left(T^{*}\right)=\{0\}$. Using Corollary 2.1, we know that both T and T^{*} satisfy property $\left(\omega_{1}\right)$.

Remark 2.2 (1) If T^{*} has SVEP, the consequences (1)-(4) in Theorem 2.2 are valid.
(2) Using Theorem 2.2, we know that T^{*} has SVEP implies that for any $\lambda \in \mathbb{C} \backslash \sigma_{S F_{+}}(T)$, $\operatorname{ind}(T-\lambda I) \geq 0$. Hence the spectral mapping theorem holds for $\sigma_{e a}(T)$. In addition, $\sigma_{e a}(T)=$ $\sigma_{w}(T)$. In fact, let $\lambda \notin \sigma_{e a}(T)$. Then $T-\lambda I$ is upper semi-Fredholm and ind $(T-\lambda I) \leq 0$. Since for any $\lambda \in \mathbb{C} \backslash \sigma_{S F_{+}}(T), \operatorname{ind}(T-\lambda I) \geq 0$, it follows that $T-\lambda I$ is Weyl. Hence $\sigma_{e a}(T)=\sigma_{w}(T)$.

In the following, let $H(T)$ be the class of all complex-valued functions which are analytic on a neighborhood of $\sigma(T)$ and are not constant on any component of $\sigma(T)$. If T^{*} has SVEP, then for any $f \in H(T), \sigma_{e a}(f(T))=f\left(\sigma_{e a}(T)\right)$ and $\sigma_{w}(f(T))=f\left(\sigma_{w}(T)\right)$.

Corollary 2.2 If $T \in B(X)$, then
(1) T^{*} has SVEP at all $\lambda \in \sigma(T) \backslash \sigma_{e a}(T) \Longleftrightarrow$ for any $f \in H(T)$, property (ω_{1}) holds for $f(T)$ and $\sigma_{a}(T)=\sigma(T)$.
(2) If T^{*} has SVEP and $\sigma_{w}\left(T^{*}\right)=\sigma_{a}\left(T^{*}\right)$, then for any $f \in H(T)$, both $f(T)$ and $f\left(T^{*}\right)$ satisfy property $\left(\omega_{1}\right)$.

Proof (1) Using Theorem 2.2, we only need to prove that if T^{*} has SVEP at all $\lambda \in \sigma(T) \backslash \sigma_{e a}(T)$, $f(T)$ has property $\left(\omega_{1}\right)$. Let $\mu_{0} \in \sigma_{a}(f(T)) \backslash \sigma_{e a}(f(T))$. Then $f(T)-\mu_{0} I \in S F_{+}^{-}(X)$. Let

$$
f(T)-\mu_{0} I=\left(T-\lambda_{1} I\right)^{n_{1}}\left(T-\lambda_{2} I\right)^{n_{2}} \cdots\left(T-\lambda_{k} I\right)^{n_{k}} g(T),
$$

where $\lambda_{i} \neq \lambda_{j}$ and $g(T)$ is invertible. Then $T-\lambda_{i} I$ is upper semi-Fredholm and $\sum_{i=1}^{k} \operatorname{ind}[(T-$ $\left.\left.\lambda_{i} I\right)^{n_{i}}\right]=\operatorname{ind}\left(f(T)-\mu_{0} I\right) \leq 0$. If $T-\lambda_{i} I$ is invertible, then $T-\lambda_{i} I$ is Browder. If $\lambda_{i} \in \sigma(T)$, since T^{*} has SVEP at all $\lambda \in \sigma(T) \backslash \sigma_{e a}(T)$ implies that for any $\lambda \in \mathbb{C} \backslash \sigma_{S F_{+}}(T), \operatorname{ind}(T-\lambda I) \geq 0$, it follows that $T-\lambda_{i} I$ is Weyl. Thus $T^{*}-\lambda_{i} I$ is Weyl. The fact that T^{*} has SVEP at λ_{i} tells us that $T^{*}-\lambda_{i} I$ is Browder. Then $T-\lambda_{i} I$ is Browder. Therefore $f(T)-\mu_{0} I$ is Browder, which means that $f(T)$ has property $\left(\omega_{1}\right)$.
(2) If T^{*} has SVEP, then let $f \in H(T), f\left(T^{*}\right)=f(T)^{*}$ has SVEP [10, Theorem 3.3.9]. Using Remark 2.2, we know that $\sigma_{w}\left(f\left(T^{*}\right)\right)=\sigma_{w}(f(T))=f\left(\sigma_{w}(T)\right)=f\left(\sigma_{w}\left(T^{*}\right)\right)$. The fact that $\sigma_{a}\left(f\left(T^{*}\right)\right)=f\left(\sigma_{a}\left(T^{*}\right)\right)$ and Corollary 2.1 imply that both $f(T)$ and $f\left(T^{*}\right)$ have property $\left(\omega_{1}\right)$.

The Weyl's theorem for T is not sufficient for the Weyl's theorem for $T+F$ with finite rank [11]. So does a-Weyl's theorem [12]. But if $\sigma_{a}(T)=\sigma(T)$, we have:

Theorem 2.3 $T \in B(X)$, if F is a compact operator commuting with T and $\sigma_{a}(T)=\sigma(T)$, then $T+F$ satisfies property $\left(\omega_{1}\right)$ if and only if property $\left(\omega_{1}\right)$ holds for T.

Proof Suppose $T+F$ has property $\left(\omega_{1}\right)$. Let $\lambda_{0} \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$. Then $T-\lambda_{0} I \in S F_{+}^{-}(X)$. Thus $T+F-\lambda_{0} I \in S F_{+}^{-}(X)$. If $T+F-\lambda_{0} I$ is bounded from below, then $\operatorname{asc}\left(T+F-\lambda_{0} I\right)<\infty$. Thus asc $\left(T-\lambda_{0} I\right)<\infty$ (see [13]). There exists $\epsilon>0$ such that $T-\lambda I$ is bounded from below if $0<\left|\lambda-\lambda_{0}\right|<\epsilon$. Since $\sigma_{a}(T)=\sigma(T)$, we know that $T-\lambda I$ is invertible. Then $\lambda_{0} \in$ iso $\sigma(T)$, which means that $T-\lambda_{0} I$ is Browder. If $\lambda_{0} \in \sigma_{a}(T+F) \backslash \sigma_{e a}(T+F)$, the fact that $T+F$ has property $\left(\omega_{1}\right)$ tells us that $T+F-\lambda_{0} I$ is Browder. Thus $T-\lambda_{0} I$ is Browder and $\lambda_{0} \in \pi_{00}(T)$. Hence T satisfies property $\left(\omega_{1}\right)$.

Conversely, suppose property $\left(\omega_{1}\right)$ holds for T. Let $\lambda_{0} \in \sigma_{a}(T+F) \backslash \sigma_{e a}(T+F)$. Then $T+F-\lambda_{0} I \in S F_{+}^{-}(X)$. Thus $T-\lambda_{0} I \in S F_{+}^{-}(X)$. If $T-\lambda_{0} I$ is bounded from below, since $\sigma_{a}(T)=\sigma(T)$, we know that $T-\lambda_{0} I$ is invertible. Therefore $T+F-\lambda_{0} I$ is Browder. If $\lambda_{0} \in \sigma_{a}(T) \backslash \sigma_{e a}(T)$, the condition that T has property $\left(\omega_{1}\right)$ implies that $T-\lambda_{0} I$ is Browder. Thus property $\left(\omega_{1}\right)$ holds for $T+F$.

Corollary 2.3 Suppose $T \in B(X)$, then for every compact operator F commuting with T, $T+F$ satisfies property $\left(\omega_{1}\right)$ and $\sigma_{a}(T)=\sigma(T) \Longleftrightarrow T^{*}$ has SVEP at all $\lambda \in \sigma(T) \backslash \sigma_{e a}(T)$.

References

[1] WEYL H. Über beschränkte quadratische Formen, deren Differenz vollstetig ist [J]. Rend. Circ. Mat. Palermo, 1909, 27: 373-392.
[2] HARTE R, LEE W Y. Another note on Weyl's theorem [J]. Trans. Amer. Math. Soc., 1997, 349(5): 2115-2124.
[3] RAKOČEVIĆ V. Operators obeying a-Weyl's theorem [J]. Rev. Roumaine Math. Pures Appl., 1989, 34(10): 915-919.
[4] RAKOČEVIĆ V. On a class of operators [J]. Mat. Vesnik, 1985, 37(4): 423-426.
[5] AIENA P, PEÑA P. Variation on Weyl's theorem [J]. J. Math. Anal. Appl., 2006, 324(1): 566-579.
[6] AIENA P, BIONDI M T. Property (w) and perturbations [J]. J. Math. Anal. Appl., 2007, 336(1): 683-692.
[7] FINCH J K. The single valued extension property on a Banach space [J]. Pacific J. Math., 1975, 58(1): 61-69.
[8] OUDGHIRI M. Weyl's and Browder's theorems for operators satisfying the SVEP [J]. Studia Math., 2004, 163(1): 85-101.
[9] AMOUCH M. Weyl type theorems for operators satisfying the single-valued extension property [J]. J. Math. Anal. Appl., 2007, 326(2): 1476-1484.
[10] LAURSEN K B, NEUMANN M N. Introduction to Local Spectral Theory [M]. The Clarendon Press, Oxford University Press, New York, 2000.
[11] OBERAI K K. On the Weyl spectrum (II) [J]. Illinois J. Math., 1977, 21(1): 84-90.
[12] CAO Xiaohong, GUO Maozheng, MENG Bin. Weyl Spectra and Weyl's theorem [J]. J. Math. Anal. Appl., 2003, 288(2): 758-767.
[13] RAKOČEVIĆ V. Semi-Fredholm operator with finite ascent or descent and perturbations [J]. Proc. Amer. Math. Soc., 1995, 123(12): 3823-3825.

[^0]: Received December 17, 2008; Accepted June 30, 2009
 Supported by the Fundamental Research Funds for the Central Universities (Grant No. GK200901015) and the Innovation Funds of Graduate Programs, SNU (Grant No. 2009cxs028).

 * Corresponding author

 E-mail address: xiaohongcao@snnu.edu.cn (X. H. CAO)

